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General Introduction 

In statistical seismology, the properties of distributions of total seismic moment are important for 

constraining seismological models, such as the strain partitioning model. The total seismic moment is 

the sum of the moments of individual seismic events, which in common with many other natural 

processes, are governed by a Pareto or “power law” distributions. In the case of seismicity, the exponent 

appearing in the power-law relation is small enough for the variance of the distribution to be infinite, 

which renders standard statistical methods concerning sums of statistical variables, based on the central 

limit theorem, inapplicable. Determinations of the properties of sums of moderate to large numbers of 

Pareto distributed variables with infinite variance have traditionally been addressed using intensive 

Monte-Carlo simulations.  

In the calculations for earlier implementations of the strain partitioning model the methods by 

Zaliapin et al (Ref. 1) was used to determine the properties of such sums. This report presents a 

novel method for accurate determination of the properties of such sums that is accurate, fast and 

easily implemented, and is applicable to Pareto-distributed variables for which the power law 

exponent lies within the interval [0, 1]. 

This method has been implemented in the seismological models supporting the hazard assessment 

for induced seismicity in Groningen.   

Ref.1  Zaliapin, I.V., Kagan, Y.Y. & Schoenberg, F.P., 2005. Approximating the Distribution of Pareto Sums. 

Pure and Applied Geophysics, 162(6-7), pp.1187–1228. Available at: 

http://www.springerlink.com/index/10.1007/s00024-004-2666-3 [Accessed November 16, 2012].  
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Executive summary 

 

In statistical seismology, the properties of distributions of total seismic moment are important for 

constraining seismological models, such as the strain partitioning model [1]. The total seismic 

moment is the sum of the moments of individual seismic events, which in common with many 

other natural processes, are governed by a Pareto or “power law” distributions. In the case of 

seismicity, the exponent  appearing in the power-law relation is small enough for the variance of 

the distribution to be infinite, which renders standard statistical methods concerning sums of 

statistical variables, based on the central limit theorem, inapplicable.  Determinations of the 

properties of sums of moderate to large numbers of Pareto distributed variables with infinite 

variance have traditionally been addressed using intensive Monte-Carlo simulations. 

 

This report presents a novel method for accurate determination of the properties of such sums 

that is accurate, fast and easily implemented, and is applicable to Pareto-distributed variables for 

which the power law exponent  lies within the interval [0, 1]. It is based on shifting the original 

variables so that a non-zero density is obtained exclusively for non-negative values of the 

parameter and is identically zero elsewhere, a property that is shared by the sum of an arbitrary 

number of such variables. The technique involves applying the Laplace transform to the 

normalized sum (which is simply the product of the Laplace transforms of the densities of the 

individual variables, with a suitable scaling of the Laplace variable), and then inverting it 

numerically using the Gavers-Stefest algorithm. After validating the method using a number of 

test cases, it was applied to address the distribution of total seismic moment, and the quantiles 

computed for various numbers of seismic events were compared with those obtained in the 

literature using Monte-Carlo simulation. Excellent agreement was obtained.  

 

The speed, accuracy and ease of implementation of the method allows the development of 

accurate correlations for constraining statistical seismological models using, for example, the 

maximum likelihood method. It should also be of value in other natural processes governed by 

Pareto distributions with exponent less than unity. 


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1. Introduction 

 

The present work had its origins in the need to estimate total seismic moment released by seismic 

activity. The probability P(M →M + dM) that the seismic moment associated with an individual 

event lies in the range M to M + dM varies as 

  

 dMMfdMMMP )()(           (1.1) 

 

where the density f(M) takes the form 

 

 )1(

0

1

0 )/()( 
  MMMMf ; M ≥ M0        (1.2) 

 

where M0 is some lower cutoff, for example an observational threshold, and the exponent  lies 

between 0 and 1, and is believed to be close to 2/3 for many instances of natural and induced 

seismicity. The distribution F(M) corresponding to f(M) is 

 

 00 ;)/(1)( MMMMMF            (1.3) 

 

The total seismic moment released by a series of N seismic events is then given by 

 

 



N

k

kTOT MM
1

            (1.4) 

 

The most basic model for MTOT assumes that the Mk are independently and identically distributed 

with the distribution F(M). (Other, more sophisticated models, allow for the presence of 

aftershocks, but we do not consider this here). Determining the properties of the distribution of 

MTOT is complicated  by the fact that F(M) has infinite variance, so that methods based on the 

central limit theorem cannot be used. In fact, for  < 1, the mean of F(M) is also infinite. 

Zaliapin et al [2] consider various ways of approximating the quantiles of MTOT and validate them 

with extensive Monte-Carlo simulations. In this report, we work with shifted variables so that the 

region of non-vanishing density for the resulting variables, and their sums, maps onto the 

positive real line, permitting use of the Laplace transform. The Laplace transform, which is 

related to the characteristic function, has the property that the Laplace transform of the sum of 

variables is simply the product of the Laplace transforms of the individual variables. This is 

explained in Chapter 2, which also details some properties of the Laplace transform of a Pareto-

distributed variable. Chapter 3 describes the Gavers-Stehfest algorithm for numerical inversion of 

Laplace transforms, which is then applied to three test cases in Chapter 4. Chapter 5 then applies 

the technique to the same problem as addressed in [2], and compares the results with those 

presented in [2]. Finally, the report is rounded off with some conclusions and recommendations 

in Chapter 6.
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2. Sums of Shifted Pareto-Distributed Variables and Laplace 
Transformation  

 

We work with variables normalized with respect to the cut-off M0 and with sums normalized 

with respect to a power of N.  

 





N

k

kN xNX
1


            (2.1) 

 

where the xk are IID variables drawn from the Pareto distribution with density 

 1;)( )1(   xxxf   

 0 ; otherwise           (2.2) 

 

We show shortly that a natural choice for the exponent  is 

 

  /1              (2.3) 

 

The region over which the density of XN, which we denote by fN(XN) is non-zero varies with N, 

and corresponds to the portion of the real line greater than or equal to N(1 -  Instead we work 

with the shifted variables 

 

 1 kk xt              (2.4) 

and their normalized sums  

 



N

k

kN tNT
1


            (2.5) 

 

where the tk are IID variables drawn from the shifted  Pareto distribution with density 

 0;)1()( )1(   tttg   

 0 ; otherwise           (2.6) 

Clearly, 

 )1(  NTX NN            (2.7) 

Denoting the density of TN by gN(TN), we see that, for each value of N, gN can be non-zero 

anywhere along the non-negative real line. Taking the Laplace transform of gN we have 

 

  

   




  


N

k

kNNN tsNtgdttgdttgdtsg
10 0 0

2211 )exp()()...()()(~   

 


 
N

k

N

k NsgtsN
1

)/(~)exp(   (2.8) 
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where  

 )exp()1()(~

0

)1( sttdtsg  


           (2.9) 

Hence, as stated in the Introduction, the Laplace transform of the normalized sum of shifted 

Pareto-distributed variables is the product of the Laplace transforms of the individual variables, 

using a normalized Laplace space variable. This means that, given an efficient algorithm for 

inverting the Laplace transform, properties of the distribution of the sum of shifted Pareto-

distributed variables can be readily computed, and can easily be related back to the distribution of 

the sum of the original variables using Eq. (2.7). As explained in Chapters 3 and 4, the Gavers-

Stehfest algorithm fulfils this requirement. In the following section, we list some properties of 

)(~ sg , relating it to known special functions and developing direct and asymptotic expansions. 

We should point out that s is assumed to be real throughout this report. 

