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1 Background

In Samiei-Esfahany and Bähr (2015), we made six basic recommendations regarding the processing and exploitation of
geodetic subsidence data for geomechanical modelling. Two of the recommendations require revision. These two recom-
mendations read:

1. Use the proposed stochastic model of geodetic data in the form of full noise covariance matrices in geomechanical
modelling

2. Use double differences with multiple reference epochs and points as an optimal interface between geodetic data and
geomechanical modelling

In this document, we revise these two recommendations. Section 2 elaborates on a mistake in the methodology that had
been applied for estimation of the stochastic-model parameters regarding the first recommendation. Section 2 focuses on the
applicability of using double differences with multiple reference points/epochs as proposed in the second recommendation.

3



Study area
Levelling network
Gas field

Topografie: © Copyright Topografische Dienst Kadaster (1998-2016)

0 10 20 30 405
Kilometres

F

D

B

NL

Figure 1: Selected area for levelling data analysis. For estimation of the idelaisation noise parameters, the levelling surveys
outside the influence area of gas production have been selected.

2 Revising recommendation 1 from LTS 1 project

In Samiei-Esfahany and Bähr (2015), we proposed of using, in addition to the covariance matrix of measurement noise,
the covariance matrix of the so-called idealisation noise. An stochastic model has been derived for the idealisation noise
from levelling surveys outside the influence area of gas production where shallow deformation effects can be isolated from
deep source subsidence (see Figure 1). The spatio-temporal stochastic analysis of the selected area showed the presence of
both temporal non-stationary and spatially correlated idealisation noise components in the levelling dataset. We proposed
an spatio-temporal variogram model for the idealisation noise, and we estimated the model parameters. However, the
implementation of the estimation algorithm was not completely error-free. In the following, we clarify the problem, propose
a corrected estimation procedure, and re-estimate the model parameters.

2.1 Variogram modelling approach of LTS1

The variogram model that had been used in Samiei-Esfahany and Bähr (2015) was based on random processes with frac-
tional Brownian motions (See Yaglom (1962), and the Appendix A for more information on statistical properties of frac-
tional Brownian motions). The parameters of the proposed model had been estimated by fitting the model to the empirical
variograms computed from the levelling data in the selected/stable area. In levelling datasets, we are dealing with single dif-
ference (SD) height measurements. In order to exclude the height information and isolate the idealisation noise components,
we computed the empirical variograms from double difference (DD) measurements as

γ̂(∆t12, hij) =
1

2

(
(zt1t2ri − z

t1t2
rj )2

)
=

1

2

(
(zt1t2ij )2

)
, (1)

where:
zt1t2ri is the DD measurement as zt1t2ri = (zt2i − zt2r )− (zt1i − zt1r ), and
zt1t2rj is the DD measurement as zt1t2rj = (zt2j − zt2r )− (zt1j − zt1r ),
zt1t2ij is the DD measurement as zt1t2ij = (zt2j − z

t2
i )− (zt1j − z

t1
i ),

zt1i is the idealisation noise components of point i at time t1,
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∆t12 is the time difference between two epochs as ∆t12 = |t1 − t2|,
hij is spatial distance between points i and j, and
γ(∆t, h) is the empirical variogram as function of ∆t and h.

Assuming a fractional Brownian motion (Yaglom, 1962), the empirical variograms can be modeled as (see the proof in
Appendix A)

E{γ̂(∆t12, hij)} =
1

2
E{(zt1t2ij )2} =

1

2
D{zt1t2ij } =

(
σ2
s − σ2

se
−

hij
L

)
∆tps12 + σ2

t∆tpt12 (2)

where:
E{.} and D{.} are expectation and dispersion operators,
γ̂(∆t, h) is the empirical variogram as function of ∆t and h,
σ2
t is the variance of the temporal component,
pt is the power of the non-stationary signal associated with the temporal component,
σ2
s is the variance of spatio-temporal component,
L is the correlation length of the spatio-temporal component,
ps is the power of the non-stationary signal associated with the spatio-temporal component.

