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The first comprehensive study of the precision and accuracy of GPS coordinates was [Larson and 

Agnew, 1991] (with an acknowledgement to [J. L. Davis et al., 1989]). They concluded that the short-

term precision was on the order of 17 mm for the vertical and for long-term precision, 11.7 mm with a 

baseline dependence of 13 parts in 10
8
. However at that time the GPS constellation was incomplete 

and measurements were made over a span of around 7-8 hours (at the most optimal time of day) on 4 

– 5 consecutive days.  The data was processed as baseline measurements and not converted to 

individual site coordinates (hence the baseline dependence). The small amount of data precluded any 

attempt to look at time dependence in the data.  

Using continuous measurements of near surface monuments from a laser strainmeter in Southern 

California [F Wyatt, 1982] and [F. K. Wyatt, 1989] demonstrated that the power spectra had a power 

law dependence on frequency of the form  

 
𝑃(𝑓) =

𝑃𝑟

(2 𝜋𝑓)2
 

(1) 

   

In addition, [John Langbein et al., 1993] showed that other geodetic measurements such as two-colour 

geodimeters, creepmeters and water wells also demonstrated an f
-2

 dependence in their power spectra. 

This behaviour is typically known as Brownian motion or random walk. [Agnew, 1992] showed that 

the spectra of many geophysical phenomena can often be approximated by a power-law dependence 

on frequency and introduced a more general form of the power spectra (following the work of 

[Mandelbrot and Ness, 1968]), given by 

 
𝑃(𝑓) =  𝑃0 (

𝑓

𝑓0
)

𝜅

 
(2) 

   

where P0 and f0 are normalising constants, f is the frequency and κ is the spectral index. [Johnson and 

Agnew, 1995] demonstrated the effect long-range time dependent correlations have on the estimates 

of uncertainty, primarily that neglecting such behaviour leads to estimates of the uncertainty that are 

overly optimistic (too small). They argued that if this random walk motion seen in geodetic data is 

related to monument motion then it is an issue for all geodetic instruments. 

Using Maximum Likelihood Estimation (MLE) [J. Langbein and Johnson, 1997] estimated the 

amplitudes of random walk and white noise in the time series from two-colour EDM (geodimeter) 

measurements. They found that the random walk noise level averaged about 1.3 mm/√yr with a range 

between 0 and 4 mm/√yr. The first paper to examine time-correlated noise in GPS data was [N E King 
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et al., 1995]. They found no evidence of random-walk noise in the time series but did find some 

evidence of short-term correlation of around 25 days from the autocorrelation function. The amount of 

white noise in the series was found to be on the order of 5 mm in the vertical. However only one 

baseline was analysed and it was 2 ½ years in length. They concluded that the random walk noise 

might simply be undetectable at that point.  

In addition to temporally correlated noise, GPS time series were also identified as containing a 

spatially correlated, common mode [Wdowinski et al., 1997]. This to some extent has divided GPS 

time series analysis into two categories, global and regional (or unfiltered and filtered respectively). 

Where there is a network of sites with sufficiently small baselines the common mode signal can be 

removed by a variety of methods such as stacking of the residuals [Wdowinski et al., 1997], principal 

component analysis [Serpelloni et al., 2013] or by the use of defining a regional reference frame and 

fitting and applying a daily Helmert transformation [Hurst et al., 2000]. In general a globally 

distributed set of sites are sufficiently separated that they may be considered to be uncorrelated from 

each other and the common mode noise cannot be reduced and the noise is typically higher than the 

filtered (regional) series.  

 [Zhang et al., 1997] examined 19 months of continuous GPS (CGPS) data from 10 sites in southern 

California. Since a common mode signal was removed the results were for a regional, filtered 

network. They used MLE, autocorrelation analysis and power spectra to analyse the time series. For 

the MLE analysis they chose three candidate models; white noise only, white noise plus flicker noise 

[Voss and Clarke, 1975] (κ = -1) and white plus random walk noise. They found that the flicker plus 

white noise model best described the data. The average amplitudes for the vertical component was 6.8 

± 0.6 mm (95% confidence) for the white noise and 6.2 ± 2.7 mm [sic] (95% confidence) for the 

flicker noise (Note that in this paper they used an approximation for the flicker noise covariance and 

so the amplitudes may not be comparable to later papers). By fitting a straight line to the power 

spectra (in log-log space) they obtained a median spectral index of -0.4.  [Mao et al., 1999] examined 

a globally distributed set of 23 sites that contained 3 years of data. They also used a combination of 

power spectra and MLE with integer spectral indices and concluded that white plus flicker noise best 

described the noise content of the series.  In the vertical the mean white noise and flicker noise 

amplitudes were 10.3 mm and 14.7 mm respectively. The mean spectral indices, estimated from the 

power spectra, ranged from -0.74 to -1.02. They also found that the white noise component had a 

latitude dependent bias in the vertical (noisier at the equator). [Calais, 1999] confirmed the above 

results (in the horizontal only) using three permanent sites in Europe as did [Caporali, 2003] who 

used the two-sample Allan variance [Allan, 1966] to study the noise characteristics of 21 sites from 

the EUREF network with time spans ranging from 3 to 6 years. [Caporali, 2003] also found very little 

evidence of random walk noise in the time series.  

While most of the earlier studies concentrated on the integer spectral indices as potential stochastic 

models, primarily because their knowledge on how to create covariance matrices was limited to 

flicker and random walk noise, there is no reason why a non-integer spectral index may not be more 

appropriate. Indeed the spectral indices estimated from fitting a line to the power spectra highlighted a 

range of non-integer values but invariably close to, or slightly lower (closer to zero),  than -1. [S.D.P. 

Williams, 2003] introduced the fractional differencing method of [Hosking, 1981] which allowed one 

to produce a covariance matrix for a power-law noise with any spectral index and therefore the ability 

to estimate the spectral index in addition to the noise amplitudes using MLE. [S.D.P. Williams et al., 

2004] analysed a total of 954 continuous GPS position time series, with lengths from 16 months to 10 

years, from 414 individual sites in nine different GPS solutions (both regional and global solutions) to 

produce the most comprehensive study of noise content so far. They used two MLE approaches to 
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study the data; the traditional method of assuming white noise, white plus flicker noise and white plus 

random walk and a second analysis where the spectral index and amplitude of the power-law noise 

were estimated simultaneously with the white noise. For the global solutions the mean spectral index 

for the vertical component was found to be -0.8 ± 0.4 which was therefore consistent with a flicker 

plus white noise model (which was the most likely model in the integer analysis also).  Both noise 

components showed a latitude dependence on their amplitudes (higher at equatorial sites) together 

with a bias to larger values in the Southern Hemisphere. The flicker noise amplitude was 20.2 mm/yr
¼
 

and 23.1 mm/yr
¼
 (SOPAC and JPL solutions respectively) and the white noise amplitudes were 3.9 

mm and 7.7 mm.  The noise was found to be significantly lower in the in the regional filtered 

solutions and the estimated spectral index was found to be more varied than the global solutions but 

they were still centred around a value close to flicker noise.  The average noise amplitudes in the 

vertical were 7.9 mm/yr
¼ 

for the flicker noise and 3.2 mm for the white noise.  A significant reduction 

in the noise amplitudes could also be seen since the first CGPS networks began in the early 1990’s. 

They also divided the GPS sites into different monument types and found that the deep drilled braced 

monument design offered the lowest noise levels.  

The papers since [S.D.P. Williams et al., 2004] all tend to confirm the same results that a suitable 

noise model for CGPS coordinate time series is a flicker plus white noise model. The average 

parameters from the major studies are shown in the table below. We note that a) the more recent 

studies tend to have longer time spans and more sites; b) the noise amplitudes have reduced and c) the 

presence of random walk is still unconfirmed. 

Table 1. Means and Standard Deviations of the White Noise and Flicker Noise Estimates for the 

vertical Component from various studies. Also Included is the Approximate Time Span of Data Used, 

the Number of Sites and any Estimate of Spectral Index. 

Study Global or Regional 

White noise 

amplitude 

(mm) 

Flicker noise 

amplitude 

(mm/yr¼) 

Time 

span of 

data 

Number 
of sites 

Estimated 
spectral index 

[Zhang et al., 1997] Regional 6.8 ± 0.6 6.2 ± 2.7 1.6 10 -0.4 

[Mao et al., 1999] Global 10.3 14.7 3 23 -0.72, -1.02 

[S.D.P. Williams et al., 2004] 

SOPAC Global 3.9 ± 1.9 20.2 ± 5.5 3.6 207 -0.8 ± 0.2 

JPL Global 7.7 ± 2.6 23.1 ± 7.8 2.5 268 -0.8 ± 0.3 

SOPAC SCIGN (R) 3.0 ± 0.5 7.0 ± 5.0 2.7 147 -0.9 ± 0.5 

JPL SCIGN (R) 3.6 ± 0.9 7.0 ± 3.2 2.2 58 -1.0 ± 0.7 

USGS SCIGN (R) 4.1 ± 1.0 9.2 ± 3.7 2.5 112 -0.8 ± 0.4 

PANGA PANGA (R) 5.0 ± 1.9 12.5 ± 4.9 3.9 54 -0.7 ± 0.3 

SOPAC PANGA (R) 2.4 ± 0.7 8.6 ± 4.0 4.4 30 -0.9 ± 0.3 

SOPAC BARGEN (R) 2.3 ± 0.6 5.5 ± 2.2 4.7 47 -0.9 ±0.4 

REGAL REGAL (R) 4.2 ± 1.1 10.9 ± 5.5 4.0 31 -0.9 ± 0.4 

[Beavan, 2005] Global 3.7 ± 0.8 8.5 ± 2.6 4.1 15  

[A R Amiri-Simkooei et al., 2007] Global 5.4 ± 0.6 9.3 ± 0.7 10 5  

[J. Langbein, 2008] 
SCIGN (R) 2.3 ± 0.5 4.6 ± 1.3 3.5-10 210  

BARGEN (R) 2.3 ± 0.3 3.6 ± 1.1 3.5 – 10 26  

[Teferle et al., 2008] Global 3.1 – 5.3 10.9 – 20.4* 4 6 -0.4, -1.2 

[Santamaría-Gómez et al., 2011] Global 1.9 ± 0.1 5.8 ± 0.1 2.5 – 13 275 -0.88 ± 0.02 

[Serpelloni et al., 2013] 
Global 2.4 ± 1.1 12.2 ± 3.1† 2.5-14 >800 -0.7 

Regional 5.6 ± 0.7 7.4 ± 3.1† 2.5-14 >800  

* These are for power-law noise and not flicker noise but should be close; † These were calculated with another software which 

scales the amplitudes different – they have been converted to be the same as CATS. See Appendix A. 
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[Calais et al., 2006] looked at sites in the North American Plate interior and estimated the random 

walk noise amplitudes using MLE and assessed them against their monument class (sites whose 

monuments are suitable for tectonic studies such as braced monuments, pillars, bedrock, anchored 

pillars etc. and those that are not suitable such as rooftops and fence posts). They found random walk 

amplitudes on the order of a few mm/yr
½ 

to 10 mm/yr
½ 

and found that the tectonically suitable 

monuments performed slightly better. However they did not estimate the amount of flicker noise in 

the time series so the random walk amplitudes will be biased high by neglecting this noise. [A R 

Amiri-Simkooei et al., 2007] used a different technique to MLE, least-squares variance covariance 

estimation (LS-VCE) but came up with similar results to MLE. As well as increasing the number and 

time span of series  examined, different stochastic models have been introduced as candidates. [J. 