 

2.1 Summary of the Properties of the Laplace Transform of a Single Shifted Pareto-

Distributed Variable  

 

2.1.1 Expression in Terms of Known Special Functions 

 

Starting from Eq. (2.9), we transform back to the original variable x and write 

 )exp()exp()(~

1

)1( sxdxxssg  


           (2.10) 

Rearranging the right-hand side of Eq. (2.10) by integrating by parts, we obtain 

 

   )exp()exp()(~

1

1 sxdxxsesxxesg ss  


   

          

 )exp(1
1

sxdxxse s  


          (2.11) 

Making the transformation of variable u = sx in Eq. (2.11) we obtain 

 

 )exp(1)(~ uduusesg
s

s  


          (2.12) 

The right hand side of Eq. (2.12) can nbe expressed in terms of Gamma functions as follows: 

 

 ),1()1(1)(~ ssesg C

s            (2.13) 

 

where  (a) and C(a, s) denote the complete and complementary incomplete Gamma functions 

respectively, given by 

  )exp()(
0

1 uduua a  


           (2.14) 
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and )(/)exp(),( 1 auduusa
s

a

C  


          (2.15) 

2.1.2 Series Expansion 
 

Eq. (2.12) may readily be manipulated to obtain a series expansion for )(~ sg in powers of s. We 

write, making use of the definition in Eq. (2.14), 
 

 








 
 )exp()1(1)(~

0

uduusesg

s

s          (2.16) 

The remaining integral on the right-hand side of Eq. (2.16) may now be expanded out in a series 

by expanding the exponential and integrating term by term, yielding the result 

 

 )exp(
)1(!

)1(
)1(1)(~

0

1

s
nn

s
ssg

n

nn












 








        (2.17) 

We note that the series converges for all values of s, but that using it to evaluate )(~ sg will be 

inefficient if s is too great, as individual terms of the alternating series will become very large as n 

increases, before dwindling again, resulting in a rounding issue for fixed precision. 

 

2.1.3 Asymptotic Expansion 

 

An asymptotic expansion valid for large s may be obtained directly from Eq. (2.9) by making use 

of the expansion 

 

 
!)(

)(
)1()1(

1

1

11

n

tn
t

n

n

n




 








 

        (2.18) 

Substituting Eq. (2.18) back into Eq. (2.9) and performing term by term integration yields the 

following result: 

  

 











1

1

)(

)(
)1()(~

n
n

n

s

n
sg




          (2.19) 

The series on the right-hand side of Eq. (2.19) is to be interpreted in a formal sense only as it 

diverges for all values of s. None-the-less it can give useful estimates of )(~ sg for s large enough 

by truncating it at the smallest term.  
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2.2 The Choice of the Parameter  and the Asymptotic Stable Distributions   

 

Returning to Eq. (2.8), we substitute the series expansion given in Eq. (2.17) into the right-hand 

side to obtain 

 

 

N

n
n

nn

N Ns
Nnn

s

NN

s
sg 




















 







)/exp(
)1(!

)1(1
)1(1)(~

0

1







    (2.20) 

Recalling that  < 1, we see from the form of the right-hand side of Eq. (2.20) that if we choose 

 = 1/, taking the limit N → ∞ results in an expression that is independent of N. Specifically, 

we have 

 

 }exp{)(~)(~ ssgsg
N

Lt
N 


         (2.21) 

 

where  )1(               (2.22) 

 

The densities g∞(t) are known as the asymptotic stable distributions and are a set of 

distributions to which suitably normalized sums of long-tailed variables with infinite variance 

converge. In [2], the quantiles of the stable distributions, for which tabulations exist – see e.g. 

[3] – were considered as estimators of the corresponding quantiles for normalized finite sums 

of Pareto distributions. This work will be analysed in more detail in Chapter 5. Closed form 

expressions for g∞(t) exist in a few cases, as will be listed in the subsections below, where we 

restrict ourselves in this report to  < 1 (asymptotic stable distributions can also be defined for 

1 <  < 2, but the analysis is more complicated as the mean is finite and has to be subtracted 

off separately). Before proceeding to specific cases, we note that the parameter   just appears 

as a scale factor in the stable density g∞(t;), where now we have included   as a label 

explicitly in the density. Specifically 

 

 )1;/();( /1/1   tgtg 



            (2.23) 

 

with    )exp()1;(~)1;( 11 sLsgLtg  





         (2.24)

 

2.2.1 Asymptotic Stable Distribution for  = ½  

 

This may be obtained by inverting the Laplace transform using the identity 

 

 


 
0

2/1 )/exp()2exp( tbatdttab
a


; a > 0, b ≥ 0     (2.25) 

 

Differentiating Eq. (2.25) with respect to b we have 
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 


 
0

2/3 )/exp()2exp( tbatdttab
b


; a > 0, b > 0     (2.26) 

 

  

 

Rearranging Eq. (2.26) yields the result 

 

 


 
0

2/3 )/exp()2exp( tbatdtt
b

ab


       (2.27) 

Setting a = s and b = 2/4 means that the left-hand side of Eq. (2.27) may be identified as )(~ sg

and we deduce that 

 )}4/(exp{
2

)( 22/3 tttg 



 

          (2.28) 

2.2.2 Asymptotic Stable Distribution for  = ¼   

  

In this case we may use Eq. (2.26) again, replacing t by u, setting b = 2/4 as before, and this time 

setting a = s1/2. Then 

 

 )}4/(exp{
2

)exp( 22/1

0

2/34/1 uusduus 



  



       (2.29) 

Since )}4/(exp{
2

)][exp( 22/32/11 tut
u

usL  


       (2.30) 

we deduce that 

   )}4/()4/(exp{
4

)exp()( 22

0

2/12/34/11 utuduutsLtg 



  





    (2.31) 

Let vtu 3/23/1              (2.32)

          

Then })/1(exp{
4

)(
0

23/13/4

4
12/13/4

3/4






  vvtdvvttg 



      (2.33) 

2.2.3 Asymptotic Stable Distribution for  = 2/3  

 

In [2], an expression for g∞(t) is given in Eq. 15 of that work for  = 2/3 which is attributed to 

[4]. It gives an expression for g∞(t; 2) in terms of a special function, which, in the present 

notation, can be written as 

 

   )}27/(32{)}27/(16exp{
3

)2;( 2

6/1,2/1

2 tWt
t

tg 


      (2.31) 
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W,  (z) is a Whittaker function of the second kind [5] and has the integral representation [5] 

 )(/)1()(
2
1

0

2/12/12/12/

, 
  



 uuduezezW zuz     (2.32) 

 

For the specific values of  and  appearing in Eq. (2.31), we have 

 

 )(/)1()(
6
1

0

6/16/53/22/

6/1,2/1  


 uuduezezW zuz       (2.33) 

Substituting Eq. (2.33)  back into Eq. (2.31) then yields 

 

 )(/)1(
24

9
)2;(

6
1

0

6/16/56/7  




 uuduezetg zuz


      (2.34) 

 

with )27/(32 2tz              (2.35) 

 

Note that, as a check on Eq. (2.35), we have 

 

 )(/)1(
2

3
)2;(

6
16/16/5

0

)1(

0 0

3/1  





 



   uuduedzztdtg zu


     (2.36) 

 

Interchanging the order of integration on the right-hand side of Eq. (2.36), and performing the 

integration over z, we obtain 

  

  






 





0

2/16/5

06
1

3
2

)1(
)(2

)(3
)2;( uudutdtg


       (2.37) 

 

Since (see e.g. [7]), 

 

 


)()(

)(

)()(
)1( 3

1
6
1

2
1

3
1

6
1

2/16/5

0







 



 uudu         (2.38) 

 

we may write 

 

 )()(
2

3
)2;(

3
1

3
2

0







tdtg           (2.39) 

 

According to the reflection theorem for the Gamma function [8], 
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 )sin(/)1()(             (2.40) 

 

 

In the present case, we have 

 

 )2/3/()3/sin(/)3/2()3/1(          (2.41) 

 

Hence we establish the expected result that 

 

 


 
0

1)2;(tdtg             (2.42) 
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3. The Stehfest Algorithm for Numerical Laplace Transform Inversion 

 

The Gaver-Stehfest algorithm [9, 10] used in this report can be seen as a member of a class of 

algorithms in whichat any given time, the solution in real time is represented as a weighted finite 

linear combination of transform values at n specific nodes [11]. The n weights and nodes, w1, w2 ... 

wn and 1, 2 ... n respectively are in general complex numbers depending on n, but not 

necessarily on the specific form of the transform or the time t. More specifically, we write 

 

 )/(
~

)/()(
1

tftwtf k

n

k

k 


           (3.1) 

 

The form of (3.1) can be motivated by considering the exact expression for the inverse Laplace 

transform which is given by 

 

 






C

C

iRc

iRcC

sfstds
iR

Lt
tf )(

~
)exp(

2

1
)(


         (3.2) 

 

The constant c is chosen to lie to the right of all singularities of )(
~

sf and the integration contour 

is depicted in Figure 3.1. Making the change of variable 

 

 tzs /             (3.3) 

 

in Figure 3.1, and taking the limit RC → ∞, we obtain 

 






ic

ic

tzfzdz
it

tf )/(
~

)exp(
2

1
)(


         (3.4) 

 

Figure 3.1.  Contour AB of Eq. (3.2), Shown in the Complex Plane 
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c
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We now readily see how a numerical approximation of the integral on the right-hand side of Eq. 

