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Abstract

For the case of a contracting body in an homogeneous, isotropic, linear elastic half-space

the relationship between the `subsidence volume' (i.e. the displacement volume of the free

surface) and the internal in-situ volume change is not straightforward. It has also been

incorrectly stated in the literature. In this paper the in-situ volume strain is analyzed and

an expression for the in-situ volume strain Green's function is derived. It is found that the

in-situ volume strain can be signi�cantly larger than has been reported - for the case of a

shallow, laterally extensive body the factor can be as great as 2(1− ν).

1 Introduction: Surface Displacements and Subsurface Strains

In the geosciences, surface displacements of the Earth are frequently used to determine, or

at least constrain, subsurface deformation. Examples include investigations of: tectonic fault

slip, volcanic magma emplacement, �uid extraction and injection operations, mining operations,

hydraulic fracturing, etc. Equally, the equivalent forward problem, that is the prediction of

ground movements due to subsurface strains is also a matter of practical importance, for the

purposes of planning and assessing potential environmental impacts on civil infrastructure and

natural habitats.

Of particular interest to the oil and gas industry and the regulatory authorities charged with

their oversight, is the surface deformation, particularly ground subsidence, associated with �uid

(oil/gas) production from subsurface reservoir formations. As pore �uid pressures are reduced in

the reservoir rock, it responds by contracting, and the resulting volume strain creates a pattern

of downward and inward surface displacement. This paper deals with some of the elastostatic

theory that underpins how this process is generally modeled in simulations.

1



Most of the present methods used to model and predict surface subsidence due to �uid

extraction, are essentially based on the same methodology that Geertsma outlined in his seminal

papers on the subject [1973a; 1973b]. In these, the subsurface is represented by a homogeneous,

isotropic, linear elastic [HILE] halfspace and the displacements are calculated using a Green's

function for a `centre of compression nucleus of strain' in such a domain, appropriately scaled and

integrated over the reservoir volume. The solutions though, yield what might be perceived as a

counterintuitive result: upon analysis the apparent subsidence displacement volume is seemingly

larger than the subsurface contraction volume. The origin of this article comes from requests I

received, from the steering committee, to explain this phenomenon.

It should be noted at the outset that problems of this class crop up relatively frequently, the

generic response is that a lot can be hidden by negligible perturbations at an in�nite boundary

condition, and the matter dismissed without much further thought (any �nite number divided by

in�nity is, after all, zero). Or to rephrase that more formally, that there are an in�nite number

of functions that can have a �nite volume integral while satisfying the condition of being zero at

an in�nite domain boundary.

On investigating the matter further though, a somewhat more complex story unfolds which

highlighted some subtle misconceptions about volume strain; in particular that the relationship

between the stress free strain and the constrained strain depends on the domain under consid-

eration - although the �nite impact of in�nitesimal perturbations at an in�nite boundary still

plays its part. It should be noted that a careful analysis of the work by Seo and Mura [1979],

Nowacki [1986] and Rudnicki [2002], all of which analyse the problem of volume strain within

an inclusion in a HILE half-space domain, lead to very similar conclusions. This report though,

investiagtes the matter explicitly.

2 Isotropic Volume Strain in a HILE Full-Space

The fundamental solution for this study (and one of the most important solutions in elastostatics)

is that for a force acting at a point in a HILE full-space [Thomson, 1848]. The HILE properties

of the material allow composite forces, acting at a point or points, to be constructed by simple

operations of scaling, rotating and superposing this solution. A number of practically useful
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point force combinations can be generated in this manner, e.g. the force double or dipole, which

is two forces of equal magnitude, but acting in opposite directions, in the limit that the distance

between the two action points approaches zero. The general name for such point strain sources

is `nuclei of strain' [Love, 1927].