Having the observations γ̂ and the functional model of Eq.(2), the model parameters are estimated by nonlinear least squares
estimation.

2.2 A mistake in LTS1 implementation

Note that the empirical variograms of Eq. (1) are, in fact, the spatial variograms per double difference epochs t1t2. However,
in the modelling implementation of LTS1 project, the empirical cross-variograms had been also computed and included in
the estimation. Cross-variograms have been computed as:

γ̂ =
1

2

(
(zt1t2ri − z

t3t4
rj )2

)
, (3)

where:
zt1t2ri is the DD measurement as zt1t2ri = (zt2i − zt2r )− (zt1i − zt1r ), and
zt3t4rj is the DD measurement as zt3t4rj = (zt4j − zt4r )− (zt3j − zt3r ).

The problem is that the model of Eq.(2) is not valid for cross-variograms. Therefore, including the cross-variograms in the
modelling can result in wrong/biased estimates of the idealisation noise parameters.

The correct model for cross-variograms is (see the proof in Sec. A):

E{1

2
(zt1t2ri − z

t3t4
rj )2} =

1

2
D{zt1t2ri − z‘

t3t4
rj } (4)

= σ2
s∆tps12(1− e

−hri
L ) + σ2

s∆tps34(1− e
−hrj

L )− ...

...
1

2
σ2
s

(
∆tps14 + ∆tps23 −∆tps13 −∆tps24

)(
1 + e

−hij
L − e

−hri
L − e

−hrj
L

)
+ ...

...σ2
t∆tptt1t2 + σ2

s∆tptt3t4 −
1

2
σ2
t

(
∆tpt14 + ∆tpt23 −∆tpt13 −∆tpt24

)
.

Note that, when t3 = t1 and t4 = t2, the equation Eq.(4) reduces to the model of Eq.(2).
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Figure 2: Results of the the Monte-Carlo approach to estimate the five model parameters. Histogram and mutual scatter plot
of the estimates. Only 35 from 500 cases converged to a solution.

In order to have a correct estimate, either the cross-variograms should be excluded from the estimation, or the functional
model should be extended to the model of Eq.(4). The second option requires a fully new implementation of the estimation
process. Note that the model of Eq.(4) is not only a function of the two variables ∆t12 and hij (as in the Eq.(2)), but it is a
function of eleven variables (i.e., all the ∆t and h variables).

In the next section, we present the new results based on the same functional model of Eq.(2)), but, this time, we do not
include the emperical cross-variograms in the estimation.

2.3 Results of the new processing

For empirical variogram computation, the same approach as in Samiei-Esfahany and Bähr (2015) has been used. For
estimation of the five parameters of the noise model of Eq. (2), we used nonlinear weighted least squares, where weights
are assigned to empirical variograms based on the number of samples per bin. For solving the nonlinear least squares, the
iterative trust-region-reflective algorithm (as implemented in Matlab2014A) was used (Coleman and Li, 1996). In order to
obtain also some quality measure about the estimated parameters, we applied the estimation in a Monte-Carlo manner. That
is, instead of estimating the parameters only once, we estimated them 500 times. Each time, we added a new realization
of measurement noise to the original observations, followed by the computation of the experimental variograms and the
non-linear parameter estimation. The mean of the 500 solutions gives the final estimates. Empirical dispersion or standard
deviation of the 500 solutions provides a quality description. Note that, in nonlinear least squares, not all the 500 cases
converged to a solution. Therefore, for computation of empirical standard deviations, only the converged solutions were
used.