(3.4) could resemble the right-hand side of Eq. (3.1).  

 

The Gaver-Stehfest algorithm uses the following choice for the weights wk and nodes k 

 

 nk
jk

j

j

j

j

m

m
w

mk

kj

mk

k ...2,1;
2

!

)1(
)2ln(

),min(

]2/)1[(


























 





; n = 2m; m ≥ 1   (3.5) 

 

and )2ln(kk              (3.6) 

 

 

 

Note that, in writing Eq. (3.5), n is even and is equal to 2m. One of the present authors became  

aware of the Gaver-Stehfest algorithm recently, while working on issues around extra-heavy oil 

mobilization by in-situ heating [12]. In fact, the reservoir engineering community started to use it 

shortly after the publication of Stehfest’s paper [10] in 1970 [13]. For many problems involving 

conductive thermal transport in systems with cylindrical symmetry, the form of temperature 

distributions in Laplace space is much simpler than the form of the corresponding distributions 

in real time, even when closed-form analytical solutions to the latter are known.  

 

The same conclusion is reached for analogous physical problems such as fluid transport in 

porous media. Accordingly, numerical inversion of the Laplace transformed solution for 

temperature, heat flux, pressure and fluid flux for this class of physical problems is often seen as 

preferable to numerical solution of real-time expressions for these quantities. In the problem 

treated in [12], which is a generalization of the classic problem of heating a formation using a 

heat source placed in a borehole, results obtained using Stehfest’s algorithm were shown to be 

extremely accurate. It will be showned in the next chapter that this accuracy is maintained for the 

class of problems treated in this report.  

 

The coefficients wk and k do not depend on the specific problem to be solved, or the value of t, 

and have been pre-computed for a large number of values of n. This fact makes the algorithm 

easy to implement numerically, including in a Microsoft Excel spreadsheet, which is what was 

done for many of the computations reported here. The expression for k given in Eq. (3.6) is 

straightforward, and we rewrite Eq. (3.1) as  

  

 }/)2{ln(
~~)/)2(ln()(

1

tkfwttf
n

k

k


          (3.7) 

 

where nk
jk

j

j

j

j

m

m
w

mk

kj

mk

k ...2,1;
2

!

)1(~
),min(

]2/)1[(


























 





; n = 2m; m ≥ 1   (3.8) 

 

It is readily observed that the kw~ are ratios of integers, and we write 
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

 kkk NMw /~              (3.9) 

 

where Mk and Nk are integers such that all common factors have been divided out. Tabulation of 

Mk, Nk and kw~ are shown in Table 3.I(a) for n = 8 & 10, and Table 3.I(b) for n = 12 & 14, which 

are the four values of n used in the remainder of this report. 

 

Table 3.I (a). Stehfest Algorithm Weights for n =8 and 10 

n = 8 n = 10 

k Mk Nk 
kw~  k Mk Nk 

kw~  

1 -1 3 -0.3333 1 1 12 0.0833 
2 145 3 48.3333 2 -385 12 -32.0833 
3 -906 1 -906.0000 3 1279 1 1279.0000 
4 16394 3 5464.6667 4 -46871 3 -15623.6667 
5 -43130 3 -14376.6667 5 505465 6 84244.1667 
6 18730 1 18730.0000 6 -473915 2 -236957.5000 
7 -35840 3 -11946.6667 7 1127735 3 375911.6667 
8 8960 3 2986.6667 8 -1020215 3 -340071.6667 
    9 328125 2 164062.5000 
    10 -65625 2 -32812.5000 

  

Inspecting Tables 3.I, we see that the weights kw~ are alternating and increase in absolute 

magnitude as n increases. Thus increasing the number of nodes will increase the accuracy of the 
Stehfest algorithm up to the point, assuming fixed precision, at which the computation becomes 
overwhelmed by the accumulation of rounding errors and the algorithm begins to diverge. This 
convergence and then divergence can be detected by performing computations for a variety of 
values of n. Rounding considerations also require the numerical computation of the Laplace 
transform at the node points ln(2)k/t to be as accurate as possible.   
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Table 3.I (b). Stehfest Algorithm Weights for n =12 and 14 

n = 12 n = 14 

k Mk Nk 
kw~  k Mk Nk 

kw~  

1 -1 60 -0.0167 1 1 360 0.0028 
2 961 60 16.0167 2 -461 72 -6.4028 
3 -1247 1 -1247.0000 3 18481 20 924.0500 
4 82663 3 27554.3333 4 -6227627 180 -34597.9278 
5 -7898425 30 -263280.8333 5 4862890 9 540321.1111 
6 13241387 10 1324138.7000 6 -131950391 30 -4398346.3667 
7 -116751166 30 -3891705.5333 7 189788326 9 21087591.7778 
8 21159859 3 7053286.3333 8 -5755042174 90 -63944913.0444 
9 -16010673 2 -8005336.5000 9 2551951591 20 127597579.5500 

10 11105661 2 5552830.5000 10 -2041646257 12 -170137188.0833 
11 -10777536 5 -2155507.2000 11 4509824011 30 150327467.0333 
12 1796256 5 359251.2000 12 -169184323 2 -84592161.5000 

    13 824366543 30 27478884.7667 
    14 -117766649 30 -3925554.9667 
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4. Application to Three Test Cases 

 

These three test cases are chosen both to be relevant to the problem that this report is concerned 

with, and also so that properties of the distributions can be independently determined in order to 

benchmark the Stehfest algorithm. 

 

4.1 Application to a Single Variable with a Shifted Pareto Distribution 

 

The first test case is the single variable with a shifted Pareto distribution, whose density is given 

in Eq. (2.6). The corresponding cumulative distribution function G(t) is given by 

 

 0;)1(1)(   tttG 
 

 0 ; otherwise           (4.1) 

 

Following the framework outlined in the previous chapter, we compute g(t) using the Stehfest 

algorithm, specifically using (cf  Eq. 3.7) 

 

 }/)2{ln(~~)/)2(ln()(
1

tkgwttg
n

k

k


          (4.2) 

where )(~ sg  is computed using the expressions derived in Section 2.1, specifically Eqs. (2.13), 

(2.17) and (2.19). Since  

 

 )(~)(
~ 1 sgssG              (4.3) 

 

The corresponding expression to (4.2) for G(t) is 

 

 }/)2{ln(~)/~()(
1

tkgkwtG
n

k

k


          (4.4) 

 

After performing the computations, the results of applying Eqs. (4.2) and (4.4) are compared 

with the exact results in Eqs. (2.6) and (4.1). A comparison of the results for  = 2/3 and using 

eight nodes is shown in Figure 4.1 (a), with the Stehfest algorithm being implemented at values of 

the shifted Pareto variable of t = 0.1, 0.2, 0.5, 1, 2, 5 & 10. The accuracy of the Stehfest 

algorithm, in terms of absolute relative error, is less than 0.2% for the density and less than 

0.05% for the cumulative distribution function. Individual values for the relative error are shown 

in Figure 4.1 (b)
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Figure 4.1.  (a) Comparison of Stehfest Algorithm Computations with Exact Results for Shifted Pareto 

Densities and Distributions with  = 2/3. (b) Relative Error of the Stehfest-8 Inversion, Filled 

and Open Symbols Denote the Sign of the Relative Error (+ve or –ve Respectively).  