The displacement �eld that results from such nuclei of strain body forces, can be found by

solving the elastostatic equations (alternatively called the Navier, Navier-Cauchy or Navier-Lamé

equations)

G∇2u +
G

1− 2ν
∇∇ · u = −b (1)

subject to the appropriate boundary conditions; here G is the shear modulus, u = u(x) is the

displacement vector �eld as a function of space x, ν is Poisson's ratio and b = b(x) is the

body force vector �eld. In this instance, where the domain is a full-space, the relevant boundary

conditions are that displacements are zero at the in�nite limits of the domain, i.e. u(x)→ 0 for

‖x‖ → ∞.

The strain, e, and stress, σ, tensor �elds in a HILE medium are de�ned as follows

e =
1

2

(
∇u + (∇u)T

)
(2)

σ = 2Ge +

(
K − 2G

3

)
tr(e)I = 2G

(
e +

ν

1− 2ν
tr(e)I

)
(3)

where the superscript T denotes the transpose operator, K is the bulk modulus, tr is the trace

operator, and I is the unit tensor. Note that the stress is the deviatoric strain scaled by the

shear modulus, G, plus an isotropic component equivalent to the volume strain (tr(e)) scaled

by the bulk modulus, K (it is often convenient to consider deviatoric and volumetric processes

separately).

Of particular interest for this study is the point source isotropic volume strain, referred to

as a `centre of compression/dilatation nucleus of strain', it is composed of three orthogonal

force doubles, of equal magnitude and polarity, acting on the same point. In short, it is an
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isotropic point expansion or contraction set of forces, that can be used as a Green function.

As mentioned in the introduction, a distribution of such point source volume strain Green's

functions, appropriately scaled and spatially superposed, can be used to approximate contracting

inclusions in many solid-mechanics/geomechanics models.

To determine the magnitude of the body forces for such a centre of compression/dilatation,

initially consider a stress free isotropic volume strain, ē, for a small inclusion of material in the

subdomain x̄, (i.e. a volume change, unconstrained by its surrounding material, but with no

corresponding change in stress), of magnitude ε̄, hence ē(x ∈ x̄) = (ε̄/3)I; ē(x /∈ x̄) = 0. Note

that this will yield a discontinuous, and hence unphysical state, as the inclusion will no longer

be the same size as the space it previously occupied. Therefore to satisfy continuity conditions

a set of corresponding isotropic body forces need to be applied to constrain the inclusion to its

original size,

b = −K∇ε̄ (4)

where ε̄ = ε̄(x) = tr(ē(x)). This follows directly from the equilibrium equations

∇ · σ = −b (5)

and the de�nition of bulk modulus. This then de�nes the magnitude of the isotropic expan-

sion/contraction body forces; and hence the resulting displacement vector �eld at elastostatic

equilibrium must satisfy

∇2u +
1

1− 2ν
∇∇ · u =

2(1 + ν)

3(1− 2ν)
∇ε̄ (6)

and the boundary condition u(‖x‖ =∞) = 0.

An isotropic expansion/contraction set of body forces in a HILE full-space must yield an

isotropic displacement �eld, which is therefore irrotational. In which case applying the funda-

mental theorem of vector calculus means that the displacement �eld can be expressed as solely
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the gradient of a scalar potential function, Φ = Φ(x), (as solenoidal vector �eld terms will be

zero).

u = ∇Φ (7)

This then leads to the following relationships

∇2∇Φ +
1

1− 2ν
∇∇ · ∇Φ =

2− 2ν

1− 2ν
∇(∇2Φ) =

2(1 + ν)

3(1− 2ν)
∇ε̄ (8)

and hence

∇2Φ = ∇ · u =
1 + ν

3(1− ν)
ε̄ (9)

The solutions can also be given in succinct form by making use of the Galerkin vector stress

function, F = F(x), where the displacement �eld is de�ned by

2AGu = 2(1− ν)∇2F−∇∇ · F (10)

here A is a scaling factor that varies between authors in the published literature, in this paper the

convention A = 1 will be used. Mindlin [Mindlin, 1936] derived Galerkin vector stress Green's

functions for a number of nuclei of strain. For the case of the centre of compression in a HILE

full-space at point y that is being considered here

F∗ =
G

2π

1 + ν

3(1− ν)
ε̄ ln(‖x− y‖+ x3 − y3)x̂3 (11)