Applying the aforementioned methodology to estimate all the five parameters revealed that the information content of the
empirical variograms is not enough to determine all the five model parameters uniquely. Figure 2 shows the histogram
and mutual scatter plot of the Monte-Carlo sample estimates. In this analysis, only 35 from 500 cases converged to a
solution, indicating the poor performance of the modelling. The results are summarized in Table 1. The empirical standard
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Parameter σ2
s L ps σ2

t pt
[unit] [mm2/km/yps ] [m] [-] [mm2/ypt ] [-]

Estimates 0.277 4086 1.81 3.36 0.194
Empirical std 0.123 513 0.121 1.497 0.219
Relative error 45% 13% 7% 45% 113%

Table 1: Estimated parameters for spatio-temporal idealisation noise model. The results of the first analysis to estimate all
the five parameters.

deviation of some parameters is very large, resulting, for example, in 113 percent relative error for the parameter pt. Also,
the parameters σ2

s and σ2
t are not constrained very well and show relatively low precision. In order to get more precise and

reliable estimates, we need to introduce some constraints in the model.

We chose to put a constraint on the pt parameter, based on an external estimate of this parameter from another study
(van Leijen et al., 2017). In that study, the parameters of temporally correlated idealisation noise have been estimated
from levelling observations between very close benchmarks in Wadden sea region. Such close distances provide a unique
opportunity to isolate the temporally correlated idealisation noise regarding the benchmarks temporal instabilities. In van
Leijen et al. (2017), the parameter pt has been estimated as 1.86. We fixed this parameter in the model and repeated the
whole procedure again to estimate the remaining four parameters. The outcome is presented in Figure. 3 and Table 2. The
results show much better performance that the first analysis. All the parameters show a normal-shape histogram, and the
empirical standard deviations show better precision. Also, from 500 iterations, 465 times the algorithm converged to a
solution.

The fitted model to empirical variograms using the estimates of Table 2 is plotted in Figure 4. To get a feeling about the
spatio-temporal significance of the estimated idealisation noise model, we demonstrate standard deviations of the different
noise model components for levelling double differences in Figure 5. Based on the estimated parameters, standard deviations
of double difference measurement as a function of distance have been evaluated for time spans of 1, 5, 20, and 50 years. For
comparison, the noise models are evaluated with both revised parameters and the old/wrong parameters of LTS1. Note that
the measurement noise component here is just an arbitrary example. In practice, the contribution of levelling measurement
noise is adaptive and depends on the levelling network configuration.

We conclude that the revised values (as indicated in Table 2) are the final estimated parameters of the proposed idealisation
noise model.
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Figure 3: Results of the the Monte-Carlo approach to estimate only four model parameters. The parameter pt has been
constrained to be equal to 1.86. The plot shows the histograms and mutual scatter plot of the estimates. From 500 in total,
465 times the algorithm converged to a solution.

Parameter σ2
s L ps σ2

t pt
[unit] [mm2/km/yps ] [m] [-] [mm2/ypt ] [-]

Estimates 0.684 4069 1.51 0.026 1.86
Empirical std 0.32 600 0.17 0.009 (constrained)
Relative error 47% 15% 12% 34% -

Table 2: Estimated parameters for spatio-temporal idealisation noise model. The results of the second analysis to estimate
only four parameters. The parameter pt has been fixed 1.86 in the estimation.
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Figure 4: Spatial variogram profiles of levelling data over the signal-free area for different temporal lags (from 4.5 to 25.7
years). The X-axes are labelled by the spatial lag in [km], and the Y-axes display the variograms [mm2].

Figure 5: The standard deviation plot of different component of the proposed model evaluated for time spans of 1, 5, 20,
and 50 years: Note that the measurement noise component here is just an arbitrary example for a levelling network. In
practice the contribution of levelling measurement noise is invariant in time and adaptive to the levelling network config-
uration. For comparison, the noise models are evaluated with both revised parameters (top row) and the old and wrong
parameters of LTS1 (bottom row). The new estimated parameters are listed in Table 2, and the old parameters read:
σ2
s = 0.651 mm2/km/yps , L = 12646 m, ps=1.66, σ2

t = 0.148 mm2/ypt , pt = 1.68.
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Figure 6: Schematic visualisation of output levels for levelling (as proposed in LTS1); The concept is adaptable for other
techniques.