  

4.2 Application to the Asymptotic Stable Densities 

 

4.2.1 Comparison with the FRACDEN Tabulation 

 

The FRACDEN database [3] contains a tabulation of the quantiles of the asymptotic stable 

densities g∞(t; ) for values of  from 0.5 up to unity (and also beyond, up to  = 2), in steps of 

0.02. The quantiles tabulated are 0.0001, 0.001, 0.005, 0.01, then in steps of 0.01 up to 0.99, and 

subsequently 0.995, 0.999 and 0.9999. They give the value of the parameter t at each quantile, as 

well as the density. The tabulations are for the specific value  = sec(/2), but can be scaled for 

any value of   using Eq. (2.23). The Stehfest computation was performed for  = 1, so that 
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 })/)2(ln(exp{~)/)2(ln()1;(
1

tkwttg
n

k

k  


        (4.5) 

and })/)2(ln(exp{)/~()1;(
1

tkkwtG
n

k

k 


         (4.6) 

 

The Stehfest algorithm was performed for  values of 0.5, 0.56, 0.62, 0.68, 0.74 and 0.8 and at 

quantiles of 10% (0.1), 35% (0.35), 50% (0.5, the median), 65% (0.65), 90% (0.9), 95% (0.95) and 

98% (0.98). 14 nodes were used, and Eq. (4.6) was used to tune the value of the parameter t to 

each quantile and then the density computed using Eq. (4.5). The computed values of t 

corresponding to each quantile are shown in Figure 4.2, while the relative errors of the Stehfest 

inversion are plotted in Figure 4.3.   





Figure 4.2.  Comparison of Stehfest Algorithm Values of the Parameter t Corresponding to Various Quantiles 

of the Asymptotic Stable Distribution G∞(t) with the FRACDEN [3] Tabulation. (a) 10%, 

35%, 50% & 65% Quantiles, (b) 90%, 95% and 98% Quantiles.
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



Figure 4.3.  Relative Error of Stehfest Algorithm Values of the Parameter t Corresponding to Various 

Quantiles of the Asymptotic Stable Distribution G∞(t) with the FRACDEN [3] Tabulation. (a) 

10%, 35%, 50% & 65% Quantiles, (b) 90%, 95% and 98% Quantiles. Symbols are Filled or 

Open According to Whether the Relative Error is Positive of Negative Respectively.

.



Similarly, the accuracy of the Stehfest computation for the value of the density g∞(t) at the above 

quantiles is shown in Figure 4.4, split up in the same way: Figure 4.4 (a) shows the 10%, 35%, 

50% & 65% quantiles while Figure 4.4 (b) shows the 90%, 95% and 98% quantiles. Figure 4.5 

displays the corresponding relative errors for the Stehfest computation. Inspection of Figure 4.5 

reveals that the accuracy of the Stehfest algorithm for computation of the stable distribution 

densities is generally greatest for low values of  and falls to give errors of several percent as  

approaches 0.8. This is because the density becomes increasingly strongly peaked as  increases. 

This is seen in Figure 4.6 which shows plots of the asymptotic stable density for  = 0.5, 0.66 

and 0.8.
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



Figure 4.4.  Comparison of the the Density  g∞(t) Computed using the Stehfest Algorithm at Various Quantiles 

of the Asymptotic Stable Distribution G∞(t) with the FRACDEN Tabulations [3]  (a) 10%, 

35%, 50% & 65% Quantiles. (b) 90%, 95% & 98% Quantiles. 
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



Figure 4.5.  Relative Error in the Density  g∞(t) Computed using the Stehfest Algorithm at Various Quantiles 

of the Asymptotic Stable Distribution G∞(t) (a) 10%, 35%, 50% & 65% Quantiles. (b) 90%, 

95% & 98% Quantiles. Filled and Open Symbols Denote the Sign of the Relative Error (+ve or 

–ve Respectively). 


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

Figure 4.6.  The asymptotic stable densities g∞(t) for  = 0.5, 0.66 and 0.8.

 

4.3 Application to Sums of Long-Tailed “Pareto-Like” Variables 

 

4.3.1  Introduction – A Long-Tailed Distribution with Infinite Variance and Mean for which Statistical 

Properties of the Sum of Arbitrary Numbers of Samples May be Directly Computed 

 

The final test case treated in this chapter is to sums of long-tailed variables having infinite 

variance and mean with a density chosen in such a way that the Stehfest algorithm can be directly 

validated by independent direct calculation. 

 

In this case t1, t2 … tN are IID random variable drawn from a distribution with density g(t), such 

that 

 
s

sg



1

1
)(~             (4.7) 

In this case we consider the normalized sum 
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2/             (4.8) 

and denote the density of 
S by )( SNg  . Taking the Laplace transform with respect to the 

normalized sum, we have (cf  Eq. 2.8): 
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NNs )/1(

1


            (4.9) 

Note that on taking the limit N → ∞ on the right-hand side of Eq. (4.9) we recover the 

asymptotic stable density of Eq. (2.21) with  = 1 and  = ½.  



In order to obtain an explicit expression for g(t), we first note that 

 })1(exp{)(~

0




 usdusg           (4.10) 

and then make use of the identity 
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       (4.11) 

with a = s and b = u2/3. This yields 

 })4/(exp{
2
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       (4.12) 

Substituting Eq. (4.9) back into Eq. (4.7) and changing the order of integration allows us to 

deduce that 
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The right-hand side of Eq. (4.10) may be expressed in terms of error functions. First we note that 

 



0

2

0

2

0

2 )}4/(exp{2)}4/(exp{)2{)}4/(exp{ tuuduttuutudutuuduu

               (4.14) 

The first term on the right-hand side of Eq. (4.14) may be integrated explicitly to obtain 

   ttuuttuutudu 2)}4/(exp{2)}4/(exp{)2{
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In the second term, we write 

 tttutuu  )4/()2()4/( 22          (4.16) 
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 (4.17) 

In writing Eq. (4.17) we have made use of the successive transformations 

 vtwtuv 2;2             (4.18) 

It follows that 

 )(erfc)exp(
1

)( tt
t

tg 


          (4.19) 

where erfc(x) denotes the complementary error function of x. A key observation, and the reason 

for the choice of Eq. (4.4), is that a closed-form expression, involving only a single integral, can 

also be obtained for )( SNg  . We make use of the result 
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and set a equal to N + √s to write Eq. (4.9) in the form 
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Substituting Eq. (4.12) into Eq. (4.21), and reversing the order of integration, we deduce that 
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Methods of evaluating the expression on the right-hand side of Eq. (4.22) are discussed in 

subsection 4.3.3. 

 

4.3.2 Comparison of g(t) with a Shifted Pareto Distribution with  = ½ 

 

In this subsection we briefly compare Eq. (4.19) with the shifted Pareto density of Eq. (2.6), 

where  = ½. Both densities have a tail falling off as 1/t 3/2 for large t, but Eq. (4.16) diverges as 

1/t ½ for small t while Eq. (2.6) tends to a constant (1/2). This is shown in Figure 4.7. The 

corresponding distributions are shown in Figure 4.8. The shifted Pareto distribution 

corresponding to the density given in Eq. (2.6) increases linearly with the parameter t at small 

values, while the distribution corresponding to Eq. (4.19) rises as t ½.



 

 



Figure 4.7.  Comparison of the Densities Given in Eqs. (4.16) and (2.6) (“Pareto-Like” and “Shifted Pareto” 

Respectively) 
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 

Figure 4.8.  Comparison of the Distributions Corresponding to the Densities Given in Eqs. (4.16) and (2.6) 

(“Pareto-Like” and “Shifted Pareto” Respectively) (a) Linear Scale, (b) Log-Log Plot. 

