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1 Introduction 

1.1 Study background 

2014 Instemmingsbesluit 

Following Winningsplan 2013, the Minister of Economic Affairs decided to restrict production from 

the five production clusters in the Loppersum area to 3 Bcm/year.   In subsequent decisions by the 

Minister and upon appeal at the Raad van State, this volume was further reduced until these cluster 

were fully closed-in. In effect this was the first intervention and optimisation of the distribution of the 

gas production in relation to seismicity over the Groningen field.    

Winningsplan 2016 

In the first quarter of 2016, the first systematic approach to optimisation of the distribution of the 

production from the clusters in the Groningen field to reduce seismicity was carried out.  This was 

reported in the Technical Addendum to the Winningsplan submitted on 1/4/2016, Reference [1].  This 

initial optimisation was based both on mathematical optimisation and on a practical understanding of 

the pressure response of the reservoir to the distribution of the production and the impact on the 

resulting seismicity.  The impact of the alternative distribution of production on the seismicity and risk 

was checked by performing dedicated hazard and risk assessments.   

2017 Production Optimisation study 

In Article 3.2 of the 30/9/2016 Instemmingsbesluit for NAM’s Winningsplan 2016, Reference [2], and 

of the subsequent 24/5/2017 Wijzigingsbesluit, Reference [3], NAM was tasked by the Minister of 

Economic Affairs to investigate whether an alternative distribution of production from the Groningen 

field could reduce the seismic hazard or risk. NAM embarked on a detailed optimisation study, and 

issued a final report to SodM on 27/11/2017, Reference [4]. 

 
Fragment from the 30/9/2016 Instemmingsbesluit Article 3.2 

SodM approval and request for update 

In a letter to NAM on 30/11/2017, Reference [5], SodM informed NAM that the optimisation study 

had been executed to the satisfaction of the Inspecteur Generaal der Mijnen and could be issued to 

the Minister. SodM described the scientific quality of this study as “state-of-the-art”. However, SodM 

did not yet make a judgement on the applicability of the study and referred to its earlier reservations 

as stated in its reaction to the “Plan van Aanpak”, Reference [6], that the limitations of the underlying 

seismological model will affect the optimisation of production. 

On 20/2/2018, SodM informed NAM by letter that the optimised production distribution could not be 

implemented in the field, because the underlying seismological model was deemed inadequate, 
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Reference [7]. SodM requested for an update of the study within 6 months, using the V5 update of 

the seismological model which had meanwhile become available. This V5 update presented a better 

areal match of the historic earthquakes (as compared to the previously used V4 seismological model). 

Basispad Kabinet 

On 29/3/2018 the Minister of Economic Affairs sent a letter to Parliament, Reference [8], announcing 

the ambition of the cabinet to reduce the production from the Groningen field as soon as possible, 

leading to cessation of production around 2030. The letter contained a scenario of annual production 

volumes for the period 2018-2031 labelled “Basispad Kabinet”. 

Following these developments for the Groningen production outlook, NAM agreed with SodM to base 

the requested update of the production optimisation study on the new production scenario “Basispad 

Kabinet”.  

1.2 Study objective 

The Groningen field has 22 production locations (20 clusters and two satellites) by which gas can be 

produced from the field (Figure 1-1). All wells are typically drilled vertically, and hence extract gas 

from a small area directly underneath the cluster area.  The only exception is the deviated well, EKL-

13, that is producing gas from the reservoir at some distance from the other (vertical) wells of the 

Eemskanaal cluster.  All these clusters can be controlled relatively independently within their 

respective operational constraints. This offers the opportunity to make choices in how production is 

spatially distributed over the field. It can be observed from Figure 1-1 that the historical earthquakes 

display some degree of spatial clustering as well.  