Langbein, 2004; 2008] introduced First-Order Gauss Markov noise (equivalent to an autoregressive 

noise of order 1), a Generalised Gauss Markov noise, Bandpass noise (due to spectral leakage around 

a certain frequency such as the annual) and multiple combinations of these and the more usual power-

law models. No model has stood out as being more suitable for GPS coordinate time series. Generally 

we find that series are distributed amongst the various model combinations most likely indicating that 

the data is not sufficiently long enough to allow such increases in the degrees of freedom of the model 

to choose a preferred model. [Santamaría-Gómez et al., 2011] following on from [Simon Williams 

and Willis, 2006], who were examining DORIS data, tested two alternative white noise models, time 

variable white noise (where the white noise amplitude is allowed to reduce with time) and variable 

white noise (where the daily formal errors are used and you solve for a variance scale parameter). In 

all they tested 27 different stochastic models (mainly different combinations of 7 models). They found 

that any combination of coloured noise with variable white noise was significantly superior to the 

simple white noise model and the time-variable white noise.  

[J. Langbein, 2008] examined the time series from 236 sites in Southern California and Southern 

Nevada. He found that the sites with the smallest errors were those in Nevada (dry desert) with deeply 

braced monuments. Sites that were installed within regions of active pumping of both oil and 

groundwater had the largest errors. More recent papers tend to focus on regional networks (either 

filtered or unfiltered) and have confirmed the previous findings (for example, [Serpelloni et al., 2013], 

[Khan et al., 2010]). Most of these papers have used MLE (and the related LS-VCE) as the estimation 

method. However, others have tried more heuristic methods to analyse the time series. [Hackl et al., 

2011], [Caporali, 2003] and [Niu et al., 2014] have used the Allan variance whereas [Bottiglieri et al., 

2010] used Independent Component Analysis and [Khan et al., 2010] in addition to using MLE also 

looked at the series autocorrelation. [Olivares and Teferle, 2013] used Bayesian Monte Carlo Markov 

chains to study the time series whereas [Montillet et al., 2013] used Negentropy and Empirical Mode 

Decomposition. However, none of the results differ from what was found using the traditional MLE 

method. 

Recently, [Dmitrieva et al., 2015] used a combination of MLE and a Kalman filter to estimate a 

network-wide estimate of  noise in GPS time series. Only one estimate of the amplitudes of the noise 

was estimated. Using 15 sites from central eastern USA they found random walk of 0.82 mm/yr
½
 

alongside flicker white noise (with amplitudes 4.0 mm/yr
¼
 and 1.1 mm respectively) in the horizontal 

but no random walk in the vertical component (the flicker noise and white noise amplitudes were 7.9 

mm/yr
¼
 and 2.3 mm respectively). The random walk amplitude is at the low end of that found from 

other geodetic data but at the high end of results found from short baseline studies (see below).  
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Short Baseline Studies 
 

In order to better isolate site-specific effects several authors have analysed long running, short GPS 

baselines (< 1km) to take advantage that certain errors such as satellite orbit, residual troposphere and 

ionosphere are differenced to negligible levels. Using a dense network of sites with braced 

monuments at Yucca Mountain, Nevada [Hill et al., 2009] found root mean square residuals of 0.20-

0.72 mm for the vertical component (no attempt was made to look at temporal correlations) and found 

a correlation in the seasonal cycle that lagged local temperature measurements by about a month. 

They suggested this could be related to bedrock thermal expansion.  [M A King and Williams, 2009], 

using 10 short baselines, found white noise on the order of 0.18 mm in the vertical and flicker noise 

with an amplitude of 1.85 mm/yr
¼
. They also placed a loose constraint on the order of any random 

walk noise due to monument instability at around 0.5 mm/yr
½ 

for a baseline. They also found annual 

variations that correlated well with temperature data but a simple model of linear thermal expansion 

could only explain the signal at one baseline. Further they also found spurious trends over 0.5 mm/yr 

that may be explainable as a combination of near field multipath and changing satellite geometry. 

Periodic Signals 
 

GPS site coordinates are naturally subject to periodic signals from a variety of sources. [Mao et al., 

1999] noted that peaks in the power spectra were clearly visible at annual and semi-annual periods for 

some sites.  A large component of signals at annual and semi-annual periods are known to be true 

physical motion [Blewitt and Lavallee, 2002; Van Dam et al., 2001] and are due to surface loading 

due to hydrology, atmospheric and ocean bottom pressure. [Blewitt and Lavallee, 2002] found typical 

amplitudes of 4 mm for the vertical in the annual and 1.5 mm for the semi-annual. However [Dong et 

al., 2002] found that less than half of the power observed at the annual period can be explained by 

seasonal surface mass redistributions and concluded that the remainder must be due to unmodeled wet 

tropospheric effects, bedrock thermal expansion, satellite orbits and phase centre variation models. 

Spurious long period signals can also occur due to aliasing of tidal signatures [Penna and Stewart, 

2003; Penna et al., 2007]. A prominent 13.6 day peak in the power spectrum of the common mode 

noise was seen by [S.D.P. Williams et al., 2004] and attributed to tidal aliasing.  Using 167 sites from 

the International GNSS Service (IGS) network, [Ray et al., 2008] found anomalous harmonics in the 

spectra at 1.040 ± 0.008 cycles per year (up to around the 6
th
 harmonic) which is close to the repeat 

period of the GPS constellation of 351.2 days. These harmonics of the GPS “Draconitic” year have 

also been found by [A R Amiri-Simkooei et al., 2007; Santamaría-Gómez et al., 2011] amongst others. 

The effect an annual signal (or any long period signal) has on estimated trends if they are unaccounted 

for was studied by [Blewitt and Lavallee, 2002; M S Bos et al., 2010] and they recommended that 2.5 

years be adopted as a standard minimum span for estimating trends. Below 2.5 years the velocity can 

be biased to an unacceptable level. This however is only true in the case when no annual signal is 

estimated. [James L. Davis et al., 2012] explored the implications that seasonal signals may not be 

pure sinusoids with a constant amplitude and phase and suggested that some of the noise in GPS time 

series might be due to neglecting the variability of the seasonal signal. However their seasonally 

derived stochastic model (similar to the annual band-pass noise explored by [J. Langbein, 2004; 

2008]) would always lead to a flat spectrum at frequencies lower than the annual; something that has 

not been seen in GPS time series so far (see Figure 2 of [Ray et al., 2008] for example). It is likely 
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that it forms some part of the noise characteristics of GPS time series but not at a sufficiently large 

level to be the main cause of the time-correlated noise. 

Offsets 

 

It is well known that GPS coordinates time series are disrupted by offsets (sharp change of the mean) 

that can be broadly categorized into actual crustal movements, mainly earthquakes, or artificial events 

such as environmental, equipment malfunction and change or human error that either occur at known 

(such as documented equipment changes) or unknown times with sizes that are, at best, known very 

imprecisely. A thorough investigation of offsets in GPS time series was performed by [S. D. P. 

Williams, 2003]. He showed that on average one offset occurs on a component by component basis 

every 9 years (but this could be as frequent as one in every 2 years) and that undetected offsets in the 

time series can mimic random walk behaviour. Following on from this [Gazeaux et al., 2013] reported 

on the results of the Detection of Offsets in GPS Experiment (DOGEx) which was used to test the 

effectiveness of various methods used by different groups to detect and remove offsets. They found 

that currently, manual methods were superior to any automatic solution. They also noted from 

analysing the SOPAC archive (the Scripps Orbit and Permanent Array Center) that out of all noted 

offsets 33% were unknown, 34% due to a seismic event and 29% attributed to equipment change. 

Finally [F.K. Wyatt and Agnew, 2005] studied the baseline between two continuous GPS sites at 

Pinon Flat Observatory in southern California, PIN1 and PIN2, which are some of the oldest 

continuous sites having begun measuring in the early 1990’s. The records for these sites have been 

meticulously maintained and many experiments were performed there to test the equipment. As 

mentioned above the baseline analysis of these two sites reduces the noise by up to an order of 

magnitude allowing offsets of the order of 1 mm or less to be detected and attributed to such changes 

as simple removing and replacing the same antenna. Such offsets would not be visible in a normal 

individual coordinate time series. 

Campaign Measurements 
 

Very little work has been done on the noise uncertainties of campaign GPS and there is no real 

defining paper on the subject. In general the noise at a campaign site should be no different than at a 

continuous GPS site apart from two obvious differences. First, campaign measurements may use 

ordinary tripods during the measurement campaign (which may or may not consist of a full 24 hour 

dataset) and therefore no permanent anchorage to the solid bedrock. It would therefore be difficult to 

assess monument motion in the same manner as for the permanent sites. Secondly, the antenna and 

tripod (where used) will be installed over a benchmark during every campaign. Theoretically this 

should lead to an additional “set-up” noise that would only manifest itself in continuous data at the 

start of the measurements and when there was a change in the antenna/monumentation at the site. We 

have no knowledge of the size of this set up noise and it would likely be operator dependent. We 

know from [F.K. Wyatt and Agnew, 2005] that removing and replacing the antenna can produce 

offsets on the order of a few mm. Factoring in uncertainties in measuring the height of the antenna 

above the benchmark which is also likely to be on the order of a few mm. [Arianna Pesci et al., 2009; 

A. Pesci et al., 2010; Teza et al., 2010] have produced the most comprehensive work on this so far. 

They use simulated data with noise equivalent to continuous GPS (or real data from sites close to the 
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campaign site) and add an additional noise to account for the “set-up” noise (which is white noise per 

individual campaign) and run Monte Carlo simulations to estimate the trend uncertainties. The only 

unknown is the size of this “set up” noise. An experiment where campaign sites were set up and 

removed over a number of weeks with a very close permanent site(s) in order to produce baseline 

solutions is the likely way to go forward. 

Conclusions 
 

There is an extensive body of literature examining the stochastic noise in GPS coordinate time series 

and other major effects expected to have an effect when attempting to measure trends, changes in 

trends and their associated uncertainties. The predominant finding is that GPS coordinates are 

correlated both spatially and temporally and that an appropriate model is a combination of flicker 

noise and white noise (or potentially white noise and power-law noise with a spectral index close to -1 

or slightly lower). The origin of this noise is still unknown but we do know that over time both the 

amplitude of the white noise and the time-correlated noise has reduced in size pointing at least partly 

to something that is not purely physical (e.g. tropospheric or ionospheric) but related to the 

improvements in the processing algorithms, the satellite geometry and the number of GNSS sites 

available. Random walk, which is attributed to motion of the monument, has not been categorically 

proven so far. If it does indeed exist that it should be lower than 1 mm/yr
½ 

at well-designed sites. A 

conservative value to use may by the 0.82 mm/yr
½ 

found by [Dmitrieva et al., 2015]. Another good 

review on some of the issues for GPS coordinates is given by [M King et al., 2010]. The size of the 

noise is dependent on the type of network you have from global, through to filtered regional and short 

baseline solutions, the noise decreases respectively. The noise amplitudes have also steadily reduced 

in time. When estimating the trends of the continuous and campaign GPS the noise amplitudes and 

models should be derived from the long continuous sites to provide the best, most realistic stochastic 

model for the project. In terms of the campaign measurements we should use the models derived from 

the continuous results and factor in an additional set up noise with a best guess estimate of the 

amplitude. 