 

4.3.3 Evaluation of Eq. (4.22) 

 

Developing the right-hand side of Eq. (4.22) as an expansion in powers of 
1

S , we have 
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with 
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0 )/1(;1           (4.24) 

The series on the right-hand side of Eq. (4.22) is to be interpreted only in a formal sense as it 

diverges for all 
S . However, truncating it at the smallest term can give very accurate results, 

especially for large N. The corresponding direct series may be obtained by writing 
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We make the following change of variable: 
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Substituting Eq. (4.24) back into Eq. (4.21) we obtain 
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The sum on the right-hand side of Eq. (4.25) converges for all values of the parameter SN 2

but is subject to rounding error if this parameter is too large, as also discussed below Eq. (2.17).  
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Finally, Eq. (4.18) can be expressed in terms of error functions for all N, though the resulting 

expressions are only useful for computational purposes for N up to about 5. This is discussed in 

more detail in Appendix A.  

 

4.3.4 Validation of the Stehfest Algorithm using Eq. (4.21) 

 

Here we describe the comparison between applying Stehfest inversion to Eq. (4.6) versus direct 

computation using Eq. (4.21). The results shown in Figure 4.9 compare the distribution function 

calculated using the two methods for low, intermediate and large values of the parameter tS    

(0.1, 1 and 10 respectively). The results are displayed as functions of N up to N = 100. The 

corresponding relative errors in the Stehfest inversion, using a small number of nodes (8), is 

shown in Figure 4.10 and is seen to be within 0.1% of the direct computation for t = 1 and 10, 

and within about 1% for t = 0.1. 



Figure 4.9.  Comparison of Stehfest Inversion with Direct Computation for GN(t) as a Function of N for 

Small, Intermediate and Large Values of the Parameter t. 

 
Finally, the reduction of relative error on increasing the number of nodes used in the Stehfest 
inversion is illustrated for N = 10 in Figure 4.11.  
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

Figure 4.10.  Relative Errors in the Stehfest Inversion shown in Figure 4.9. As in Previous Figures Displaying 

the Relative Error, Filled and Open Symbols Denote a Positive or Negative Relative Error 

Respectively. 





Figure 4.11.  Illustration of the Decrease in Relative Errors in the Stehfest Inversion with Increasing Number of 

Nodes Used. 
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5. Quantiles of Pareto Sums – Comparison with Literature Results 

 

5.1 Introduction 

 

We saw in the previous chapter, in Section 4.3, that the Stehfest inversion algorithm yielded 

accurate results for the statistics of sums of long-tailed variables, with a distribution chosen so 

that these statistics could readily be independently computed. In this chapter, we return to Pareto 

sums, and compare the results of Stehfest inversion with extensive Monte-Carlo simulations 

described in [2]. The density and distribution of a sum of N samples drawn from a shifted Pareto 

distribution, and normalized by dividing by N  is given by 

 

  N

NN NsgLTg }/(~{)( 1            (5.1) 

 

and  N

NN NsgsLTG }/(~{)( 11           (5.2) 

 

where the Stehfest algorithm described in Chapter 3 is used to perform the inversion operation 

represented by the operator L-1[…] in Eqs. (5.1) and (5.2). 14 nodes were used for the Stehfest 

inversion. In order to obtain results for a specific quantile q, where 

 

 )( NN TGq              (5.3) 

 

the inversion was performed repeatedly for trial values of TN until the result matched the desired 

quantile. This was done using a spreadsheet, but of course could be more efficiently 

accomplished by writing a computer program. The parameter  = 1/ where  is the Pareto 

parameter (see e.g. Eq. 2.6), and three expressions were used to compute )(~ sg , given in Eqs. 

(2.13), (2.17) and (2.19), reproduced for convenience as Eqs. (5.4), (5.5) and (5.5) respectively
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The gamma function  appearing in Eqs. (5.4)-(5.6) and complementary incomplete gamma 

function C appearing in Eq. (5.4) are defined in Eqs.(2.14) and (2.15). The vast majority of results 

in the present report were obtained using Microsoft Excel, and either (5.5) or (5.6) were used to 

compute )(~ sg . Some results were obtained using the Python scientific language, which has C 

available as a special function, and in this case Eq. (5.4) was used. The shifted, normalized Pareto 

sum TN is converted back to the unshifted normalized sum XN using the relation (see Eq. 2.7) 
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 )1(  NTX NN
           

 (5.7) 

The corresponding unnormalized sum )(U

NX is then given by 

 

 
N

U

N XNX )(             (5.8) 

5.2 Comparison of Stehfest Algorithm Quantiles with Monte-Carlo Simulation Results 

Values of )(U

NX corresponding to certain quantiles were computed using Monte-Carlo simulation 

in [2] and some results were shown in Table 2 in [2] for N = 2, 5, 10, 20, 50 and 100, and for the 

2%, 50% (median) and 98% quantiles. We now compare these results with those obtained by 

applying the Stehfest algorithm for  = ½ and  = 2/3. Table 5.I (a) shows a side-by-side 

comparison for  = 1/2, while Table 5.I (b) displays the relative error of the Stehfest result 

assuming that the Monte-Carlo results are exact. Corresponding results for  = 2/3 are shown in 

Table 5.2.

 

Table 5.1 (a).  Comparison of Quantiles of Unnormalized Pareto Sums with  = 1/2 Computed Using 

Monte-Carlo Simulations and Using the Stehfest Inversion Algorithm. 

N 2% Quantile 50% Quantile 98% Quantile 

 MC [2] Stehfest MC [2] Stehfest MC [2] Stehfest 

2 2.50 2.50 14.94 14.93 10000.17 9999.00 

5 10.32 10.31 89.24 89.15 62436.65 62489.75 

10 34.92 34.94 351.03 350.96 249338.20 249953.59 

20 127.78 127.71 1392.25 1392.50 1004949.00 999799.50 

50 753.85 754.24 8654.80 8660.43 6237558.00 6248725.25 

100 2960.02 2959.21 34628.25 34584.72 25040967.00 24994769.23 

 

Table 5.1 (b).  Relative Error in Percent of the Stehfest Inversion Algorithm for Sums of N Pareto Variables 

with  = ½. 

N 2% Quantile 50% Quantile 98% Quantile 

    

2 0.00 -0.08 -0.01 

5 -0.07 -0.10 0.09 

10 0.05 -0.02 0.25 

20 -0.06 0.02 -0.51 

50 0.05 0.07 0.18 

100 -0.03 -0.13 -0.18 
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Table 5.II (a).  Comparison of Quantiles of Unnormalized Pareto Sums with  = 2/3 Computed Using 

Monte-Carlo Simulations and Using the Stehfest Inversion Algorithm. 

N 2% Quantile 50% Quantile 98% Quantile 

 MC [2] Stehfest MC [2] Stehfest MC [2] Stehfest 

2 2.36 2.36 8.63 8.63 1012.34 1011.19 

5 8.44 8.44 37.29 37.26 4029.96 4027.82 

10 24.14 24.13 111.27 111.15 11406.04 11425.91 

20 71.32 71.28 327.36 327.49 32489.67 32370.97 

50 302.14 302.00 1345.80 1344.88 128040.70 128106.54 

100 896.63 895.84 3882.27 3870.02 363796.40 362511.28 

 

Table 5.II (b).  Relative Error in Percent of the Stehfest Inversion Algorithm for Sums of N Pareto Variables 

with  = 2/3.