3 Revising recommendation 2 from LTS 1 project

In Samiei-Esfahany and Bähr (2015), the full recommendation regarding double differences:

”Use double differences with multiple reference epochs and points as an optimal interface between geodetic data and
geomechanical modelling”.

During LTS1, the use of multiple reference points and epochs for the double differences in a dataset (i.e., output level 5,see
Figure 6) was thought to be more optimal for two reasons:

1. Reduction of the sensitivity of estimates to covariances and thus reduction of the risk of biased estimates due to false
assumptions in the stochastic model,

2. If a single reference point and a single reference epoch are used, the double-differences are not zero mean, which is
assumed by the stochastic model.

Both reasons turned out to be invalid:

1. The reasoning was as follows: if covariances are neglected, then the level 5 (geomechanical) model estimate is closest
to the simulated true value. If a single reference point and epoch are used, a common noise component is included
in all double differences. This component is amplified by the multiple inclusions without considering stochastic
dependencies. In the case of multiple points and epochs, this noise is mitigated, because it is different for every
double difference. Neglecting covariances was thought to have a similar effect as using the full covariance matrix but
with a biased covariance model. This is not true. Neglecting covariances in level 2 yields a stochastic model that is
different from the model obtained by neglecting covariances in level 5. Transforming a (fully populated or diagonal)
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covariance matrix between level 2 and level 5, however, does not alter the stochastic model between these two levels.
Hence, the effect of a biased stochastic model cannot be mitigated by using level 5 instead of level 2.

2. If double differences are taken with respect to a single reference point and a single reference epoch, their mean is
generally not zero. (This may happen by chance though.) If the double differences are used to characterize their
stochastic properties in a variogram, this is a requirement. In that case, they are assumed to fully characterize the
underlying stochastic process. If the double differences are used for a confrontation with geomechanical model
predictions, however, they are only considered a realization of the stochastic process and not required to be zero
mean. Hence, geomechanical model estimates are not sensitive to the used output level.

It can be concluded that the choice of the output level does not make a difference as long as the full covariance matrix is
used.
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A Appendix: 2nd order statistics for double differences with fractional Brown-
ian motion

A.1 Fractional Brownian motion

For a random process (or noise component) with a fractional Brownian motion, the variance increases with time. The
variance/dispersion of such a process (hereafter denoted by z) at point i and time t1 is (Yaglom, 1962):

D{zt1i } = σ2tp1, (5)

where 0 < p < 2 is a power index. The p exponent describes the smoothness of the resultant motion, with a higher value
leading to a smoother motion.

Based on the definition of Eq.(5) and using the error propagation law, the covariance between zi at two different time t1 and
t2 is computed as (Yaglom, 1962):

C{zt1i , z
t2
i } =

1

2
σ2(tp1 + tp2 −∆tp12), (6)

where ∆t12 = |t1− t2|.

Extension to a spatially correlated signal
Assuming a random process with a fractional Brownian motion in the time domain, but also with correlation and 2nd order
stationarity in the space domain, the model of Eq.(6) can be extended to the covariance between z at t1 and t2, and at two
different locations i and j:

C{zt1i , z
t2
j } =

1

2
σ2(tp1 + tp2 −∆tp12)e−

hij
L , (7)

where hij is the distance between the two points, and L is the spatial correlation length (Note that there are, in general,
different models for explaining the spatially correlated signal. Here, as an example, we use the exponential covariance
model σ2e−hij/L).

Using Eqs. (6) and (7), the 2nd order statistics (i.e., variance and covariances) of the process z for different choices of i, j,
t1, and t2 can be evaluated. The Table 3 shows the overview of these 2nd order statistics for both spatially correlated and
spatially uncorrelated processes.

A.2 2nd order statistics for double differences (DDs)

Using the linear error propagation law, the statistics of fractional Brownian processes (Table. 3), can be propagated to DD
combinations.