Stochastic Modelling of GPS time series 

Methods 
 

There are many different methods in the scientific literature for estimating and qualifying temporal 

correlations in time series. Many of these methods are heuristic in nature such as Allan variance, 

detrended fluctuation analysis, power spectral analysis, variograms. Others such as Maximum 

Likelihood Estimation (MLE) and Variance-Covariance Estimation are more parametric [Beran, 

1994].  Often the objective of the statistical analysis is not to show that there are time correlations in 

the data but to characterize it in order to understand its behaviour regarding other parameters and their 

uncertainties estimated from the time series. In this work we use one heuristic method, Power Spectral 

analysis and one parametric method, MLE, to produce a realistic stochastic model for the permanent 

monitoring stations based on the analysis of the vertical time series provided, inference from 

comparison with time series from stations in Netherlands processed by other groups using established 

scientific processing software and comparison with past analysis of GPS time series (see literature 
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review above). Power spectra are well known methods for examining time series in the frequency 

domain. They measure the amount of a signal’s power occurs in a given frequency band. We use here 

the redefined periodogram [Scargle, 1982] (and its equivalent for continuous data using FFT’s) to 

evaluate the power spectrum of the time series. Power spectra are useful visualization tools because 

many stochastic models have a simple functional relationship to frequency (for example, equations 1 

and 2 above), significant periodic signals are easy to identify and the overall scale of the process can 

be evaluated.  

We will use Maximum Likelihood Estimation as described by [J. Langbein and Johnson, 1997; Mao 

et al., 1999; S.D.P. Williams et al., 2004; Zhang et al., 1997] to evaluate the amplitudes and type of 

stochastic model present in the GPS time series.  Importantly, for reasons explained further below, we 

employ the methods, algorithms and stochastic models introduced in [M Bos et al., 2008; M S Bos et 

al., 2013; M S Bos et al., 2014]. First, we will give a very brief introduction to MLE to facilitate the 

interpretation of the results. 

Given a Gaussian data vector, x, the joint distribution function for a given covariance matrix, C, is 

equal to 

 
𝑙𝑖𝑘( 𝑥, 𝐶) =  

1

(2𝜋)
𝑛
2(det 𝐶)1/2

exp (−
1

2
𝑥𝑡𝐶−1𝑥) (3) 

  

where n is the number of data and det is the matrix determinant. The log-likelihood function is given 

by 

 
ln[𝑙𝑖𝑘 (𝑥, 𝐶)] =  −

1

2
[ln (det 𝐶) + 𝑥𝑡𝐶−1𝑥 + 𝑛 ln(2𝜋)] (4) 

 

where ln is the natural logarithm. The covariance matrix is adjusted until the likelihood estimate is 

maximised. In addition, since the data vector x is the residual from a linear model typically including 

an intercept, secular rate (or rates), offsets and periodic signals, these parameters need to be evaluated 

alongside the estimated covariance matrix. The data residuals, x, are related to the design matrix, A, 

the original data x’ and the estimated model parameters, m by  

 𝑥 = 𝑥′ − 𝐴𝑚 (5) 

using the weighted least squares formula 

 𝑚 = (𝐴𝑇𝐶−1𝐴)−1𝐴𝑇𝐶−1𝑥′ (6) 

 

The data covariance matrix, in GPS time series analysis [J. Langbein and Johnson, 1997; Mao et al., 

1999; Zhang et al., 1997] typically takes the form 

 𝐶 =  𝜎𝑤ℎ
2 𝐼 +  𝜎𝑟𝑤 

2 𝐶𝑟𝑤 + 𝜎𝑓𝑙
2 𝐶𝑓𝑙 (7) 

 

or  

 𝐶 =  𝜎𝑤ℎ
2 𝐼 +  𝜎𝑝𝑙 

2 𝐶𝑝𝑙 (8) 
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where I is the n x n identity matrix representing the unit covariance matrix for white noise (no cross 

correlation), Crw, Cfl and Cpl are the unit covariance matrices for random-walk, flicker or any other 

temporally correlated noise (often power law noise with a spectral index, κ) respectively and σ
2
 

representing the variance of the various stochastic models.  

The likelihood function is typically maximised using a function such as the uphill simplex or Brent 

algorithms.  If we wish to test between competing models of the covariance matrix or different linear 

models, A, then we can compare the ML values. However this does not take into account the 

complexities of the different models (number of estimated parameters both in the linear and the 

stochastic model). A better test is to use the Bayesian Information Criteria (BIC) which is defined as 

 𝐵𝐼𝐶 =  −2 𝑀𝐿𝐸 + 𝑘 ln(𝑛) (9) 

 

where MLE is the maximum likelihood estimate, k is the number of estimated parameters (both linear 

and stochastic). If the number of parameters between different models remains equal then the BIC is 

equal to the MLE. 

There are three main, computationally intensive, parts to this problem: the computation of the 

determinant of the covariance matrix, the weighted least squares and the inverse of the covariance 

matrix. If the MLE is performed in a high-level, numerical computation language such as matlab then 

the three parts can be computed as shown in the equations. However there are different methods for 

obtaining the individuals parts which are computationally faster (up to O (n log n) instead of O (n
3
)) 

and often have greater numerical stability. These often depend on the form of the covariance matrix 

and are discussed to some extent in [M Bos et al., 2008; M S Bos et al., 2013; M S Bos et al., 2014]. 

Stochastic Models 
 

As can be seen from above, MLE relies on the choice of stochastic models available (of which there is 

a huge variety) that can be formulated to create a covariance matrix. BIC can then be used to test 

between competing models and between combinations of models.   Perhaps the most common 

stochastic model in geophysics is the power-law model as described by equation 2. It is related to 

fractals and fractional Brownian motion. Power law models where the spectral index is an integer 

have been given names such as random walk (κ = -2), flicker noise (κ = -1), and white noise (γ = 0). 

Another common model, particular in statistics, is the autoregressive model : primarily the 

autoregressive one parameter model (AR(1) or sometimes known as First-Order Gauss Markov noise) 

due to its ease of implementation. In terms of power spectrum an AR(1) model has a slope of -2 at 

high frequencies and a slope of 0 at low frequencies. The cross-over frequency depends on the single 

parameter, γ. [M S Bos et al., 2014] (re) introduced some other useful models. The first, an 

autoregressive fractionally integrated (ARFI) model has a change in the power law slope related to γ 

where the difference between the slopes on either side of the cross-over frequency is always 2 but the 

whole spectra is tilted by κ. So if the low frequency spectral index is -1, then the high frequency 

spectral index would by -3. A Generalised Gauss Markov, first introduced by [J. Langbein, 2004], is 

similar to an AR(1) except the spectral index above the cross-over frequency can take any spectral 

index, κ. However, the spectral index below the cross-over frequency is always 0. We introduce here 

a new model, the Fractionally Integrated Generalised Gauss Markov (FIGGM), which combines the 

GGM model and fractional integration (which forms power-law noise: comes from the fact that 
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integrating white noise produces random walk noise) which can be defined by three parameters, κL, κR 

and γ; a spectral index below (to the left) the cross-over frequency, a spectral index above (to the 

right) of the cross-over frequency and a parameter, γ (0 → 1), that defines where the cross-over 

frequency lies. As γ tend to 1 the cross-over frequency decreases in frequency. The FIGGM model is 

useful in that all of the above models are subsets of this model. 

Permanent GPS Data 
 

The primary dataset supplied by NAM are the time series from 20 permanent stations in northern 

Netherlands (Figure 1 below). The processing was carried out by 06-GPS using the GNSMART 

software by Geo++ GmbH.  The description of the methodology is given in the project report (Geo++ 

Anjum continue GPS test NAM447_4.pdf with addendum: Continuous Object Monitoring withh 

Gps.pdf). 

 

Figure 1.  Map of the GPS sites used in this study. Triangles indicate the permanent sites provided by NAM and processed 

by 06-GPS. Squares indicate permanent sites that have been processed by the Jet Propulsion Laboratory and Nevada 

Geodetic Laboratory. Circles indicate the position of some of the campaign sites. 

The main feature of this processing to note is that the approach uses a Kalman filter with a 12 station 

(not consistent throughout the time period) network of reference sites that are held “fixed”. These 

fixed stations are processed annually (with six weeks of data) in a separate processing stream where 

thier positions are relaxed to allow changes in their coordinates. If the coordinates change beyond a 

pre-defined threshold then the reference coordinates are updated and used in future processing 

updates. The coordinates are sampled to hourly intervals which is unusual with respect to the 

scientific community which typically uses intervals of days and sometimes weeks. Of the 20 

permanent stations only three (AME1, MODD and ANJM) date back to 2006 and have a long time 

series that is preferable for a thorough time series analysis. 

file:///D:/SHELL/Geo++%20Anjum%20continue%20GPS%20test%20NAM447_4.pdf
file:///D:/SHELL/Geo++%20Anjum%20continue%20GPS%20test%20NAM447_4.pdf
file:///D:/SHELL/Continuous%20Object%20Monitoring%20withh%20Gps.pdf
file:///D:/SHELL/Continuous%20Object%20Monitoring%20withh%20Gps.pdf
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Reference time series for comparison 
 

In order to aid the interpretation of a suitable stochastic model we have supplemented the above 

dataset with other useful reference time series.  In addition to the 20 permanent sites, 06-GPS has also 

provided a reference time series for the ITRF station Westerbork which is 450 days long. The Nevada 

Geodetic Laboratory (NGL) at the University of Nevada, Reno, the geodetic group at the Jet 

Propulsion Laboratory (JPL) and the Scripps Orbit and Permanent Array Centre (SOPAC) all produce 

time series for continuous sites around the global. Useful sites in the region from JPL and NGL are 

also plotted in Figure 1.  JPL and NGL both use the GIPSY/OASIS software whereas SOPAC uses 

the GAMIT/GLOBK software. Figure 2 shows four time series for the Westerbork site. It is plainly 

clear that the 06-GPS site coordinates are more precise than the daily GPS solutions from the research 

groups (however that does not imply they are more accurate) and is clearly a result of the constraints 

imposed by the Kalman filter and the fixing of the reference stations.  The same conclusions was seen 

when the 06-GPS solutions for AME1, ANJM and MODD were compared to the Leica CrossCheck 

results which uses the Bernese software (see the document “Crosschecking the GPS Leica 

CrossCheck service” for more details).  Another thing to note is the similarity between the JPL and 

NGL solutions that both use GIPSY whereas the SOPAC solution which uses GAMIT/GLOBK is less 

similar and appears to have a larger annual signal compared to the others. 

 
 

Figure 2. The vertical coordinate time series for the ITRF site Westerbork from different GPS solutions. 

 

For the remainder of the stochastic modelling we will concentrate on the three longest sites: AME1, 

ANJM and MODD in the Waddenzee but supplement and compare those with results from the NGL 

solutions. 

Power Spectral Analysis 

 

The power spectra from the three longest sites are plotted in Figure 3. Also shown is the stacked 

(averaged) power spectrum from all 20 continuous sites. Note that this plot is in log-log form so that 

any power-law process will show as a straight line in the figure. White noise for instance would show 

as a flat spectrum (slope of 0) whereas random-walk noise would show increasing power at low 

frequencies with a slope of -2. We see that the spectra from AME1, ANJM and MODD and the 

averaged power spectrum all show power-law dependence and peaks relating to various tidal 
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frequencies. Also shown is the power-spectrum for power-law noise with an index of -1.88. This is a 

good fit to the observations at high frequencies but appears to overestimate the power at periods lower 

than around 10-20 days (~ 6e
-7

 Hz). At lower frequencies the spectra appear to have a different, lower, 

power-law dependence that looks to be a good candidate for a FIGGM model. Also evident is the lack 

of a white noise floor at the highest frequencies (there is a little flattening of the spectra close to the 

Nyquist frequency but that is related to the discretization of the data). 

 
Figure 3. Power Spectra of the hourly time series. Blue dots represent the combined spectra from the longest sites: AME1, 

ANJM and MODD. Orange curve is the averaged spectrum from all 20 sites. Light blue curve is a synthetic power spectrum 

for power-law noise with a spectral index of -1.88. Light grey lines are some representative positions of tidal peaks.  

 

The power spectra for the three longest sites are also shown with more detail in Figure 4. Included on 

the figures are some representative spectra so that the 06-GPS time series can be placed in context 

with previous studies. The red line on each plot is the spectra derived from the ML fit to the hourly 

data (see MLE section below) and the yellow line is the spectra from a power-law ML fit to the data. 