[N.B. the inherent nonuniqueness of the Galerkin stress function and spherical symmetry of the

isotropic strain source means that the directional index 3 can be replaced with 1 or 2, or any

arbitrary direction, all will yield the same displacements, stresses and strains.]. Here F∗ =

F∗(x; y), where the superscript, ∗, denotes a Green's function for this �eld, i.e. f∗ = f∗(x; y)

is the f �eld over domain x due to some given in�nitesimal point source acting at location y
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The resulting displacement �eld Green's function, u∗ = u∗(x; y), for a centre of compression in

a HILE full-space is

u∗ =
1

4π

1 + ν

3(1− ν)
ε̄

x− y

‖x− y‖3
(12)

3 Stress Free Strain and Constrained Strain in a HILE Full-

Space

When considering volume strain for a centre of compression or dilatation, one of the �rst concepts

that needs to be understood is that the stress free isotropic strain at the nucleus location, ē(y),

will not be the same as the strain that will actually occur in-situ, constrained by the surrounding

material (except in the pathological case of an incompressible medium). In reality, the term

'nucleus of strain' is somewhat of a misnomer, as they are in fact de�ned as nuclei of forces.

The stress free strain is simply the strain that would occur without the external constraint of

the surrounding substrate, it simply provides a convenient way of deriving the magnitude of the

point forces, but it does not equate to the constrained strain at the nucleus point when it is at a

state of elastostatic equilibrium within the material. The relationship between constrained strain

and stress free strain, at the nucleus point y for a HILE full-space can be found by combining

equations (2) and (9)

e(y) =
1 + ν

3(1− ν)
ē(y) (13)

For the case of a single nucleus of strain in a HILE full-space, the system is spherically

symmetric and hence as the stress free strain tensor for a centre of compression is isotropic,

so too is the constrained strain, i.e. e(y) = (tr(e(y))/3)I; ē(y) = (tr(ē(y))/3)I. However,

if another centre of compression is introduced, or a non-spherically symmetric distribution of

such centres, then the symmetry is broken. In these circumstances the constrained strain will

no longer be isotropic. Eshelby [1957] famously explored the problem of ellipsoidal inclusions

undergoing isotropic stress free strain (i.e. a uniform distribution of centres of compression over

an ellipsoidal volume) in a HILE full-space, where he derived analytic solutions for the constrained

strain as a function of the ellipsoid aspect ratios. For more arbitrary distibutions of centres of

compression though, the problem becomes intractable to solve analytically. However, while the

deviatoric components of the constrained strain tensor might be sensitive to the distribution of

centres of compression, the trace, or isotropic component of the constrained strain is actually
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completely independent of the distribution. Surprisingly the constrained volume strain at a

point in a distribution of centres of compression, within a HILE full-space is always a factor of

(1 + ν)(3(1− ν)) times the stress free volume strain at that point. This �xed relationship is also

apparent from equations (2) and (9) where for the general case

tr(e) =
1 + ν

3(1− ν)
ε̄ (14)

A clearer understanding of why this is so can perhaps be gained by considering the Galerkin

vector stress function for a centre of compression. Combining (2) and (10) gives an expression

for the trace of the strain tensor

tr(e) =
1− 2ν

2G
∇ · ∇2F (15)

Inserting the Galerkin stress Green's function for a centre of compression in a HILE full-space,

(11), yields

tr(e(x 6= y)) = 0 (16)

i.e. a centre of compression in a HILE full-space exerts no volume strain outside of itself -

although it can exert a deviatoric strain.