For a general case, when we have two double differences zt1t2ij and zt3t4kl , the functional relationship between double differ-
ences and un-differenced z components is written as:
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Table 3: overview of these 2nd order statistics for both
spatially correlated and uncorrelated fractional Brownian processes.

Temporally non-stationary Temporally non-stationary
Statistics Symbol Spatially correlated Spatially no correlation

(2nd order statinonary) (L→ ε)

D{zt1i } q11ii σ2tp1 σ2tp1

C{zt1i , z
t1
j } q11ij σ2tp1e

−
hij
L 0

C{zt1i , z
t2
i } q12ii

1
2σ

2(tp1 + tp2 −∆tp12) 1
2σ

2(tp1 + tp2 −∆tp12)

C{zt1i , z
t2
j } q12ij

1
2σ

2(tp1 + tp2 −∆tp12)e−
hij
L 0

[
zt1t2ij

zt3t4kl

]
=

[
1 −1 −1 1 0 0 0 0
0 0 0 0 1 −1 −1 1

]
︸ ︷︷ ︸

S



zt1i
zt2i
zt1j
zt2j
zt3k
zt4k
zt3l
zt4l


︸ ︷︷ ︸

Z

. (8)

The dispersion of
[
zt1t2ij , zt3t4kl

]T
is computed by linear error propagation as:

D{
[
zt1t2ij

zt3t4kl

]
} =

[
D{zt1t2ij } C{zt1t2ij , zt3t4kl }

C{zt1t2ij , zt3t4kl } D{zt3t4kl }

]
= SQZS

T , (9)

where QZ is the covariance matrix of the vector Z:

QZ = D{Z} =



q11ii q12ii q11ij q12ij q13ik q14ik q13il q14il
q22ii q12ij q22ij q23ik q24ik q23il q24il

q11jj q12jj q13jk q14jk q13jl q14jl
q22jj q23jk q24jk q23jl q24jl

q33kk q34kk q33kl q34kl
sym q44kk q34kl q44kl

q33ll q34ll
q44ll


. (10)

By evaluation of Qz based on the equations in the Table. 3, and inserting Qz into Eq. (10), the 2nd order statistics of double
difference measurements are derived as:

D{zt1t2ij } = 2σ2∆tp12(1− e−
hij
L ), (11)

and
C{zt1t2ij , zt3t4kl } =

1

2
σ2
(

∆tp14 + ∆tp23 −∆tp13 −∆tp24

)(
e−

hik
L + e−

hjl
L − e−

hil
L − e−

hjk
L

)
. (12)
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Table 4: Overview of these 2nd order statistics of double differences
for spatially correlated fractional Brownian processes.

Description Symbol Statistics

Generic case C{zt1t2ij , zt3t4kl }
σ2

2

(
∆tp14 + ∆tp23 −∆tp13 −∆tp24

)(
e−

hik
L + e−

hjl
L − e−

hil
L − e−

hjk
L

)
same arc, same epochs C{zt1t2ij , zt1t2ij } = D{zt1t2ij } 2σ2∆tp12(1− e−

hij
L )

same arc, different epochs C{zt1t2ij , zt3t4ij } σ2
(

∆tp14 + ∆tp23 −∆tp13 −∆tp24

)
(1− e−

hij
L )

same arc, different epochs
same reference epoch (t0)

C{zt0t1ij , zt0t2ij } σ2
(

∆tp01 + ∆tp02 −∆tp12

)
(1− e−

hij
L )

same reference point (r) C{zt1t2ri , zt3t4rj }
σ2

2

(
∆tp14 + ∆tp23 −∆tp13 −∆tp24

)(
1 + e−

hij
L − e−

hri
L − e−

hrj
L

)
same reference point (r),
same reference epoch (t0)