The blue line is the average from the ML fit to 11 NGL sites in the region (unfiltered) and the green 

line is the ML fit to the same sites after an average common mode signal has been removed (filtered 

data) and a representative curve for the filtered noise model from Table 1.  The purple line 

characterizes the spectra from short baseline studies [Hill et al., 2009; M A King and Williams, 2009] 

and the grey lines are spectra for random-walk noise at levels suspected to be due to monument 

motion; 0.5 mm/√yr [M A King and Williams, 2009] and 2 mm/√yr [J. Langbein and Johnson, 1997]. 
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Figure 4a. Power Spectrum for site AME1 (blue dots). Also included on the plot is the spectrum derived from the MLE 

analysis (below) and some representative spectra from the literature review and the NGL time series in the region. 

 

We note the following observations: 

 The power of the hourly data is significantly lower at all frequencies than the unfiltered 

results from the geodetic research groups (as also witnessed visually in Figure 2). 

 The power is lower than the filtered (regional networks) and does not show a similar white 

noise limit at high frequencies. 

 The power at low frequencies (below 10-20 days) is similar in amplitude to the short baseline 

studies. 

 The power-law slope at low frequencies is similar to the baseline, filtered and unfiltered 

results. 

 At high frequencies the power-law slope is close to -2 which could be interpreted as 

monument motion. However if it was it would be much greater than previously encountered 

and would likely be visible in baseline and filtered studies. 

 The slope and power of MODD at low frequencies are larger than ANJM and AME1. 
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Figure 4b. Power Spectrum for site ANJM (blue dots). Also included on the plot is the spectrum derived from the MLE 

analysis (below) and some representative spectra from the literature review and the NGL time series in the region. 
 

The close to random-walk behaviour at high frequencies is therefore unlikely to be due to monument 

motion but is likely due to the Kalman filtering which will constrain the coordinates stochastically as 

a random walk. How much this constraint affects the series at low-frequencies, where subsidence and 

time-varying subsidence effects are to be seen, is unknown. Given the good agreement found between 

the Leica CrossCheck and the 06-GPS results for AME1, ANJM and MODD (particularly the 

differenced results to MODD – similar to but not exactly equivalent to the baseline and filtered 

results) we will proceed to produce a realistic stochastic model from these three sites that can then be 

applied to the rest of the continuous sites and use it to produce a model for the campaign sites. 



15 | P a g e  
 

 
Figure 4c. Power Spectrum for site MODD (blue dots). Also included on the plot is the spectrum derived from the MLE 

analysis (below) and some representative spectra from the literature review and the NGL time series in the region. 
 

Maximum Likelihood Analysis 
 

As mentioned above there is a serious computational burden involved in MLE primarily centred on 

the covariance matrix, computing its inverse and its determinant and is one of the reasons for the 

development of heuristic methods. Even using daily observations (as opposed to hourly) a simple ML 

algorithm can take many hours per site depending on the length and complexity of the covariance 

model chosen. For sites such as AME1, ANJM and MODD with over 2800 days (68000+ hours) 

forming a covariance matrix alone would require around 35Gb of memory without attempting to 

invert it etc. Therefore attention must be placed on exactly how to process the data to get a 

satisfactory result within a reasonable amount of computational burden (in both time and size). 

Depending on the stochastic model chosen and whether the series is free from gaps and outliers 

certain methods allow various kinds of computational speed ups and the ability to forgo the creation 
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of a full covariance matrix. If we choose a stochastic model where the covariance matrix, or its 

cholesky decomposition, is Toeplitz then there are several methods that can be employed that can be 

of the O(n
2
) or even in some circumstances O(n log n) instead of the usual O(n

3
) in the number of 

computations required.  

The first obvious choice is to convert the hourly data to daily data by simple averaging and then use 

conventional methods to calculate the stochastic noise parameters. We chose to use a power law plus 

white noise model and estimate a piece-wise linear trend with break points at the end of each year. 

The results are shown in Table 2. 

 

Table 2. ML estimated parameters from daily averaged results assuming a power-

law plus white noise model with a linear model that estimates a piece-wise linear 

trend with break points at the end of each year. The results do not differ 

significantly when a single trend is used instead. * these amplitudes have been  

multiplied by Δt-κ/4 to compare with the amplitudes in Table 1. See Appendix A. 

 

Site name 

Spectral Index 

κ 

Power Law 

Amplitude* 

(mm/yr-κ/4) 

White Noise 

Amplitude 

(mm) 

0647 -1.95 ± 0.13 7.00 ± 0.31 0.00 ± 0.0010 

AME1 -1.85 ± 0.04 4.71 ± 0.06 0.00 ± 0.0000 

ANJM -1.87 ± 0.04 5.21 ± 0.07 0.00 ± 0.0001 

dw16 -2.15 ± 0.11 9.56 ± 0.35 0.00 ± 0.0007 

dw26 -2.03 ± 0.11 7.94 ± 0.29 0.00 ± 0.0000 

dzyl -2.08 ± 0.15 8.65 ± 0.41 0.00 ± 0.0000 

eems -1.65 ± 0.14 4.29 ± 0.19 0.00 ± 0.0011 

froo -1.95 ± 0.14 6.10 ± 0.28 0.00 ± 0.0007 

grij -1.71 ± 0.14 5.07 ± 0.22 0.00 ± 0.0000 

MODD -1.86 ± 0.04 4.76 ± 0.06 0.00 ± 0.0001 

norg -1.94 ± 0.13 6.49 ± 0.29 0.00 ± 0.0009 

over -2.01 ± 0.14 6.80 ± 0.30 0.00 ± 0.0013 

sted -1.83 ± 0.17 5.88 ± 0.28 0.00 ± 0.0000 

tenp -1.89 ± 0.09 6.10 ± 0.18 0.00 ± 0.0000 

tjuc -1.80 ± 0.12 5.29 ± 0.24 0.00 ± 0.0015 

usqu -1.99 ± 0.15 7.35 ± 0.36 0.00 ± 0.0000 

veen -1.97 ± 0.09 7.32 ± 0.21 0.00 ± 0.0003 

wsra -2.21± 0.11  9.05 ± 0.30 0.00 ± 0.0000 

zand -2.00 ± 0.14 7.91 ± 0.35 0.00 ± 0.0019 

zdvn -2.03 ± 0.13 7.50 ± 0.34 0.00 ± 0.0010 

zeer -1.68 ± 0.15 4.41 ± 0.21 0.00 ± 0.0000 

weighted 

mean 
-1.90 ± 0.02 5.27 ± 0.22 0 ± 0 

 

We find very consistent results for all the sites with the spectral index close to -1.90 ± 0.02, amplitude 

of 5.3 ± 0.2 mm/yr
-κ/4

 and no white noise. This is inconsistent with previous studies for daily GPS and 

appears to reflect the noise at high frequency in the hourly data. For the three longest sites we can also 

analyse the time series averaged to three days and one week (Table 3).  The main finding from this is 

a reduction of the spectral index as we average over longer time scales. This is consistent with the 

change in the slope in the power spectrum seen in Figures 3 and 4. 

As mentioned above the computational burden to analyse the hourly data with a power-law plus white 

or a FIGGM plus white noise model would be too great. However two factors do allow us to perform 

an MLE on the data. First, Figures 3 and 4 and the white noise amplitudes in Tables 2 and 3, lead us 

to assume that we do not have a white noise component in the data (at least not at the level 
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measurable) and secondly the time series are very nearly completely continuous, that is, there are very 

few gaps in the data.  

 

 

Table 3. ML estimated parameters for daily, tridaily and weekly averaged time series from the three longest sites. 

Results from a power-law plus white noise and an iGGM plus white noise model are shown. Cells where an uncertainty 

is not given are either because the uncertainty is smaller than the decimal places given or because no uncertainty was 

estimated 

Site Sampling Model κR κL γ σpl* σwh trend 

AME1 

Daily 
pl -1.85 ± 0.04   0.308 ± 0.004 0.0 -6.97 ± 1.22 

figgm -1.98 ± 0.01 -0.07  ± 0.00 0.926 ± 0.004 0.318 ± 0.0003 0.003 ± 0.0000 -6.59 ± 0.04 

Tri-daily 
pl -1.40   0.426 ± 0.010 0.000 ± 0.0000 -6.85 ± 0.25 

figgm -2.00 ± 0.25 -0.85  ± 0.12 0.572 ± 0.110 0.421 ± 0.010 0.000 ± 0.0196 -6.70 ± 0.10 

Weekly 
pl -1.26   0.464 ± 0.0162 0.0 -6.81 ± 0.16 

figgm -1.31 ± 0.12 -0.003 ± 1.17 0.975 ± 0.028 0.463 ± 0.0162 0.000 ± 0.056 -6.70 ± 0.12 

ANJM 

Daily 
pl -1.87 ± 0.04   0.332 ± 0.0044 0.000 ± 0.00 -3.79 ± 1.39 

figgm -2.00 ± 0.01 -0.007 0.908 0.325 ± 0.0040 0.000 ± 0.000 -3.69 ± 0.03 

Tri-daily 
pl -1.23   0.447 ± 0.0102 0.000 ± 0.000 -3.78 ± 0.16 

figgm -2.00 ± 0.27 -0.71  ± 0.10 0.516 ± 0.096 0.438 ± 0.0101 0.000 ± 0.000 -3.71 ± 0.06 

Weekly 
pl -0.99   0.472 ± 0.0165 0.000 ± 0.001 -3.76 ± 0.08 

figgm -1.00 ± 0.09 -0.00  ± 0.01 0.989 ± 0.012 0.469 ± 0.0164 0.000 ± 0.035 -3.72 ± 0.08 

MODD 

Daily 
pl -1.86 ± 0.04   0.307 ± 0.0041 0.000 ± 0.00 -3.10 ± 1.27 

figgm -1.70 ± 0.01 -0.01 ± 0.00 0.995 ± 0.003 0.330 ± 0.0008 0.000 ± 0.00 -3.02 ± 0.22 

Tri-daily 
pl -1.48   0.426 ± 0.0098 0.000 ± 0.00 -3.02 ± 0.32 

figgm -1.48 ± 0.06 -0.00 ± 0.01 0.998 ± 0.002 0.425 ± 0.0097 0.000 ± 0.01 -3.08 ± 0.28 

Weekly 
pl -1.52   0.424 ± 0.0332 0.176 ± 0.05 -3.05 ± 0.29 

figgm -1.49 ± 0.13 -0.00 ± 1.70 0.997 ± 0.004 0.435 ± 0.0545 0.160 ± 0.10 -3.09 ± 0.25 

* Amplitudes are converted so they do not contain the Δt scaling (used in CATS) so that the PL and FIGGM results can be 

compared. See Appendix A. 

All three long sites have only 19 or 20 out of over 60000+ hours missing
1
 and so we can fill those 

gaps by linear interpolation without fear of that contaminating the results. Now because we are only 

assuming one noise model we can perform an MLE that is efficiently computed using the Fast Fourier 

transform in O(n log n) operations. 