In line with Article 3.2 of the Instemmingsbesluit, this study aims to establish the optimal distribution 

of production across the various production clusters to minimise seismic hazard or risk, for a given 

total field offtake profile. 
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Production cluster 
 

 

Earthquakes (M≥1.5) 
1/1/1995 to 27/8/2018 

 

 

Figure 1-1  Hazard (earthquakes) and controls (production clusters) 

1.3 Report structure 

The structure of the study is described in chapter 2, and the hazard and risk (HRA) model in chapter 3. 

In chapter 4 the optimisation is discussed based on simplified assumptions for the production clusters. 

In this way the theoretical optima are established for different objective functions.  

Chapter 5 describes the fitting of a proxy (Random Forest) model to the optimisation results, allowing 

for further understanding of the behaviour of the HRA model (in addition to the optimal production 

fractions).   

Chapter 6 described how subsequently the theoretical optimum production distributions are rerun 

using the subsurface model coupled with a high-fidelity surface network model which reflects the 

operation limitations of the surface facilities, allowing for more realistic implementation of production 

distributions. These “operationalised” production optimisations are evaluated using the full logic-tree 

in order to establish the expected numbers of buildings that exceed the Meijdam norm. 
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2 Study setup 

2.1 Production induced seismicity cause and effect chain 

Production induced seismicity and its effects at surface are modelled according to the following cause 

and effect chain (Reference [9]): 

���� Production from clusters 

  ���� Pressure depletion 

   ���� Compaction 

    ���� Event Rate (Earthquakes) 

     ���� Hazard 

      ���� Risk  

2.2 Model implementation 

In the Hazard and Risk Assessments issued by NAM, the first step in the cause and effect chain up to 

“Pressure depletion” are calculated in the dynamic reservoir simulator (Mores, part of the Dynamo 

tool suite1), as described in Reference [10]. The subsequent calculation steps to predict earthquakes, 

hazard, and/or risk, are calculated in the seismic Hazard and Risk Assessment (HRA) model as 

described in References [11] and [12]. 

This model representation of the cause and effect chain can be implemented within a control loop, 

which allows for a model-driven optimisation. A high-level overview of the calculation steps is 

depicted in Figure 2-1 : 

1) Optimisation algorithms, which are part of the Dynamo tool-suite, are driving the process. The 

total required production from the field is distributed across the production clusters (model 

controls) according to an initial distribution, which is issued from the optimiser to the Mores 

reservoir simulator. 

2) In Mores, the response of the reservoir to the imposed distribution of gas offtake is calculated 

in terms of reservoir pressures, and provided to the HRA model. 

3) Within the HRA model the rock compaction due to the pressure depletion is calculated. As a 

function of the compaction in time (yearly steps), spatial estimates are generated for events, 

hazard and risk.  

4) This output is subsequently imported back into Dynamo and (a selection thereof is) used 

during the optimisation. 

 

                                                            
1 Shell proprietary software 
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Figure 2-1  Modelling workflow 

2.3 Model controls 

As described in section 1.2, in principle each one of the 22 production cluster locations across the 

Groningen field can be controlled relatively independently within their respective operational 

constraints, and hence act as an independent model control for the optimisation. However, to keep 

the calculation times of the modelling effort within somewhat reasonable bounds, a certain degree of 

“lumping” was done of the individual production clusters to reduce the number of model controls. 

This lumping was done to ensure compatibility of this study with the June 2018 Addendum to the 

Hazard and Risk Assessment – November 2017, Reference [13], that was requested by the Ministry of 

Economic Affairs. In the request, Reference [14], NAM was asked to comply with the advice by SodM 

following the Zeerijp earthquake, Reference [15]. The SodM advice specified amended production 

regions2 for which production fluctuations should be limited. To both accommodate this request, and 

the request to optimise the production distribution, NAM implemented a production cluster start-up 

list in its modelling effort, Table 2-1.  