C{zt0t1ri , zt0t2rj }
σ2

2

(
∆tp02 + ∆tp01 −∆tp12

)(
1 + e−

hij
L − e−

hri
L − e−

hrj
L

)

same reference point (r)
same epochs

C{zt1t2ri , zt1t2rj } σ2∆tp12

(
1 + e−

hij
L − e−

hri
L − e−

hrj
L

)

same epochs C{zt1t2ij , zt1t2kl } σ2∆tp12

(
e−

hik
L + e−

hjl
L − e−

hil
L − e−

hjk
L

)

Note that in case of a spatially uncorrelated signal (i.e., L→ ε), the exponential component equals zero and the the Eq. (11)
reduces to:

D{zt1t2ij } = 2σ2∆tp12, (13)

and the covariance components of Eq. (12) will be zero in a general case. Note that, if h 6= 0 the exponential components
e−h/ε = 0, but when h = 0, then we get e−h/ε = 1. Therefore, for spatially uncorrelated signals, the covariance between
DD combinations are zero only when the two DD measurements share no common benchmark. In other cases, there is a
correlation induced by the common benchmark. For example, if the two DDs share the same reference point, then i = k
and the covariance of Eq. (12) for spatially uncorrelated components (i.e., when L = ε) is

C{zt1t2ij , zt3t4il } =
1

2
σ2
(

∆tp14 + ∆tp23 −∆tp13 −∆tp24

)(
1 + 0− 0− 0

)
=

1

2
σ2
(

∆tp14 + ∆tp23 −∆tp13 −∆tp24

)
. (14)

Especial cases of Eq. (12) for different choices of i, j, k, l, t1, t2, t3, and t4 have been given in the tables 4 and 5 for spatially
correlated and spatially uncorrelated signals, receptively.

A.3 Variogram model for double differences

Variogram between two double differences zt1t2ij and zt3t4kl is defined as (Wackernagel, 1995; Chilès and Delfiner, 1999)

γ{zt1t2ij , zt3t4kl } =
1

2
E{
(
zt1t2ij − z

t3t4
kl

)2} =
1

2
D{zt1t2ij − z

t3t4
kl }. (15)
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Table 5: Overview of these 2nd order statistics of double differences
for spatially uncorrelated fractional Brownian processes.

Description Symbol Statistics

Generic case C{zt1t2ij , zt3t4kl } 0

same arc, same epochs C{zt1t2ij , zt1t2ij } = D{zt1t2ij } 2σ2∆tp12

same arc, different epochs C{zt1t2ij , zt3t4ij } σ2
(

∆tp14 + ∆tp23 −∆tp13 −∆tp24

)
same arc, different epochs
same reference epoch (t0)

C{zt0t1ij , zt0t2ij } σ2
(

∆tp01 + ∆tp02 −∆tp12

)

same reference point (r) C{zt1t2ri , zt3t4rj }
σ2

2

(
∆tp14 + ∆tp23 −∆tp13 −∆tp24

)
same reference point (r),
same reference epoch (t0)

C{zt0t1ri , zt0t2rj }
σ2

2

(
∆tp02 + ∆tp01 −∆tp12

)

same reference point (r)
same epochs

C{zt1t2ri , zt1t2rj } σ2∆tp12

same epochs C{zt1t2ij , zt1t2kl } 0

To derive an analytical model for variograms between double differences, the dispersion D{zt1t2ij − z
t3t4
kl } should be evalu-

ates. Based on the linear error propagation law we have:

D{zt1t2ij − z
t3t4
kl } =

[
1 −1

] [ D{zt1t2ij } C{zt1t2ij , zt3t4kl }
C{zt1t2ij , zt3t4kl } D{zt3t4kl }

] [
1
−1

]
. (16)

Inserting the Eq. (16) into Eq. (15) gives the variogram function as:

γ{zt1t2ij , zt3t4kl } =
1

2

(
D{zt1t2ij }+ D{zt3t4kl } − 2C{zt1t2ij , zt3t4kl }

)
(17)

The analytical expression of D{zt1t2ij }, D{zt3t4kl }, and C{zt1t2ij , zt3t4kl } is given by Eqs. 11 and (12). By inserting them into
Eq. (17), we derive the generic analytical expression for the variogram as

γ{zt1t2ij , zt3t4kl } = σ2∆tp12(1− e−
hij
L ) + σ2∆tp34(1− e−

hkl
L )− ... (18)

...
σ2

2

(
∆tp14 + ∆tp23 −∆tp13 −∆tp24

)(
e−

hik
L + e−

hjl
L − e−

hil
L − e−

hjk
L

)
.