For the analysis of the hourly data we selected to use three linear models: trend only, piecewise linear 

trends with breakpoints at the end of each year and a trend plus acceleration (all models also include 

an annual and semi-annual signal). We also selected to test three stochastic models: power-law noise 

only, FIGGM only and white noise only (as a null hypothesis). The results are given in Tables 4, 5, 

and 6 below. The upper tables give the stochastic noise parameters and the lower give the estimates of 

the trends (and accelerations) and their uncertainties. The BIC for the most likely stochastic and linear 

model combination is highlighted in all the tables. In every case the preferred stochastic model is the 

FIGGM (which can be visually confirmed in Figure 4). The preferred linear model is the trend only 

for AME1 and the trend plus acceleration for ANJM and MODD; but only slightly for ANJM 

compared to the trend only. We see that in the case of the FIGGM model that the κR parameter is 

fairly consistent throughout whereas the κL and γ parameters are dependent on the linear model and 

reflect the conflict between the stochastic and linear parameters.  For instance in the case of MODD, 

where there is an obvious long period variation, the κL parameter which characterises the power 

spectrum at low frequencies changes from -1.20 for the trend only to -0.30 and γ, which represents the 

                                                           
1
 Although it is obvious that where some data is lost over a few hours the coordinates are generated with the 

same coordinate as prior to the data loss. 
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cross-over frequency, increases indicating a shift to lower frequencies. The piecewise linear trend 

“soaks up” some of the low frequency power and the stochastic model becomes less correlated.  

Table 4: AME1 
 

 Linear Model κR κL γ σ MLE BIC 

FIGGM Noise 

Trend -1.90 -0.91 0.9847 0.095538 538311.421 -1076511.469 

 Piecewise -1.89 -0.28 0.9912 0.095511 538330.531 -1076471.728 

Acceleration -1.89 -0.91 0.9848 0.095538 538311.450 -1076500.389 

Power-Law Noise 
Trend -1.87 - - 0.095653 538228.208 -1076367.318 

Piecewise -1.87 - - 0.095653 538228.567 -1076290.074 

White Noise 
Trend - - - 0.834429 389448.878 -778819.794 

Piecewise - - - 0.646531 406973.038 -813790.154 

 

  Stochastic Model 

Year FIGGM FIGGM* FIGGM† Power Law White 

Piecewise 

Linear 

Trends 

2007 -7.48 ±   0.25 -7.53 ±   0.60 -7.53 ±   0.60 -8.20 ±   5.03 -7.75 ±   0.02 

2008 -6.87 ±   0.31 -6.81 ±   0.72 -6.81 ±   0.72 -6.03 ±   5.05 -6.82 ±   0.01 

2009 -6.96 ±   0.31 -6.99 ±   0.72 -6.99 ±   0.72 -7.22 ±   5.07 -6.96 ±   0.01 

2010 -6.06 ±   0.31 -5.98 ±   0.72 -5.98 ±   0.72 -5.51 ±   5.07 -6.08 ±   0.01 

2011 -6.60 ±   0.31 -6.64 ±   0.72 -6.64 ±   0.72 -6.38 ±   5.05 -6.60 ±   0.01 

2012 -5.97 ±   0.31 -6.02 ±   0.72 -6.02 ±   0.72 -7.32 ±   5.05 -5.95 ±   0.01 

2013 -6.02 ±   0.32 -5.99 ±   0.73 -5.99 ±   0.73 -5.54 ±   5.07 -6.06 ±   0.02 

2014 -10.22 ±   0.47 -10.40 ±   0.94 -10.40 ±   0.94 -10.89 ±   5.67 -10.06 ±   0.02 

Trend Only   -6.76 ± 0.08 -6.75 ± 0.08 -7.00 ± 1.58 -6.58 ± 0.0014 

Trend plus 

Acceleration 

Trend   -6.80 ± 0.24   

Acc.   0.0160 ± 0.06   

* This uses the stochastic parameters derived from the single trend only model, † uses the stochastic 

parameters from the trend and acceleration model 

The crucial parameters in this model are κL and γ as these really dictate the uncertainty estimates of 

the trends (see the bottom half of Tables 4, 5 and 6). We notice that these parameters are most 

consistent when we look at the preferred model based on the BIC. To test this further we simulated 

400 time series using the stochastic and linear parameters from MODD for the trend plus acceleration 

model. We then fit those parameters using MLE for all three linear models. The results, in the form of 

histograms, are shown in Figure 5. We can see that the estimated stochastic parameters for the trend 

and piecewise continuous are all within the expected ranges from the simulations including the -1.2 

and -0.3 for κL.  

The bottom halves of Tables 4, 5 and 6 show the estimated trends (and accelerations) and their 

uncertainties as a function of the stochastic model used. We can immediately see the overly 

pessimistic and overly optimistic uncertainties from the power-law and the white noise model; there is 

a scaling factor of 250-500 between the uncertainties of the two models. The two FIGGM columns 

marked with a * and a † take the stochastic model parameters from the trend only and the trend plus 

acceleration models and apply it to the piecewise linear model. For the two sites where the trend plus 

acceleration model is the most likely we see the uncertainties from that model are somewhere between 

the other two. For AME1 where there is no acceleration, the uncertainties are close to the trend only 

model but bigger than the piecewise linear model which probably under predicts the uncertainties. 
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Table 5: ANJM 
 Linear Model κR κL γ σ MLE BIC 

FIGGM Noise 

Trend -1.90 -0.81 0.9839 0.098739 536047.484 -1071983.595 

Piecewise -1.93 -0.10 0.9904 0.098703 536072.260 -1071955.186 

Acceleration -1.93 -0.66 0.9859 0.098731 536053.307 -1071984.104 

Power-Law Noise 
Trend -1.90 - - 0.098896 535938.434 -1071787.769 

Piecewise -1.90 - - 0.098896 535938.535 -1071710.011 

White Noise 
Trend - - - 0.796477 392646.309 -785214.656 

Piecewise - - - 0.633136 408411.147 -816666.371 

 

 Stochastic Model 

Year FIGGM FIGGM* FIGGM†  Power Law White 

Piecewise Linear Trend 

2007 -5.18 ±   0.20 -5.22 ±   0.52 -5.22 ± 0.41 -4.75 ±   5.90 -4.61 ±   0.02 

2008 -2.70 ±   0.23 -2.74 ±   0.62 -2.73 ± 0.50 -3.31 ±   5.91 -2.84 ±   0.01 

2009 -5.31 ±   0.23 -5.28 ±   0.62 -5.29 ± 0.50 -4.78 ±   5.94 -5.27 ±   0.01 

2010 -3.70 ±   0.23 -3.72 ±   0.63 -3.72 ± 0.50 -3.61 ±   5.93 -3.70 ±   0.01 

2011 -2.79 ±   0.23 -2.73 ±   0.63 -2.75 ± 0.50 -2.07 ±   5.91 -2.79 ±   0.01 

2012 -3.46 ±   0.23 -3.60 ±   0.63 -3.56 ± 0.50 -5.00 ±   5.91 -3.45 ±   0.01 

2013 -3.37 ±   0.24 -3.29 ±   0.64 -3.32 ± 0.51 -2.90 ±   5.94 -3.37 ±   0.01 

2014 -4.54 ±   0.37 -4.56 ±   0.84 -4.57 ± 0.69 -4.27 ±   6.62 -4.61 ±   0.02 

Trend Only Trend  -3.85 ± 0.06 -3.84 ± 0.04 -3.82 ± 1.91 -3.68 ± 0.0013 

Trend Plus Acceleration 
Trend   -4.41 ± 0.14   

Acc.   0.1625 ± 0.04   

* This uses the stochastic parameters derived from the single trend only model, † uses the stochastic 

parameters from the trend and acceleration model 

Table 6: MODD 
 Linear Model κR κL γ σ MLE BIC 

FIGGM Noise 

Trend -1.90 -1.20 0.9774 0.096103 537906.205 -1075701.037 

Years -1.90 -0.30 0.9907 0.096054 537941.284 -1075693.233 

Acceleration -1.90 -0.65 0.9876 0.095697 538197.075 -1076271.640 

Power-Law Noise 
Trend -1.87 - - 0.096204 537833.798 -1075578.497 

Years -1.87 - - 0.096204 537834.331 -1075501.601 

White Noise 
Trend - - - 1.508738 348766.276 -697454.591 

Years - - - 0.645565 407075.688 -813995.454 

 

  Stochastic Model 

Year FIGGM FIGGM* FIGGM† Power Law White 

Piecewise Linear Trend 

2007 -1.66 ±   0.25 -1.77 ±   1.02 -1.68 ± 0.39 -2.33 ±   5.13 -1.67 ±   0.02 

2008 -0.76 ±   0.31 -0.78 ±   1.14 -0.76 ± 0.48 -0.56 ±   5.15 -0.75 ±   0.01 

2009 -3.22 ±   0.31 -3.16 ±   1.14 -3.21 ± 0.48 -2.77 ±   5.17 -3.21 ±   0.01 

2010 -2.19 ±   0.31 -2.02 ±   1.15 -2.13 ± 0.48 -1.74 ±   5.17 -2.22 ±   0.01 

2011 -2.88 ±   0.31 -2.99 ±   1.15 -2.93 ±0.48 -2.60 ±   5.15 -2.85 ±   0.01 

2012 -4.31 ±   0.31 -4.37 ±   1.15 -4.31 ± 0.48 -5.45 ±   5.15 -4.31 ±   0.01 

2013 -4.15 ±   0.32 -3.93 ±   1.16 -4.08 ± 0.49 -3.02 ±   5.17 -4.20 ±   0.02 

2014 -6.31 ±   0.46 -6.82 ±   1.42 -6.50 ± 0.67 -7.12 ±   5.78 -6.16 ±   0.02 

Trend Only Trend  -2.88 ± 0.17 -2.74 ± 0.04 -3.08 ± 1.62 -2.97 ± 0.0026 

Trend Plus Acceleration 
Trend   -0.75 ± 0.14   

Acc.   -0.5801 ± 0.04   

* This uses the stochastic parameters derived from the single trend only model, † uses the stochastic 

parameters from the trend and acceleration model 
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Figure 5. Histograms of the estimated parameters from 400 Monte Carlo simulations of the MODD time series (based on the 

trend plus acceleration model). The red lines indicate the estimated parameters from the actual time series. 

 

Given a realistic stochastic model we can use this to check for any significant time-dependent 

changes. Site AME1 is a good example. We can see from Table 4 that 2014 has a trend that is around 

3-4 mm/yr larger than the other years. Is this significant or are the variations in the trend expected 

from the stochastic model? We can ask whether the yearly trends are significantly different from the 

single trend only but have to be cautious because we are estimating two sets of parameters from a 

single dataset so they are correlated to some extent. Taking cross-correlations into account and 

propagating the covariances correctly we find that 2014 is indeed significantly different from the long 
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term trend (Figure 6). However this is based on the general 06-GPS/NAM model and not modified to 

align it to the filtered regional results. 

 
Figure 6. Significance of the piecewise linear trends with respect to the long-term trend given the optimal stochastic model 

for the data. Red dots are the estimated yearly trends with respect to the long-term trend. Black lines indicate the confidence 

bounds. The bounds appear much larger than the individual formal errors because we have 8 degrees of freedom rather than 

typically examining the one-dimensional confidence. NOTE : this is purely from the optimal stochastic model derived 

from the data no attempt has been made to account for systematic effects or align the noise model with previous 

findings and processing results. 

 

Comparison with Leica CrossCheck Time Series 
 

We were also supplied with the two years of AME1, ANJM and MODD processed using the Leica 

CrossCheck service which uses the Bernese software. In a similar manner to the report 

“Crosschecking the GPS Leica CrossCheck service” we examined the baseline differences between 

AME1 and ANJM with respect to MODD. We have plotted the power spectra in Figure 7 together 

with the power spectra from the same baselines from the 06-GPS results and also plotted the average 

spectrum calculated from the filtered NGL time series. 
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Figure 7.  Power Spectra for the Bernese derived Leica time series baselines and the 06-GPS baselines AME1-MODD and 

ANJM-MODD. Red dots are the average spectra from the two Leica baseline time series, blue dots from the 06-GPS data. 

Orange line shows the average spectrum from the NGL filtered series and the yellow line represents the average spectrum 

from the 06-GPS data. 