4 Volume Strain in a HILE Half-Space

For the purposes of modeling ground surface deformation due to subsurface poroelastic reservoir

contraction, consideration must now turn to the problem of displacements due to volume strain

within a half-space. As mentioned in the introduction, the standard methodology, originally out-

lined by Geertsma [Geertsma, 1973] which in turn applies principles developed to solve equivalent

problems in thermoelasticity [Goodier, 1937; Nowacki, 1962], is to linearize the problem and use

a point source volume strain Green's function, spatially superposed and scaled to approximate

the contracting reservoir inclusion. The fundamental Green's function used is the centre of com-

pression 'nucleus of strain' for the HILE halfspace, the solution of which was described in two
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independent papers by Mindlin & Cheng, and Sen, published almost simultaneously [Mindlin &

Cheng, 1950; Sen, 1951].

The general approach for solving elastostatic problems of displacements due to body force

distributions in a HILE half-space is to derive the solution for a HILE full space and then

apply auxilliary conditions to satisfy the free surface boundary condition of zero traction. The

uniqueness theorem of elastostatic equilibrium [Kircho�, 1859] guarantees that such a solution

is unique for the domain of interest. The auxilliary conditions required to satisfy the zero stress

free surface boundary condition for a centre of compression nucleus of strain in a HILE half-space

can be considered to be equivalent to that of a full space domain with appropriate 'mirror' force

nuclei placed at the re�ection point of the centre of compression in the `free surface plane' (e.g.

for a free surface plane at x3 = 0, in a cartesian coordinate system, and a centre of compression

at point y = (y1, y2, y3), the auxilliary condition, σ(x3 = 0) = 0, is met by placing appropriate

force nuclei at y′ = (y1, y2,−y3)). The mirror nuclei of strain for a source centre of compression

of unit magnitude can be decomposed into: i) a force double, acting in the direction normal

to the free surface (in this case, x̂3), scaled by a factor of 2; ii) a center of compression scaled

by (1 − 4ν); iii) a doublet with axis normal to the free surface (in this case, x̂3), scaled by the

distance between the source and mirror points (in this case, −2y3) [Mindlin and Cheng, 1950].

Note that a doublet is a source of compression and a source of dilatation, of equal magnitude,

in the limit where the distance between them approaches zero.

The Galerkin vector stress Green's function for the combined source and mirror nuclei is

given by

F∗ =
G

2π

1 + ν

3(1− ν)
ε̄

[
ln(‖x− y‖+ x3 − y3) +

(1− 4ν) ln(‖x− y′‖+ x3 + y3) +
2(x3 + y3)

‖x− y′‖
− 2y3

‖x− y′‖

]
x̂3 (17)

Inserting this into (10) gives a displacement vector �eld Green's function of
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u∗ =
1

4π

1 + ν

3(1− ν)
ε̄

[
x− y

‖x− y‖3
+ (3− 4ν)

x− y′

‖x− y′‖3
−

6x3(x3 + y3)
x− y′

‖x− y′‖5
− (4x3 + 6y3 − 8ν(x3 + y3))

x̂3

‖x− y′‖3

]
(18)

The corresponding displacement �eld on the surface x3 = 0 is hence

u∗ |x3=0 =
1 + ν

3π
ε̄

x− y

‖x− y‖3

∣∣∣∣
x3=0

(19)

For this case then, of a centre of compression in a HILE half-space, the Green's function for

the displacement volume of the free surface (i.e. the `subsidence volume' Green's function) is

therefore given by

(1 + ν)

3π
ε̄

∫ ∞
0

∫ ∞
0

y3

‖x− y‖3
dx1 dx2 =

2(1 + ν)

3
ε̄ (20)

and the idenity (14) implies (note emphasis, as it is erroneous)

(1 + ν)

3π
ε̄

∫ ∞
0

∫ ∞
0

y3

‖x− y‖3
dx1 dx2 = 2(1− ν)tr(e(y)) (21)

This apparently anomalous result, that the surface displacement volume is larger than the in-situ

volume strain of the centre of compression (except for the pathological case of an incompressible

�uid, ν = 0.5), was the original motivation for this study and was noted by Geertsma [Geertsma,

1973b]. However, it should be realised that while the displacement volume of the surface at

x3 = 0 may seem intuitively to be equivalent to the volume change within the half-space domain,

that human intuition can often be misleading.