N 2% Quantile 50% Quantile 98% Quantile 

    

2 0.00 0.00 -0.11 

5 0.00 -0.08 -0.05 

10 -0.04 -0.11 0.17 

20 -0.06 0.04 -0.37 

50 -0.05 -0.07 0.05 

100 -0.09 -0.32 -0.35 

 

In fact, the Monte-Carlo results quoted in [2], and reproduced in Tables 5.1 and 5.2 are not accurate 

to the number of places declared, even with the 107 realisations used. This can be tested by 

comparing the quoted results for  = ½, N = 2 with the exact solution. Denoting 
)(

2

UX  by xS we 

have (see Appendix B) 

 

 SSS xxxF /121)(  ; xS ≥ 2         (5.9) 

 

This equation may readily be solved to obtain an expression for xS in terms of the quantile  

q = F(xS). The result is 

 

  12 2  Sx            (5.10) 
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with )1/(1 q             (5.11) 

 

For the q = 0.02 (2%) quantile, Eqs. (5.10) and (5.11) allow us to understand why xS is so close to 

10000. Eq (5.10) may be rewritten as 
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For q = 0.02,  is 50 so we see that the right-hand side of Eq. (5.12) is very close to 9999. This 

shows a 0.01% error in the Monte-Carlo result. For q = 0.5, xS = 8+4√3 which rounds off to 14.93 

rather than 14.94, so if the quoted result is not a typographical error, the error in the Monte-Carlo 

result is about 0.07%. xS for q = 0.02 is indeed 2.50 to two decimal places.  

 

The main purpose of [2] is to develop approximations for quantiles of Pareto sums and one of 

these is the quantile of the corresponding stable density. The quality of this approximation as N 

increases for  = 2/3 is shown in Figure 5.1, which is reproduced from [2] (it is Figure 4 (a) of that 

reference). The results of applying the Stehfest algorithm are superimposed as coloured symbols. 

The agreement is excellent, as could already be expected from the results in Table 5.II.  



Figure 5.1.   Curves Depict the Approximation Error of the Stable Density Quartile as a Quartile for a 

Finite Number of Summands N and are Taken from Figure 4a of [2]. Coloured Symbols 

Show the Results of Applying the Stehfest Algorithm. 

 

With regard to statistical error in the Monte-Carlo simulation approach, note that statistical 

fluctuations in the simulation results are clearly visible for the 98% quartile.  

Stehfest-14, 2% quantile

Stehfest-14, 50% quantile

Stehfest-14, 98% quantile
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5.3 Use of the Stehfest Algorithm to Develop Approximate Expressions for Pareto Sum 

Quantiles 

 

Since the Stehfest algorithm allows quantiles of the sum of an arbitrary number of samples of 

Pareto distributed variables to be computed with high accuracy, it can be used to investigate the 

approach of the suitably normalized sum to the asymptotic stable density parameter. This is done 

here for the 2%, 50% and 98% quantiles. For the power law exponent  = 2/3, the deviation of 

XN from X∞ is fitted as a polynomial in 1/N1/2. The rationale behind this is explained in the 

theoretical developments of the next section, which contains a general development valid for 

 0 <  < 1.  The fit is as follows: 

 

 2

4

2/3

22

2/1

1 //// NaNaNaNaXX N        (5.13) 

 

Figure 5.2 shows a plot of X∞  - XN, where XN is computed using the Stehfest algorithm, versus 

1/N1/2, together with polynomial fits in 1/N1/2 of the form shown in Eq. (5.1). This is done for 

the 2%, 50% and 98% quartiles.  

 
Figure 5.2.  Values of  X∞ -  XN for the 2%, 50% and 98% Quantiles versus 1/N1/2. Polynomial Fits in 

1/N1/2 of the form Given in Eq. (5.13) are also Shown 

 

Values of the coefficients in the polynomial fit are listed in Table 5.III. 
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Table 5.III  Values of the Coefficients of the Fitted Expression for X∞ - XN Given in Equation 5.13. 

Quantile Coefficient of Polynomial Expression in Eq. (5.13) 

 a1 a2 a3 a4 

2% 1.9166 -4.2267 3.8125 -1.4835 

50% 2.0473 -0.9149 0.0519 0.0603 

98% 2.0159 9.0316 -1.9539 0.1522 

 

Note that the coefficient a1 is close to 2 in all cases. We show theoretically in the next section that 

it is exactly 2, and also derive an expression for a2 in terms of the parameter X∞ and the stable 

dentity and its derivative evaluated at X∞. The accuracy of the fitted expression in Eq. (5.13), using 

the values of the coefficients displayed in Table 5.III is tabulated in Table 5.IV. The magnitude of 

the relative error is less than 0.4% in all cases. 

 

Table 5.IV. Accuracy of the Polynomial Expression in Eq. (5.13) in Predicting the Value of XN for 

Various Numbers of Samples and for the 2%, 50% and 98% Quantiles. Numbers Given 

are the Relative Error of the Expression in Percent. 

N 2% Quantile 50 % Quantile 98% Quantile 

1 2.67E-02 8.94E-04 3.37E-05 

2 -3.67E-01 -4.12E-03 -9.66E-05 

5 2.08E-01 1.49E-02 2.57E-04 

10 -2.98E-01 -1.42E-03 -9.59E-07 

20 -3.98E-01 -3.11E-02 -1.33E-05 

50 -1.12E-01 -5.86E-02 -2.64E-04 

100 1.17E-01 1.92E-01 -5.30E-04 

200 2.68E-01 -5.99E-02 -1.28E-03 

500 3.63E-01 -4.79E-02 -8.88E-04 

1000 3.87E-01 -3.80E-02 5.37E-03 

 

The approach used in this section can be used for a larger number of quantiles intermediate 

between 2% and 98% than just the median in order to develop an expression for the coefficients 

ak; k = 1, 2, 3, 4, in terms of the quantile q.  
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5.4 Deductions on Pareto Sum Quantiles from the Structure of the Laplace Transform 

 

In this section we deduce the behaviour of gN(t) and GN(t) for small and large values of the 

parameter t from the structure of the Laplace transform, and also use the properties of the 

transform to derive a formal asymptotic expansion for the sum of N Pareto-distributed variables 

XN for large numbers of samples N. 

 

5.3.1 Behaviour for Small Values of the Parameter 

 

 To establish these, we make use of the asymptotic (large s) expansion given in Eq. (5.6) in 

 N

N Nsgsg )/(~)(~  , where  = 1/ and invert term-by-term to obtain an expression for gN (t) 

for sufficiently small t. We have 
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Expanding out the braces on the right-hand side of Eq. (A.4) we obtain 
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Simplifying the second term in braces on the right-hand side of Eq. (5.14) we obtain 
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Inverting Eq. (5.15) yields the result 
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The terms in braces on the right-hand side of Eq. (5.16) become successively smaller for Nt << 

1. On defining hN(t) as 

 

 N

NN tNttgNth )/()()!1()(           (5.17) 



SR.15.10646 - 32 - Restricted 

 

 

The expansion in Eq. (A.7) may be written as 
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In order to compare Eq. (5.18) with the results of Stehfest inversion, hN(t) is plotted as a function 

of Nt in Figure 5.3, for  = 2/3 and N = 5. The quadratic approximation shown on the right-

hand side of Eq. (5.18) is accurate to within about 5% up to a value Nt = 0.3. Note that the 

accuracy of the Stehfest inversion algorithm is compromised at small values of the parameter, 

particularly when the computed density is small. This is shown in Figure 5.4, where the difference 

between the computations performed using Stehfest-12 and Stehfest-14 is shown, for N = 7, in 

which the computed densities are much lower than for N = 5. The Stehfest-14 computations and 

the quadratic approximation coincide well for the four data points shown.   

 
Figure 5.3.  Computation of hN(t) versus N t According to the Stehfest Algorithm and the Quadratic 

   Approximation in Eq. (5.18). Here  = 2/3 and N = 5. 
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Figure 5.4    Computation of hN(t) versus N t According to the Stehfest Algorithm and the Quadratic 

   Approximation in Eq. (4.18). Here  = 2/3 and N = 7.

 
 
Eq. (5.16) may readily be integrated to obtain the cumulative distribution function GN(t). The result 
is 

  











 2

2
1 )(

21

3)1(
)1()(

1
)1(1

!