 

The results show that the Leica baseline results are less noisy than the filtered NGL series and slightly 

more noisy that the 06-GPS results. The ML analyses of the baselines give a spectral index of -0.85 

and -0.86 for AME1-MODD and ANJM-MODD respectively with amplitudes of 2.43 ± 0.38 and 2.10 

± 0.31. The estimated white noise amplitudes were 1.56 ± 0.07 and 1.29 ± 0.06 mm. For comparison 

the average values from the filtered NGL results are a spectral index of -0.85 with amplitude of 5.26 ± 

0.17 and white noise amplitude of 2.14 ± 0.11 mm. 

Discussion 
 

The analysis of the three long permanent sites together with the shorter series indicates a consistent 

FIGGM model with κR being just short of random walk at -1.9. γ is around 0.98 which equates to a 

cross over period of around 10+ days and the spectral index at low frequency, κL, is just below flicker 

noise and in the range [-0.65,-0.91].  The spectral index at low frequency is certainly consistent with 

the other time series produced by various groups and with the results from the literature review. 

However the amplitude is smaller than both the unfiltered and filtered series and the Leica baseline 

series and is similar to the results from short baseline studies. It is very hard to reconcile that the noise 

is equivalent to short baseline processing given that many errors are differenced to negligible levels in 

those studies, something that cannot be achieved over the much wider area of the network. It seems likely that 

the processing methodology used constrains the positions to the extent that some real land motion 

could be suppressed particularly at high frequencies. Flicker noise has been shown to characterise the 

spectrum at high frequencies (up to 1Hz) [Bock et al., 2000; J. Langbein and Bock, 2004] whereas a 

spectral index close to -2 is a likely outcome of a Kalman filter that probably treats the coordinates in 



23 | P a g e  
 

the constraint as a random walk. How much the low frequency end of the spectrum is constrained, and 

therefore effecting any estimates of subsidence or changes in subsidence, is unknown. Comparisons 

with the Leica CrossCheck results suggest that it isn’t biased by any significant amount but the test is 

very limited. To err on the side of caution in our results and conclusions we recommend aligning the 

noise model with previous findings. 

Stochastic Model for the Vertical Continuous Data 

The results from the three long time series are seen to be sufficiently similar to derive a single noise 

model for all of the continuous data. This model, which we will call the 06-GPS/NAM model, is a 

FIGGM with parameters that are averages from the three models with the lowest BIC. The parameters 

for κR, κL, γ are -1.91, -0.74, 0.9861 respectively with σ = 0.0967 mm. This model gives an uncertainty 

in the trend of 0.6 mm/yr after 1 year down to 0.04 mm/yr after 10 years. However, given the 

uncertainty in the processing method and the comparison with both the results from the literature 

review and the other groups time series we will present some alternative models to consider: 

1. General 06-GPS/NAM model : [κR = -1.91, κL = -0.74, γ = 0.9861, σ = 0.0967] 

2. General 06-GPS/NAM model plus 0.5 mm/√yr of random walk. There is the possibility that 

there exists a random walk due to monument instability that is not yet identifiable in the time 

series but will already influence the long term trend uncertainties. The magnitude reflects the 

estimate given by [M A King and Williams, 2009]. 

3. As for model 2 but 1 mm/√yr of random walk. As well as monument instability the random 

walk could be used to also reflect any long term variations that have been damped by the 

Kalman filter. 

4. General 06-GPS/NAM model scaled by a factor of 3. This brings the power spectrum in line 

with the noise levels of the regionally filtered GPS data. However the power at high 

frequencies is too large – the power at high frequencies is tightly constrained (see Table 2) 

5. 06-GPS/NAM modified at low frequencies to mimic the amplitude of the regional noise. The 

new parameters being [κR = -1.91, κL = -0.8525, γ = 0.99238, σ = 0.0967]. The main change is 

the parameter γ, which shifts the cross over frequency to a lower value which then increases 

the power at low frequencies. This is purely a back of the envelope calculation to mimic the 

regional noise and has no physical reason for the change in parameters. 

6. General 06-GPS/NAM model with an additional FIGGM [κR = -2, κL = -0.8525, γ = 0.99806, σ 

= 0.04] to mimic the regional noise. This is similar to the argument for additional random 

walk so that only powers at low frequencies are affected except the spectrum will tend to -

0.8525 instead of -2 at very low frequencies. 

7.  A model based on the daily solutions from the regional filtered data from NGL. This model 

is a power law with spectral index = -0.8525 and amplitude of 1.50 mm (5.26 mm/yr
κ/4 

in 

CATS notation) and white noise of amplitude 2.13 mm. 

Examples of simulated time series from the 7 models together with the detrended AME1 series are 

plotted in Figure 8. 
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Figure 8. Examples of simulated time series from the 7 models described in the text. Also shown for comparison is the 

detrended time series for AME1. 

 

We can see that some of the models look very similar visually to AME1 except models 4, 7 and 

partially 5. Model 7 is to be expected since it is projecting the results from a daily solution down to 

hourly values and therefore has too much power at these frequencies (although this is not important 

when estimating the trend uncertainties).  The power-spectrum of these models is shown in Figure 9. 

 
Figure 9. Power Spectra of the six of the proposed models (model 3 not shown). 

 

We can see that the two models where the 06-GPS/NAM model is modified to mimic the regional 

noise at low frequencies do just that whilst they retain the correct power at low frequencies. Model 4 

which simply scales the 06-GPS model by 3 is not a reflection of the hourly data at high frequencies. 
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Finally the uncertainties in the trends as a function of the length of the time series is plotted in Figure 

10 and shown (per year) in Table 7.  

 
Figure 10. Trend Uncertainties in mm/yr for the various stochastic models as a function of the length of time of the series 

assuming hourly data. The small wiggles and the change in slope below one year are a result of estimating the annual and 

semi-annual signal simultaneously with the trend and intercept. 

 

Table 7. Trend Uncertainties for the various stochastic models as a function of the length of the time series 

Number of 
Years 

Trend Uncertainty (mm/yr) 

Model  1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

1 0.61 0.79 1.17 1.82 1.63 1.22 2.08 

2 0.25 0.43 0.75 0.75 0.75 0.57 0.80 

3 0.16 0.33 0.60 0.47 0.48 0.37 0.50 

4 0.11 0.27 0.51 0.33 0.35 0.27 0.36 

5 0.09 0.24 0.46 0.26 0.27 0.21 0.28 

6 0.07 0.22 0.41 0.21 0.22 0.17 0.23 

7 0.06 0.20 0.38 0.18 0.19 0.15 0.19 

8 0.05 0.18 0.36 0.15 0.16 0.13 0.17 

9 0.04 0.17 0.34 0.13 0.14 0.11 0.15 

10 0.04 0.16 0.32 0.12 0.13 0.10 0.13 

11 0.03 0.15 0.30 0.10 0.12 0.09 0.12 

12 0.03 0.15 0.29 0.09 0.11 0.08 0.11 

13 0.03 0.14 0.28 0.09 0.10 0.08 0.10 

14 0.03 0.14 0.27 0.08 0.09 0.07 0.09 

Model 1: general 06-GPS/NAM model 
Model 2: general 06-GPS/NAM model plus 0.5 mm/√yr random walk 
Model 3: general 06-GPS/NAM model plus 1 mm/√yr random walk 
Model 4: general 06-GPS/NAM model multiplied by 3 
Model 5: modified 06-GPS/NAM model to mimic regional noise 
Model 6: general 06-GPS/NAM model with additional FIGGM noise to mimic regional noise 
Model 7: regional noise (daily solution) 
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 We can see from Figure 10 that the choice of stochastic model affects the decay rate of the trend 

uncertainty. Random walk has a slower decay rate than flicker noise and white noise and would 

dominate the trend uncertainty at around 5 or more years despite not being visible in the power 

spectrum until after 10+ years (and probably much longer [Johnson and Agnew, 2000]). Both of the 

modified 06-GPS models (5 and 6) mimic the behaviour of the regional models both in terms of 

power spectrum and trend uncertainty. However, as stated above, model #5 visually does not look as 

similar to the real data, so the preferred model is #6 which provides a good compromise between the 

base 06-GPS/NAM model derived from the data and typical uncertainties found for regionally filtered 

GPS datasets and baseline solutions. At 1 year the trend uncertainty is 1.2 mm/yr and is around twice 

that of model 1 whereas after 14 years the uncertainty is 0.1 mm/yr which is around 3 times the 

uncertainty derived from model 1. An alternative solution would be Model 2; the combination of the 

06-GPS/NAM model and random walk of 0.5 mm/√yr which has a more sound physical basis.  

Stochastic Model for the Horizontal Continuous Data 

Whilst we have concentrated on the vertical time series we also need to apply the same methodology 

to the horizontal components. There is no reason to assume that the two horizontal components should 

behave in a different way stochastically (although there is some evidence that the east is slightly 

noisier than the north) so we will proceed to form one model for the horizontal.  It is evident, 

particularly for ANJM in the north component that there are offsets on or around May 3
rd

 2009 and 

Feb 20
th
 2014 (see Figure 11). The offset in 2009 relates to the change in the reference station 

coordinates of stations 0687 and DRAC. The offset in 2014 may be related to the installation of 

several new stations at that time starting with Grijpskerk on 13
th
 Feb, Norg on the 19

th
 Feb and 

Eemskanaal on 20
th
 Feb. 

 
Figure 11.  North component of ANJM. Two clear offsets are seen in the data on about May  3rd 2009 and Feb 20th 2014. 

 

For ANJM in particular there also appears to be a change in trend at these dates. Therefore we use 

four linear models when estimating the stochastic noise parameters. The first model is a linear trend 

together with annual and semi-annual signals and the two offsets. Model 2 also includes an 

acceleration term. Model 3 is a piecewise linear trend (as for the vertical) together with the annual, 

semi-annual and offsets and Model 4 incorporates 3 separate trends for each segment separated by an 

offset (together with the annual, semi-annual and the offsets themselves). The results of the stochastic 

model estimation is given in Table 8 below with the best choice for each based on the BIC. 
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Table 8. Estimated Noise Parameters for the Horizontal Components. 
Highlighted BIC’s are the preferred models 

AME1 North 

 κR κL γ σ BIC 

Model 1 : -1.72 -0.82 0.9258 0.1518 -63947.549 

Model 2 : -1.72 -0.79 0.9288 0.1518 -63949.841 

Model 3 : -1.71 -0.53 0.9485 0.1517 -63952.311 

Model 4 : -1.72 -0.76 0.9318 0.1517 -63950.067 

AME1 East 

Model 1 : -1.99 -0.77 0.9033 0.1406 -74495.059 

Model 2 : -1.99 -0.71 0.9096 0.1405 -74506.363 

Model 3 : -1.99 -0.68 0.9129 0.1405 -74449.113 

Model 4 : -1.99 -0.71 0.9098 0.1405 -74495.568 

ANJM North 

 κR κL γ σ BIC 

Model 1 : -1.76 -0.81 0.9490 0.1587 -57815.001 

Model 2 : -1.76 -0.78 0.9503 0.1587 -57807.618 

Model 3 : -1.76 -0.44 0.9633 0.1586 -57825.662 

Model 4 : -1.76 -0.66 0.9553 0.1587 -57827.545 

ANJM East 

Model 1 : -2.12 -0.76 0.8784 0.1290 -86280.730 

Model 2 : -2.12 -0.76 0.8784 0.1290 -86269.869 

Model 3 : -2.12 -0.68 0.8869 0.1290 -86244.354 

Model 4 : -2.12 -0.76 0.8788 0.1290 -86261.303 

      

MODD North 

 κR κL γ σ BIC 

Model 1 : -1.86 -0.88 0.8885 0.1726 -46281.191 

Model 2 : -1.86 -0.87 0.8907 0.1726 -46281.308 

Model 3 : -1.85 -0.77 0.9039 0.1725 -46250.822 

Model 4 : -1.86 -0.82 0.8973 0.1726 -46286.665 

MODD East 

Model 1 : -2.00 -0.83 0.8801 0.1364 -78632.697 

Model 2 : -1.99 -0.72 0.8928 0.1363 -78670.106 

Model 3 : -1.99 -0.67 0.8982 0.1363 -78622.431 

Model 4 : -1.99 -0.75 0.8895 0.1363 -78649.470 

Model 1 : Linear term, annual and semi-annual plus two visible offsets relating to 
updates of the reference station coordinates 
Model 2: As for 1 together with an acceleration term 
Model 3 : Piecewise linear trends for each year, annual, semi-annual and two offsets 
as for model 1. 
Model 4 : As for model 1 but 3 trends relating to the segments formed by the offsets 

 

The results from the three long time series are again seen to be sufficiently similar to derive a single 

noise model for all of the continuous data. This 06-GPS/NAM model is a FIGGM with parameters 

that are averages from the six models (two per site) with the lowest BIC. The parameters for κR, κL, γ 

are -1.91, -0.70, 0.9137 respectively with σ = 0.1481 mm. This is similar to the vertical component 

except for γ which is lower (such that the cross-over frequency is higher) and a σ that is higher. 