As a thought experiment, consider two, equal, centres of compression in a HILE full-space

located at y = (y1, y2, y3) and y′ = (y1, y2,−y3). For this example the displacement normal to

the surface at x3 = 0, is zero, and hence the surface displacement volume is also zero, yet there
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is clearly a net change in volume for any domain that contains one, or both, of the centres of

compression. As has already been shown, a centre of compression in a HILE full-space cannot

exert a volume strain ouside of itself and so it follows that the volume strain in any domain that

contains one centre of compression is constant, e.g. for the set of domains

a1 ≤ x1 ≤ b1; a2 ≤ x2 ≤ b2; a3 ≤ x3 ≤ b3 (22)

where

−∞ ≤ a1 < y1; y1 < b1 ≤ ∞; −∞ ≤ a2 < y2; y2 < b2 ≤ ∞; 0 ≤ a3 < y3; y3 < b3 ≤ ∞ (23)

(i.e. the rectilinear domains within the half-space x3 ≥ 0 that contain the point y)

∫ b1

a1

∫ b2

a2

∫ b3

a3

tr(e(x)) dx3 dx2 dx1 = θ(y) (24)

where θ(y) is the net volume change associated with the point of compression at point y

θ(y) = lim
Ω(y)→0

∫∫∫
Ω(y)

tr(e(x)) dx3 dx2 dx1 (25)

and Ω(y) denotes a volume about the point y. Similarly for any convex domain containing the

centre of compression point y, with x3 ≥ 0 and a bounding surface on the plane x3 = 0, the

volume change is similarly θ(y). In this case there is zero displacement normal to the plane

x3 = 0, and the volume change must therefore be accommodated by displacement of the other

bounding surfaces to the domain. Even as the domain expands to the limiting case of the half-

space, x3 ≥ 0, the total volume change will remain constant, it is, as described in the introduction

of this article, a case where ini�nitesimal perturbations at an in�nite boundary, when integrated

equate to a �nite value (c.f. Cantor's paradox).

To generate the solution for a centre of compression in a HILE half-space from this twin pair

of centres of compression in a HILE full-space, we need to augment the centre of compression
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at y′ with: another centre of compression scaled by −4ν; a doublet with axis normal to the free

surface scaled by −2y3; and a force double in the x̂3 direction scaled by 2. The displacement at

x3 = 0 in the x̂3 direction, given by (19) is therefore purely due to these augmentary nuclei of

strain.

It has already been shown that the additional centre of compression at y′ cannot induce

any volume strain in the half-space x3 ≥ 0, and the doublet source at y′, being a composite

of negative and positive centres of compression, similarly cannot in�uence volume strain in the

x3 ≥ 0 domain (more precisely, any combination of centres of compression at point y induces zero

volume strain in the domain x 6= y). However, the force double at y′ is a di�erent matter, this

has a deviatoric component (it can be decomposed into an isotropic and deviatoric set of forces),

and while an isotropic set of forces cannot induce volume strain at a distance, a deviatoric set

of forces can.

Using the identity for the Galerkin vector stress Green's function for the combined nuclei (17)

and the volume strain expression (15), it follows that the volume strain Green's function within

the half-space domain x3 > 0 is

tr(e∗) =
1 + ν

3(1− ν)
ε̄

[
δ(x− y) +

1− 2ν

π

(
3(x3 + y3)2

‖x− y′‖5
− 1

‖x− y′‖3

)]
(26)

where δ is the Dirac delta function. More explicitly, the volume strain Green's function at

location y can be expressed as

tr(e∗(x = y; y) =
1 + ν

3(1− ν)
ε̄

[
δ(x− y) +

1− 2ν

4π‖x− y′‖3

]
(27)