)(
)( tN

N

N

N

N
tN

N

N
t

N

N
tG N

N

N


 




  





 ])[( 3tNO 
     (5.19) 

Since t < 0.3/N, Eq. (5.19) is only useful in estimating quantiles for which, rougly speaking. 
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For  = 2/3, and considering the 2% quantile (i.e. GN(t) = 0.02), its usefulness is limited to N = 1 

and 2. 
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5.3.2 Behaviour for Large Values of the Parameter 

 

In this case we may make use of the small-s expansion for )(~ sg which is given by 
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The form of the function [14-16] allows us to extend the formula 
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to the negative real line and formally evaluate the inverse term by term. Applying this procedure 

directly to Eq. (5.21), and comparing with the known answer, we make use of the results that 
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This is immediately recognized as the expansion in inverse powers of t of g(t) = /(1 + t)(1+).  

 

Before turning our attention to gN(t), we address the stable density g∞(t) = L-1[exp(-s)]. In this 

case, we need the result 
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The notation [n] in Eq. (5.26) means the integral part of n. Eqs. (5.26) are applicable to the 

general case of inverting exp(-s). For the specific case of  = 2/3, which is a simple fraction, it is 

preferable to group the expansion of exp(-s2/3) into three series, which allows us to apply Eqs. 

(5.23) and (5.24). This is done as follows 
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Application of Eqs. (5.23) and (5.24) then yield the result 
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Making use of the fact that 
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Eq. (5.29) may be rewritten as 
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The two series on the right-hand side of Eq. (5.31) are absolutely convergent for all values of t, 

but for values of t that are too large successive terms become very large before finally 

diminishing, so that a large number of terms are required to obtain convergence and the result is 

susceptible to roundoff errors. To test the convergence of Eq. (5.31), we use Eq. (2.23), which 

for  = 2 can be written as 
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and then apply Eq. (2.13), which relates g∞(t, 2) to a special function, the Whittaker function of 

the second kind. An online calculator for computing this function can be found in [17]. Figure 

5.5 shows the number of terms needed to achieve convergence to nine places of decimals in the 

series on the right-hand side of Eq. (5.31). The result agrees with the calculations performed 

using [17] to these nine places, except for the lowest value of t, 0.2, for which roundoff errors 

have degraded accuracy at the 9th place.  

 

 

Figure 5.5.  For The Two Series on the Right-Hand Side of Eq. (5.31) Each Summed to the Nth Term, the 

Value of N Required to Achieve Convergence to Nine Decimal Places, as a Function of the 

Parameter t. The Density g∞(t; 1) is Also Plotted. 

 

Note that Eq. (5.31) can still be used for values of t that are below the density mode, in other 

words its applicability is not restricted to the large parameter tail.  

 

The cumulative distribution function G∞(t; 1) corresponding to the density g∞(t; 1) may readily be 

computed using Eq. (5.31) by using the relation  
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The right-hand side of Eq. (5.31) can be substituted into Eq. (5.33) and integrated term-by-term. 

The result is 
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Provided that a sufficient number of terms is used in the computation, and Figure 5.4 provides a 

guideline to this, an accuracy of at least nine places of decimals should be obtainable using Eq. 

(5.34), as successive terms in the two series on the right-hand side of Eq. (5.34) do not become as 

large as the corresponding terms in Eq. (5.31) and ultimately diminish more rapidly. 

  

Moving on to gN(t), we have 
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With  = 2/3, the leading order non-integral powers of s appearing in the expansion on the right-

hand side of Eq. (5.35) are s2/3, s4/3, s5/3 giving rise to inverse powers of t of 1/t5/3, 1/t7/3 and t-8/3. 

In general we have 
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with the last summation not contributing to the inverse due to Eq. (5.24). We deduce that 
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Setting  = 2/3 and n = 0 and 1 in Eq. (5.23), we obtain 
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Similarly, setting  = 1/3 and n = 1 in Eq. (5.23), we obtain 
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Putting everything together, we may write 

     ][23
)(

)(
1)( 3/103/82/32/1

9
103/7

3
2

3
12

1

9
23/5

3
2  




 tOtNNtNttgN  (5.41) 

This obviously yields the correct result for N = 1. Proceeding in analogous fashion to Eq. (5.17) 

we define a function )()1( th A

N  such that 
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In Figure 5.6, implementation of the Stehfest algorithm is compared with Eq. (5.43) for t in the 

range 100 to 10000 and for N = 2, 5 and 10. A good comparison is obtained, but we see that, 

over this range of t, )()1( th A

N
differs by only a few percent from the first term on the right-hand 

side of Eq. (5.43), namely unity. A more sensitive comparison can be made by defining a second 

function )()2( th A

N
as follows: 
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It then follows that 
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Figure 5.7 compares the Stehfest implementation of )()2( th A

N
versus t-1/3 with the straight-line 

approximation on the right-hand side of Eq. (5.45). In this case the comparison is somewhat 

compromised by the accuracy of the Stehfest-14 approximation for large values of the parameter 

(Stehfest-12 is also shown in addition to Stehfest -14).  

  

 

 



Figure 5.6.  Comparison of )()1( th A

N versus t Computed by Implementing the Stehfest Algorithm with the 

Approximation on the Right-Hand Side of Eq. (5.41). 
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

Figure 5.7.  Comparison of )()2( th A

N versus t -1/3 Computed by Implementing the Stehfest Algorithm with the 

Linear Approximation on the Right-Hand Side of Eq. (5.43). 

 

Eq. (5.41) may be integrated to obtain an expression for the complementary cumulative 

distribution function. We have 
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For large quantiles, Eq. (5.41) is useful in determining how the parameter for a given quantile 

depends on N. For example, for GN(t) = q = 0.98 we have, to lowest order in the expansion on 

the right-hand side of Eq. (5.41), 

 

 
3/21  tq             (5.42) 

 

or 56.353225002.0)1( 2/32/3  qt        (5.43) 

 

Denoting the above approximation by t0 , a better approximation may be obtained by rearranging 

Eq. (5.41) as 
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Subsequently, Eq. (5.44) is rearranged as 
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An improved approximation t1 can be obtained using Eq. (5.45) by writing 
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Substituting Eq. (5.43) into Eq. (5.46), where we are denoting t in Eq. (5.43) by t0, we obtain 
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For q = 0.98, the values of t obtained using the approximation in Eq. (5.47) are compared in 

Table 5.V with those obtained using the Stehfest algorithm, and from Monte-Carlo simulations in 

[2]. 

Table 5.V.  Value of the Normalized Sum t of N Samples Drawn from a Shifted Pareto Distribution  with  

= 2/3 Corresponding to the 98% Quantile. 

N t: Eq. (5.47) t: Stehfest Algorithm t: Monte-Carlo [2]* 

1 352.55 352.55  

2 356.83 356.8 357.21 

5 359.9 359.81 360 

10 361.13 361 360.37 

20 361.84 361.69 363.02 

50 362.35 362.2 362.01 

100 362.57 362.41 363.7 

200 362.7 362.55  

500 362.81 362.65  

1000 362.86 362.68  

*The figures listed in this column are derived from those presented in the 5th column of Table 

5.II (a), which were published in [2], by subtracting N and dividing by N3/2. 