However despite σ being larger than the vertical the power at low frequencies is smaller. This model 
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gives an uncertainty in the trend of 0.3 mm/yr after 1 year down to 0.02 mm/yr after 10 years. 

However, as for the vertical, given the uncertainty in the processing method and the comparison with 

both the results from the literature review and the other groups time series we will present some 

alternative models to consider: 

1. General 06-GPS/NAM model : [κR = -1.91, κL = -0.70, γ = 0.9137, σ = 0.1481] 

2. 06-GPS/NAM modified at low frequencies to mimic the amplitude of the regional noise. The 

new parameters being [κR = -1.91, κL = -0.8281, γ = 0.9771, σ = 0.1481]. The main change is 

the parameter γ, which shifts the cross over frequency to a lower value which then increases 

the power at low frequencies. This is purely a back of the envelope calculation to mimic the 

regional noise and has no physical reason for the change in parameters. 

3. General 06-GPS/NAM model with an additional FIGGM [κR = -2, κL = -0.8281, γ = 0.992, σ = 

0.06] to mimic the regional noise.  

4. A model based on the daily solutions from the regional filtered data from NGL. This model is 

a power law with spectral index = -0.8281 and amplitude of 0.76 mm (2.58 mm/yr
κ/4 

in CATS 

notation) and white noise of amplitude 0.63 mm. 

We have not included the models with random walk or the model that scaled the general 06-

GPS/NAM model by 3. Figure 12 shows the fitted power spectra for the 3 long series (both north and 

east) 

 
 
Figure 12. Fitted power spectra (derived from MLE) for AME1, ANJM and MODD in both components (grey). The 

coloured lines represent the various models given above. 
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Spatial Correlation in the Continuous Time Series  

The reduction in time-correlated noise from unfiltered, to filtered, to small baseline solutions suggests 

that some of the noise is spatially correlated [A Amiri-Simkooei, 2009; S.D.P. Williams et al., 2004]. 

[S.D.P. Williams et al., 2004] speculated that if the time and spatial correlations are orthogonal to one 

another then the two effects can be treated separately and combined at the end. This was proven by [A 

Amiri-Simkooei, 2009] who summarized this by stating that the correlations between time series 

propagate directly into the correlation between parameters. Therefore the time series can be treated 

individually and their correlations can be added directly to create a covariance matrix of site 

velocities. 

We have taken the time series for all continuous sites and, after removing the linear model, calculated 

the correlations between each site for the north, east and vertical components individually 

(correlations between components is generally considered to be minimal). The results are shown in 

Figure 13 along with a simple model of an exponential decay of the form 

𝑐 =  𝑒−𝜌𝑥 (10) 

 

where c is the correlation, ρ is the decay parameter and x is the distance between two sites. The 

parameter ρ is estimated to be 0.0827, 0.1291 and 0.0887 for the north, east and vertical respectively. 

The correlation is strongest in the vertical and weakest in the east. 
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Figure 13. Correlations between the continuous GPS time series in the North, East and Vertical components. Blue line is the 

fitted exponential decay to the results. 

 

Stochastic Model for the Campaign Datai 

As discussed in the literature review there is very little understanding of uncertainties in campaign 

GPS. Presumably there is no difference in the systematic noise between campaign and continuous 

GPS so we should adopt the same models as for the continuous data and treat the campaign as a 

continuous series with many large gaps. The campaign data is also given as a single coordinate per 

campaign so we should derive a covariance matrix that is an average over the number of days of 
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measurement. The campaign data should presumably also suffer from a “set up” error every time the 

GPS equipment is installed. This is effectively an additional white noise to add to the covariance 

matrix derived above. The unknown in this is simply the amplitude of the noise. We know this is 

likely to be on the order of a few mm and we can use the results themselves to give us an estimate. 

Figure 14 below shows the height time series for the campaign sites that have had 4 or more 

measurements plotted along with a simulated noise equivalent to the modified 06-GPS/NAM model 

(#6) for the continuous data added to the trend calculated from the campaign data. We note that the 

scatter is not much different compared to the continuous data. The expected standard deviation for the 

campaign data from the continuous model is 1.1 ± 0.4 mm and the standard deviation of the 14 sites is 

1.0 mm. Note we removed the results from the 2006 campaign for sites with the naming pattern M??? 

due to suspected initial settlement of newly installed benchmarks. 

 
 

Figure 14. Height time series for the campaign (plus AME1, ANJM and MODD) sites that have four or more measurements. 

Red circles are the campaign measurements. Blue dots are synthetic continuous time series derived from the modified 06-

GPS/NAM model to highlight the additional “set up” noise the campaign sites suffer from. 

 

The agreement between the standard deviations from the simulated data and the residuals indicates 

that the “set up” error can be considered to be quite low (< 1 mm)  presumably due to the use of 

grouped benchmarks and optical levelling before and after the survey. Looking at the variations 

between time series from the clustered benchmarks we get a standard deviation of 1.5 mm. This may 

indicate movement of the benchmarks in the mudflats and as such this would be an additional 

temporally correlated noise that we have no means yet to investigate. We should also bear in mind 

that simply removing and replacing the same antenna can produce offsets on the order of 1 mm. 

Therefore to err on the side of cautious we should assign a “set up” error of at least 1 mm and note 

that the errors may still be over optimistic because we cannot yet account the temporal effects of 

benchmark movement (which has, from limited calculations a standard deviation of 1.5 mm). 

The trends for the sites plotted in Figure 14 are also shown in Table 9 below. The trend in the first 

column is calculated just using the covariance derived from model #6 of the continuous height time 
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series whereas the second column includes the 1 mm white noise set up error. The 1 mm setup error 

adds about 25% to the uncertainty (which will decrease with time). Note that no attempt has been 

made to scale up the uncertainties based on the residual fit.  

Table 9.  Trends and uncertainties for the campaign sites with 4 or more measurements. Also included are the “campaign” 

results for the three continuous sites AME1, ANJM, and MODD. First column is the uncertainties based on model 6 of the 

vertical continuous time series. Second column includes a set up noise equivalent to 1 mm of white noise. 

Site Trend (mm/yr) Trend (mm/yr) Site Trend (mm/yr) Trend (mm/yr) 

C028 0.14 ± 0.23 0.14 ± 0.29 M003 -2.81 ± 0.37 -2.81 ± 0.46 

C031 -0.37 ± 0.20 -0.36 ± 0.25 M007 -4.25 ± 0.34 -4.25 ± 0.42 

C035 -2.29 ± 0.20 -2.28 ± 0.25 M008 -2.99 ± 0.22 -2.99 ± 0.30 

C065 0.60 ± 0.23 0.61 ± 0.29 M009 -0.85 ± 0.34 -0.84 ± 0.42 

D050 -4.70 ± 0.22 -4.69 ± 0.27 M016 -2.02 ± 0.24 -2.04 ± 0.32 

D068 -0.80 ± 0.26 -0.80 ± 0.33 AME1 -6.36 ± 0.22 -6.36 ± 0.27 

D110 -2.65 ± 0.23 -2.65 ± 0.29 ANJM -3.80 ± 0.22 -3.81 ± 0.27 

G044 -2.26 ± 0.21 -2.27 ± 0.26 MODD -2.76 ± 0.27 -2.75 ± 0.32 

M002 -2.91 ± 0.26 -2.91 ± 0.32    

 

Periodic Signals in Campaign Data 
 

In the continuous data any periodic signals can be accounted for in the least squares so long as the 

length of the time series is sufficiently long, and the sampling period sufficiently small, compared to 

the period of the signal [Blewitt and Lavallee, 2002]. However for campaign data, particularly 

campaigns that are annual in nature, the periodic signals cannot be estimated and will propagate 

directly into an error in the trend. Therefore instead of estimating the periodic signal we have to 

account for it in the error budget. Additionally the campaign data presented here are an average taken 

over several days (typically 3 – 5 days) so any residual tidal signals may have an impact on the 

average. We will examine these two issues in this section 

Aliasing of tidal signatures 

 

We can see from figures 3, 4 and 7 that there is significant power at tidal frequencies particularly at 

K1, K2 and their harmonics. [Penna and Stewart, 2003; Penna et al., 2007] have shown that tidal 

signals can alias into long period signals but that was mainly for continuous daily data. We took the 

vertical component from AME1, ANJM and MODD and estimated the amplitude and phase for the 

dominant tidal frequencies (plus extra harmonics of K1). Although they are obviously significant in 

the power spectrum the maximum signal is 0.05 mm for K1 in ANJM. Overall, the 99
th
 to 1

st
 

percentile range for the predicted sub-daily tidal signal is 0.12 – 0.15 mm for the three sites. If we 

take the predicted tidal signal from the least squares we can use this to estimate the effect those 

signals have on the 3-day or 5-day mean. We find that averaging over three days can bias the result by 

less than 0.001 mm and less than 0.0006 mm for a 5-day average. So we can safely ignore the aliasing 

of sub-daily tidal signals on the campaign averages. 

Aliasing of long period signals on the trend 

 

The Wadden Sea campaigns are generally performed once per year starting at approximately the same 

time each year. Not every benchmark is included in every survey campaign, but surveyed at least once 
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every three years. Also due to logistical restrictions of measuring in the sea only 1 – 3 antennas can be 

mounted or un-mounted every day leading to a rolling, partly overlapping, occupation of the 

benchmarks. If we have purely sinusoidal signal and surveys performed at exactly the same time each 

year then the signal would have no effect on the trend estimate. If they are not surveyed at exactly the 

same time (or the signal is not a pure sinusoid) then this will propagate into the trend. An example is 

shown in Figure 15 below. 

 
Figure 15. Effect of sampling a periodic signal at uneven times of the year. The blue line is the actual periodic signal and the 

red line is three years of measurements at day of year 170, 180 and 150. The black line is the least squares fit to the three 

points showing a non-zero trend of 0.15 mm/yr. 

 

To examine the effect this has on the campaign sites we run Monte Carlo simulations (10000) per site 

using the measurement dates given for each site. For each simulation we kept the amplitude of the 

annual signal at 1mm and varied the phase of the signal. We then estimated an intercept and trend for 

each simulation and took the standard deviation of all the trends. The results are plotted as red squares 

in Figure 16 below. The blue line in Figure 16 is the estimated uncertainty from Monte Carlo 

simulation from a series with the given time span for just two measurements. We see that the 

dominant effect is the length of the time series, with second order effects being the individual 

positions and number of campaigns per site. From the least squares fit to the vertical time series of 

AME1, ANJM and MODD we get a very small annual signal of 0.35 mm, 0.19 mm and 0.15 mm 

respectively. For the worst case in Figure 16, site H044 with a time span of 2 years and 277 days, the 

uncertainty due to an annual signal of 0.35 mm is 0.12 mm/yr. It turns out that we can form the 

equation for the uncertainty as 

𝜎𝑟 =
√2𝑎

𝑇
|sin 𝜋𝑓𝑇| 

(11) 

  

where a is the amplitude of the periodic signal, T is the length of the measurements (in years) and f is 

the frequency of the periodic signal (in yrs
-1

).  