This has signi�cant and profound implications. Firstly it shows that the in-situ volume strain

for a centre of compression in a HILE half-space is not the same as that for a HILE full-space. The

assumption that the in-situ volume strain is described by (15), given by Geertsma in its equivalent

form as cm∆p [Geertsma, 1973] (where cm is the uniaxial compressibility, i.e. cm = 1/M , i.e. the

reciprocal of M the p-wave or uniaxial modulus, de�ned as M = 3K(1− ν)/(1 + ν), and ∆p is

the pore pressure change) is therefore erroneous. The free surface boundary condition a�ects the

in-situ constrained strain, so that the constrained strain for a half space is not the same as the

constrained strain for a full space. This is more clearly understood when consideration is given
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to the fact that the term `nucleus of strain' is somewhat of a misnomer - the nuclei are in fact

de�ned in terms of equivalent body forces. The resulting strains induced by these body forces are

therefore dependent on the boundary conditions. For the case of a half space, the relationship

between stress free volume strain and in-situ constrained volume strain will depend on distance

from the free surface. Hence a uniform stress free strain in an ellipsoidal inclusion in a HILE

half-space will not result in a uniform in-situ constrained strain within the inclusion domain, as

might be assumed from Eshelby theory [Eshelby, 1957; Seo & Mura, 1979; Rudnicki, 2002]. In

fact it follows that the in-situ strain for a single in�nitesimal point centre of compression in a

HILE half-space won't even be isotropic.

Secondly, it is follows that volume strain occurs in the half-space x3 ≥ 0 oustide of the centre

of compression. By extension it follows that for a distribution of centres of compression, in A

HILE half-space, representing a compacting reservoir, that volume strain will also occur outside

of the reservoir. Hence determining net volume strain within the half-space domain requires

integration of a non-trivial, spatially dependent function over the entire domain.

The e�ects that are discussed here, due to the di�erence between full-space and half-space

boundary conditions, are relatively minor if the dimensions of the contracting reservoir volume

are small compared to the distance from the free surface. As the reservoir depth-to-size ratio

becomes large, the in-situ strains and displacements will approach those of a full space and the

relationships given in (14) and (21) will be reasonably accurate. However, for laterally extensive,

shallow reservoirs, where the depth-to-size ratio becomes small, the in�uence of the free surface

will rapidly become very signi�cant. In the limit of an extensive reservoir at the surface, with

uniform stress free volume strain of magnitude, ε̄ the in-situ volume strain approaches

tr(e∗(x̄))→ 2(1− ν)
1 + ν

3(1− ν)
ε̄ (28)

a factor of 2(1− ν) larger than is the case for a full-space (or a very deep reservoir).

5 Conclusions

The relationship between the `subsidence volume' (i.e. the displacement volume of the free

surface) and the internal in-situ volume change for a contracting inclusion within a HILE half-
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space is not as straightforward as it would at �rst appear nor is it as stated by Geertsma

[Geertsma, 1973b]. The problem can be analyzed by considering the elementary solution for

a single centre of compression nucleus of strain in a HILE half-space domain (the contracting

inclusion can constructed from this elementary solution by superposition). The solution for a

centre of compression in a HILE half-space can be represented by the following set of nuclei in

a HILE full space: i) an identical centre of compression at the same co-ordinates in a HILE full-

space; ii) a centre of compression of the same magnitude at the re�ection point given by replacing

the free surface with a plane of re�ection symmetry; iii) additional centre of compression, doublet

and force double nuclei at this re�ection point. Analysis of the combination of i) and ii) (i.e. two

identical centres of compression about a plane of re�ection) makes it clear that volume strain can

be accomodated by negligible displacements at the in�nite boundary, that can still satisfy the

boundary conditions, and yet cause zero displacement volume of the virtual free surface. Hence,

displacement volume and internal volume change do not have to be equal. Further analysis

though, shows an even more complex story, where the internal volume change is found to be

a function of the size and location of the contracting inclusion, which can be determined by

appropriate superposition of the volume strain Green's function given by identity (26).
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