 

We note that the values for t obtained from the analytical expression in Eq. (5.41) are very close 

to those obtained using the Stehfest algorithm, with a relative difference between the two of less 

than 0.03%.  
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5.3.3 Large-N Asymptotic Expansions for Quantiles Corresponding to Fixed Values of the Parameter t 

 

In Sections 5.2 and 5.3 we considered how, for fixed quantiles, the value of the parameter t for a 

normalized sum of N Pareto-distributed variables approaches its stable-distribution value as N 

increases. We next use a different small-s expansion of Eq. (5.35) to show this behaviour for the 

quantiles for fixed values of the parameter t, and establish explicit expressions for coefficients in 

the large-N asymptotic expansion in terms of the stable density and its derivatives. We take the 

logarithm of Eq. (5.35) to obtain 
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Expanding Eq. (5.48) out in inverse powers of N we obtain 
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Re-exponentiating and expanding out the right-hand side of the resulting equation in inverse 

powers of N yields 

 

 
22

2
2

2
1

2
2

2
1

1

1 )1()1()1(1})1(exp{)(~



















 
N

s

N

s

N

s
ssg N  

  




  )33(2 ,,  NNNO     (5.50) 

                

The order of dominance of the terms on the right-hand side of Eq. (5.50) depends on the value 

of  = 1/.  For  < ½ the 1/N term dominates, while for ½ <  < 1 the 1/N -1  term is 

dominant. Inversion of Eq. (5.50) can be performed term-by-term. We have, for example 
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and ),()]exp([
2

2
21 


  tg

d

d
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           (5.53) 

 

We note, in writing Eqs. (5.51) and (5.52), that the value of the stable density g∞(t, ) as well as all 

its derivatives ia zero at t = 0. Eq. (2.23) may be used to relate derivatives of g∞(t, )  with respect 

to   to derivatives with respect to t. We have 
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Using Eqs. (5.51)-(5.53), together with Eq. (5.55), Eq. (5.50) may be inverted to obtain 
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with )1(               (5.57) 

 

Note that the notations g∞
/(t; ) and g∞

//(t; ) are shorthands for the first and second derivatives of 

g∞(t; ) with respect to time, respectively. Integrating Eq. (5.56) to obtain the cumulative 

distribution function yields 
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For the special case  = 2/3, the third and fourth terms on the right-hand side of Eq. (5.58) are 

of the same order, and we may write 
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Defining 
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we have 
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For fixed t, hN(t) should be a linear function of N-1/2 for N sufficiently large. Figure 5.8 shows a 

plot of hN(t) versus N-1/2 for several values of t , computed using the Stehfest algorithm with 14 

nodes (this was also used to compute the stable distribution as well as GN(t)) . The range of N 

used is 100 to 1000. Though the error in the Stehfest algorithm is magnified for hN (t), particularly 

for GN(t) close to G∞(t; ), values of a1(t) computed using Figure 5.8 are in good agreement with 

the theoretical expression given in Eq. (5.58).  A comparison is shown in Table 5.III. The results 

are with about 3% of each other. 

 

The expansion in Eq. (5.59) provides a way of addressing the dependence of the parameter on N 

for a fixed quartile q. Let this parameter be denoted by tN. We then have 
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Let us write 
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

Figure 5.8.  Plot of hN(t) Versus N-1/2for Various Values of the Parameter t. 
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Table 5.V.  Comparison of Values of a1(t) Computed from Figure 5.7 with the Theoretical Value in Eq. (5.58). 

Parameter t a1(t)  from  Figure 5.7 a1(t)  Equation 5.58 

4 0.2756 0.2775 

3 0.4201 0.4204 

2 0.6228 0.6234 

1.5 0.6238 0.6307 

1 0.303 0.2891 

  

Substituting Eq. (5.58) into Eq. (5.62) yields the result 
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Substituting Eq. (5.63) into Eq. (5.64). expanding the functions GN and a1 appropriately, and 

equating coefficients of N -1/2 and N -1, we obtain 
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In Figure 5.1, the error of approximating xN, where  

   

 2/1/1 Ntx NN              (5.72) 
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by x∞  = t∞ was computed using the Stehfest algorithm and plotted in order to compare with the 

results of Monte-Carlo simulations reported in [2].. A better approximation for N large, 

suggested by Eq. (5.71), is x∞ - 2/N1/2. This is shown in Figure 5.9. For the 50% and 98% 

quartiles the new approximation is a clear improvement on the old one for all values of N (see 

Figure 5.9b  & c). For the 2% quartile, the new approximation starts to improve on the old for N 

=20 or larger, with the degree of improvement increasing rapidly as N increases (see Figure 5.9a).  

 

 

 

Figure 5.9 Approximation Error of X∞ - 2/N1/2  versus X∞ as an Estimator for XN. (a) 2% Quartile, (b) 

50% Quartile 
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Figure 5.9 (Continued) Approximation Error of X∞ - 2/N1/2  versus X∞ as an Estimator for XN. (c) 98% 

Quartile. 
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6. Conclusions and Recommendations 

 

In this report a novel method for evaluating quantiles of sums of Pareto-distributed variables was 

investigated. For sufficiently small values of the exponent  characterizing these distributions, 

namely  ≤ 2, these distributions have “heavy” tails for large values of the parameter that yield 

variances that are infinite. This presents challenges for the determination of the distribution of 

sums of such variables, since the large body of statistical literature based on the central limit 

theorem is not applicable.  

 

The application area that motivated this work is the distribution of seismic moment, which is a 

Pareto distribution with a -value of around 2/3, corresponding to a b-value of unity in  the 

Gutenberg-Richter law for moment magnitude. The determination of statistical properties of 

total moment, corresponding to the sum of the moments of individual seismic events, is 

important for the development of seismological models such as the strain partitioning model [1]. 

These properties have traditionally been obtained using intensive Monte-Carlo simulations. 



The novel method described in this report is applicable to Pareto distributions with exponent  

in the range 0 <  < 1 (which have infinite mean as well as variance), and involves applying the 

Laplace transform to the density of a normalized sum of shifted variables (which is simply the 

product of the Laplace transforms of the densities of the individual variables, with a suitable 

scaling of the Laplace variable), and then inverting it numerically using the Gavers-Stefest 

algorithm. After validating the method using a number of test cases, it was applied to address the 

distribution of total seismic moment, and the quantiles computed for various numbers of seismic 

events were compared with those obtained in the literature using Monte-Carlo simulation. 

Excellent agreement was obtained. 

 

The main advantage of the new method is that it is fast and easily implementable, either in a 

spreadsheet or in a simple program. These features, together with its accuracy, mean that it can 

be used to map out correlations relating values of total seismic moments for a given number of 

events to corresponding quantiles. These in turn can be used to perform maximum likelihood 

estimates in statistical seismology. The method should also be applicable to other natural process 

governed by Pareto distributions. 
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Appendix A – Expression of Eq, (4.18) in Terms of Error Functions 

 

The integral  appearing on the right-hand side of Eq. (4.18) takes the form 
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Replacing n by n -1 in Eq. (A.1) and integrating by parts, we obtain 
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The integrated term vanishes, and we deduce that 
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Eq. (A.3) can be rearranged to read 
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Thus if we have expressions for I0 and I1, expressions for In, n = 2, 3, … may be obtained 

successively by using Eq. (A.4). Note that we may write 
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For I1(, ), we write 
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Substituting Eq. (A.5) into Eq. (A.6), we get 
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Example 

Eq. (4.10) may be written as 
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Thus we recover Eq. (4.16). 

Inspection of Eq. (4.18) shows that this can be written in the form  
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For small values of N, the procedure described in this appendix may be used to compute )
~

( SN tg

. Round-off errors render the procedure impractical for N greater than about 5. The is because 

))
~

4(,( 1

SN tNI decreases exponentially as N increases, yet it is computed from the differences of 

much larger quantities. 
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Appendix B – Distribution of The Sum of Two Pareto Variables With  = ½  

 

The probability density function for the sum xS of two samples drawn from the Pareto 

distribution with the density given in Eq. (2.2) takes the following form 

 )1(

1

1

1

)1(

11

2 )()( 
 




  xxxdxxf S

x

S

S

; xS ≥ 2 

 0 , otherwise           (B.1) 

Making the change of variable 
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yields the result 
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The corresponding distribution is 
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The expression on the right-hand side of Eq. (B.4) may be reduced to a single integration by 

integrating by parts: 
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The second integral is an incomplete Beta function and may be further transformed by setting 
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Hence, 

 

 


 
Sx

SS dxx

/12/1

0

)1(2

4
12

)()1(1          (B.8) 



SR.15.10646 - 55 - Restricted 

 

Setting  = 1/2 , we note that 
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which establishes the result in Eq. (5.9). 
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