Especial cases of Eq.(18) for different choices of i, j, k, l, t1, t2, t3, and t4 have been given in the tables 6 and Table 7 for
spatially correlated and uncorrelated signals, receptively.
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Table 6: Analytical variogram model for double differences
for spatially correlated fractional Brownian processes.

Description Symbol Variogram model

Generic case γ{zt1t2ij , zt3t4kl } σ2∆tp12(1− e−
hij
L ) + σ2∆tp34(1− e−

hkl
L )...

...− σ2

2

(
∆tp14 + ∆tp23 −∆tp13 −∆tp24

)(
e−

hik
L + e−

hjl
L − e−

hil
L − e−

hjk
L

)
same arc, same epochs γ{zt1t2ij , zt1t2ij } 0

same arc, different epochs γ{zt1t2ij , zt3t4ij } σ2
(

∆tp12 + ∆tp34 −∆tp14 −∆tp23 + ∆tp13 + ∆tp24

)
(1− e−

hij
L )

same arc, different epochs
same reference epoch (t0)

γ{zt0t1ij , zt0t2ij } σ2∆tp12(1− e−
hij
L )

same reference point (r) γ{zt1t2ri , zt3t4rj } σ2∆tp12(1− e−
hri
L ) + σ2∆tp34(1− e−

hrj
L )...

− σ2

2

(
∆tp14 + ∆tp23 −∆tp13 −∆tp24

)(
1 + e−

hij
L − e−

hri
L − e−

hrj
L

)
same reference point (r),
same reference epoch (t0)

γ{zt0t1ri , zt0t2rj } σ2∆tp01(1− e−
hri
L ) + σ2∆tp02(1− e−

hrj
L )...

− σ2

2

(
∆tp02 + ∆tp01 −∆tp12

)(
1 + e−

hij
L − e−

hri
L − e−

hrj
L

)
same reference point (r)
same epochs

γ{zt1t2ri , zt1t2rj } σ2∆tp12(1− e−
hij
L )

same epochs γ{zt1t2ij , zt1t2kl } σ2∆tp12

(
2− e−

hij
L − e−

hkl
L − e−

hik
L − e−

hjl
L + e−

hil
L + e−

hjk
L

)

Table 7: Analytical variogram model for double differences
for spatially uncorrelated fractional Brownian processes.

Description Symbol Variogram model

Generic case γ{zt1t2ij , zt3t4kl } σ2∆tp12 + σ2∆tp34

same arc, same epochs γ{zt1t2ij , zt1t2ij } 0

same arc, different epochs γ{zt1t2ij , zt3t4ij } σ2
(

∆tp12 + ∆tp34 −∆tp14 −∆tp23 + ∆tp13 + ∆tp24

)
same arc, different epochs
same reference epoch (t0)

γ{zt0t1ij , zt0t2ij } σ2∆tp12

same reference point (r) γ{zt1t2ri , zt3t4rj } σ2∆tp12 + σ2∆tp34 −
σ2

2

(
∆tp14 + ∆tp23 −∆tp13 −∆tp24

)
same reference point (r),
same reference epoch (t0)

γ{zt0t1ri , zt0t2rj }
σ2

2

(
∆tp02 + ∆tp01 −∆tp12

)

same reference point (r)
same epochs

γ{zt1t2ri , zt1t2rj } σ2∆tp12

same epochs γ{zt1t2ij , zt1t2kl } 2σ2∆tp12
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