Finally there is one other effect to be wary of particularly for the annual signal. If the annual signal is 

common across the whole area and because the campaigns are measured at approximately the same 

time each year then the bias may be correlated at all sites i.e. the trends may all report a trend too high 

or a trend too low. However, looking at the phase of the annual signal in AME1, ANJM, and MODD 
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there is no reason to believe that the signal is common – as we would suspect from the processing 

methodology where any common mode is supressed by the fixing of the reference sites. 

 
Figure 16: Uncertainty in the trend as a function of the time span of campaign data due to an annual signal of amplitude 1 

mm. Blue line is the Monte Carlo derived estimate based on an annual signal with random phase for a line with two 

measurements. Red squares are Monte Carlo simulations with spacing of measurements equivalent to the campaign dataset. 

 

Recommendations on Calculating GPS Uncertainties 
 

The work in this paper has thoroughly examined the scientific literature on uncertainties in GPS 

coordinate time series from the start of GPS measurements through to our most recent understanding. 

We find that daily GPS coordinate time series are found to be, in general, a combination of temporally 

coloured noise (typically close to flicker noise) and white noise. The scale of the noise in the vertical 

is larger than the horizontal although the magnitude has steadily decreased with time due to improved 

models, processing, satellites and ground stations. The magnitude of the noise is also dependent on 

the size of the network (global, unfiltered through regional, filtered to short baseline studies) and the 

processing methods employed.  

The GPS solution provided by 06-GPS are hourly coordinate time series and have been analysed 

stochastically to produce a stochastic model to be used to calculate uncertainties in parameters derived 

from the GPS solutions, for example trends. They results have also be compared to alternative 

reference time series in the region including the results from the Leica CrossCheck service. Given the 

analysis of the data we recommend the following 

1. For the continuous data, unless the data is longer than 2½ years, do not estimate an annual 

and semi-annual signal in the least squares [Blewitt and Lavallee, 2002]. 

2. For the vertical data we recommend using model #6 as the default model for the data. This 

model combines the general model (#1) for the data based on the three longest time series 

and adds a secondary component that forces the stochastic model to mimic a regional filtered 

network at long periods. 

3. For the horizontal data we recommend model #3 which is equivalent to model #6 for the 

vertical data. 
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4. To account for spatial correlations in the continuous data, first estimate the trend 

uncertainties using the models above. Then use equation (10) to create a correlation matrix 

for the spatial correlations based on the distance between the sites and the decay parameter, 

ρ. The covariance matrix for the trends is then calculated using the following: 

 

𝐶𝑖,𝑗 = 𝑐𝑜𝑟𝑟𝑖,𝑗 𝜎𝑟(𝑖)𝜎𝑟(𝑗) (12) 

 

where Ci,j is the covariance between site i and j, corr i,j is the correlation from eq. 10 and σr  

are the trend uncertainties from sites i and j. 

 

5. For the campaign data, the models for the continuous data should also be used but propagated 

to produce the covariance between the individual surveys. Each individual survey is an 

average of the hourly values from the survey period – nominally 5 days. An additional set-up 

noise of 1 mm (white noise) can be added to account for errors in the re-establishment of the 

benchmark. Spatial correlations are added in as above. 

6. Errors in the average coordinate per survey are unlikely to be affected by residual tidal 

signals and so can be ignored. 

7. Periodic signals such as the annual and semi-annual will affect the trend estimate and the size 

of the uncertainty is primarily a function of the length of the time series and amplitude of the 

signal. Uncertainties estimated using equation (11) can be added in quadrature to the 

calculated trend uncertainties calculated from point 5. 

 

 

Recommendations on the Current Processing Approach 
 

The literature review conducted above, together with the analysis of the 06-GPS time series, the Leica 

CrossCheck data and supplementary data from GNSS analysis centres in the scientific community 

highlight a large discrepancy between the processing approaches employed.  06-GPS use the Geo++ 

GNNET (GNSMART) software which uses a set of fixed reference stations surrounding the network 

and then estimates the coordinates of the network via a Kalman filter. Whilst, at first glance, the 06-

GPS results would appear to be more precise than the equivalent scientific results it is hard to 

reconcile this with the literature. The nature of the processing and the size of the network would imply 

that the results would be equivalent to a small, filtered network. However the derived stochastic 

parameters would suggest the noise level is around or below that found for (< 1km) short baseline 

studies which are not easy to explain considering the size of the network. This, and the spectral shape 

at high frequencies, would suggest the Kalman filter is potentially constraining the coordinates too 

tightly. How this tight constraint affects any long wavelength deformation (spatially and temporally) 

is unknown.  

The offset seen in the horizontal coordinates in May 2009 related to a change in the coordinates of 

several of the fixed reference stations at that time suggest a major drawback in the processing 

methodology with those changes in coordinates propagating into unwanted changes in the monitoring 

sites. Indeed for ANJM and MODD in the north component the preferred linear model was one where 

the trends themselves changed at this time. The offset in Feb 2014 appears to be related to the addition 
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of other sites in the network. This sort of effect has been seen in processing in the past as the baselines 

that are processed change with the addition of new sites for example. It is however something to 

investigate as small offsets can bias estimated trends [Gazeaux et al., 2013; S. D. P. Williams, 2003] 

[Geng et al., 2012; S. D. P. Williams and Penna, 2011] showed that known loading due to the 

atmosphere and ocean is detectable in GPS coordinate time series. That they are not visible (despite 

being on the order of 20-30 mm during severe storm surges which last from hours to a few days: the 

December 5/6 2013 storm surge for instance predicts a loading signal of 30 mm at AME1) in the 06-

GPS time series suggests that the coordinates cannot be considered to be absolute but are instead 

relative (or pseudo-baseline). Even so, the relative deformation at AME1 (relative to a common mode 

signal from the reference sites) is estimated to be 6.6 mm and is not visible in the time series (See 

Figure 17 below). One could conclude that the deformation at these periods is perhaps biased by the 

tight constraint, the fixed reference sites or both. 

 
Figure 17. Vertical deformation due to atmospheric and non-tidal ocean loading. Top. Blue line is the observed deformation 

at TERS in 2007 from a Gipsy PPP solution. Orange line is the predicted loading deformation. Middle. Blue line is the 

vertical deformation for AME1 from the 06-GPS solution in 2013. Orange line is the predicted loading deformation. Note 

the large negative peak in December 2013. Bottom. Blue line is the vertical deformation for AME1 from the 06-GPS 

solution in2013. Orange line is the predicted residual loading deformation after a common mode due to the loading is 

removed. The peak is reduced but still large in December 2013. 

 

 Finally the break in slope of the power spectrum has to be explained. It is not seen in regular 

scientific processing time series but you could argue that this is because the noise in those series is 

higher at those frequencies. However other researchers have found flicker noise down to 1Hz [Bock et 

al., 2000]. A break in the power-law with the high frequency spectral index close to -2 is symptomatic 

of some form of filtering. 

The following are some recommendations on the current processing approach 
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1. Investigate the constraints applied to the coordinates of the continuous monitoring stations.  

2. Examine the methods applied to the fixed reference sites. Absolute fixing of the site 

coordinates with occasional corrections to the coordinates after a separate analysis is not the 

optimal way to capture any differential motion at those reference sites. One should adopt a 

methodology similar to the IGS in its definition of the International Terrestrial Reference 

Frame (ITRF) whereby the reference sites are given a position and a velocity (based on a 

separate processing of the whole dataset of the fixed sites with respect to ITRF or EUREF). 

3. If there is no real requirement for hourly solutions then we suggest moving to daily. 

Currently, any subdaily variations are likely effected by the kalman filter. The remaining tidal 

signatures seen in the subdaily may come from a variety of sources and are not indicative of 

the ability of the software to capture subdaily motion. 

4. Consider performing a test at a site considered to be sufficiently far away from any 

subsidence where you can move the antenna in a known and easily measured (not via GPS) 

manner continuously over a period of time sufficiently long enough to be lower than the cross 

over frequency seen in the data (and not related to any known tidal period). We would suggest 

something on the order of 100 days and resembling a sawtooth function so that it is easily 

verifiable. 

5. Switch to or use in parallel the Leica CrossCheck service. The results from this service have 

shown to be in line with the results from the scientific community and therefore have an 

established track record. One obvious drawback to this is that the service is a black box 

system and therefore potential problems with the data will be harder to track down than 

specialised processing of the data 

 

The views expressed in this paper are those of the author and do not necessarily reflect the policies of the National Oceanography 

Centre. 
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Appendix A: A note on the reporting of 
amplitudes of the stochastic noise 
models 

In several places in this document there are references to the scaling of the noise amplitudes, 

particularly Tables 1, 2 and 3. To help avoid confusion we will describe where this issue originates.  

In one of the original papers, [Johnson and Wyatt, 1994] describe the derivation of a covariance 

matrix by propagation of errors of a transformation matrix (see also [S.D.P. Williams, 2003] for a 

discussion of this) they scaled the transform by ΔT
-κ/4

, where ΔT is the sampling interval. This was 

done to ensure that the power spectra for any power-law with spectral index κ would cross at the same 

frequency given the same sampling interval and noise amplitude σκ. At the time of the [Zhang et al., 

1997] paper the covariance matrix for flicker noise was approximated using an algorithm described by 

[Gardner, 1978] for simulating such noise and the constants were chosen so that a flicker noise and 

random walk power spectrum cross at a period of one year when both have a sampling period of one 

day and equal amplitude. Since then the more general form for the covariance matrix for power-law 

noise was derived from [Hosking, 1981] and the ΔT
-κ/4  

scaling was adopted, particularly in the CATS 

software [SDP Williams, 2008]. More recently [M Bos et al., 2008; M S Bos et al., 2013] ignored the 

ΔT scaling in their work. Therefore it essential to state which scaling you are adopting. 

With the addition of alternative noise models, such as AR(1) and band-pass filtered noise the idea of 

scaling the amplitudes by ΔT
-κ/4 

becomes nonsensical. Indeed for the FIGGM, which power-law index 

would you adopt? The more reasonable thing to do is drop the scaling parameter and report the 

amplitudes as the value that is multiplied by the transformation matrix. Note that for white noise, 

where κ = 0, the scaling parameter ΔT
-κ/4 

is 1 anyway and the amplitude is the same as the usual 

amplitude for white noise. 

In the first section of this work, the literature review, the amplitudes are quoted with the ΔT
-κ/4 

(or 

CATS) convention for ease of comparison as are the results in Table 2 which deal only with a power-

law plus white noise model. From Table 3 onwards the ΔT scaling has been avoided to ease 

comparison between different stochastic models. To convert between new and CATS scaling of the 

power-law noise amplitudes simply note that 

𝜎𝑛𝑒𝑤 =  ∆𝑇−𝜅/4 𝜎𝐶𝐴𝑇𝑆 (A1) 

 

                                                           
i
 This section has been subsequently revised from the original document submitted.  The analysis in the 
original document was based on a report on the campaign data that included heights that were not corrected 
for antenna offsets. This was uncovered from the original report where issues with benchmarks C028 and C035 
were discussed including the 15 m horizontal change in C028 indicating the use of a different benchmark in the 
cluster. This revision has reduced the possible setup error down from around 5 mm to probably no more than 
1 – 2 mm. 