  

                                                            
2 The “East” region as stipulated in the Instemmingsbesluit, Reference [2], was broken up into 3: Bierum, East-

Central (Amsweer, Tjuchem, Schaapbulten, Siddeburen, Oudeweg) and South-East (Zuiderpolder, 

Scheemderzwaag and De Eeker). 
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Start-up Priority Region Clusters 

1 North BIR (constant rate) 

2 Eemskanaal EKL (constant rate, winter only) 

3 South-East  ZPD/SZW/EKR 

4 East-Central (1)  OWG/SCB 

5 South-West (1)  ZVN/SPI 

6 East-Central (2) AMR/TJM/SDB 

7 South-West (2) SAP/TUS 

8 South-West (3)  KPD/SLO/FRB 
Table 2-1  Production start-up list. Starting from the top of this list, groups of clusters are sequentially opened-up by the 

surface network model until the total required production can be achieved. Source: Reference [13] 

These same regions are used for this report into the optimisation of production distribution. This 

implementation means a slight update with respect to the 2017 study (depicted in Figure 2-2):  

• The former [East] and [Siddeburen] controls were redefined to improve the resolution 

around Appingedam.  

• The former [South-Central] control was split into 2 regions to better honour geology. 

• Production clusters ‘t Zandt and Leermens were previously (2017) dedicated controls, but 

these are now lumped into a single control [ZND_LRM]. 

 
Figure 2-2 Model controls for this study update (2018 Production Optimisation) versus the 2017 Production 

Optimisation. The production clusters in the right-hand panel are colour-coded in line with the Ministerial 

regions as defined in Reference [14]. 
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2.4 Objective functions 

2.4.1 Practicability of a risk-based optimisation 

From previous experience, it is known that a typical optimisation comprises about 250 individual 

simulations over 15 outer iterations. Although the dependence of risk on hazard is well understood 

and modelled, it cannot be distilled into a simple correlation without sacrificing accuracy and 

applicability. On the other hand, the risk logic-tree is considerably larger than the hazard one (as 

described in section 3.4.1, the risk logic-tree has 216 branches compared to 24 in the hazard one), and 

each risk simulation requires significantly more time to run (roughly 50% - 100% increase in run-time). 

Taken together, these observations render it impossible to perform a risk-based optimisation within 

a reasonable time-frame while maintaining a sufficient level of accuracy. For this reason, a hazard-

based optimisation approach (with a risk-assessment of the optimised distribution) was followed. The 

HRA model calculates several hazard-based “HRA metrics”, which, separately or together, can be 

assigned as the objective function for the optimiser.  

The objective functions used in this study are based on: 

• Nuisance: Event Count 

• Hazard: Maximum PGA (Return period of 475 y)3, Maximum PGV (Return period of 475 y) 4  

• Risk: Population weighted PGV5  

2.4.2 Event Count 

The Event Count is a cumulative over the entire field, and, as such, represents the impact of a certain 

production scenario on the entire field.  

2.4.3 Maximum Peak Ground Acceleration (maxPGA) and Peak Ground Velocity 

(maxPGV) 

The Hazard objectives (maxPGA and maxPGV) are established as the highest recorded value on the 

hazard map associated with a certain production scenario. As such, these do not provide a response 

across the entire system, other than that no other place in the field is modelled to experience a hazard 

that is higher than this value.  Focus of the optimisation based on these objective functions is the high 

seismic region around Loppersum.   

2.4.4 Population weighted PGV (pwPGV) 

The population-weighted PGV was chosen as a proxy for total population risk.  This is based on 

analogy with the PAGER effort in USGS6, which provides a rapid assessment of the impact of 

earthquakes (in terms of fatalities and economic loss) and estimates the population exposed to 

different levels of shaking.  

In the PAGER method, the Modified Mercalli Intensity scale (MMI) is used to represent ground shaking 

combining both observations and measurements. Where measurements are available PGA and PGV 

are converted to MMI.  The paper by Wald et al, Reference [16], shows that PGV correlates with a 

wider range of macro-seismic intensities, whereas PGA saturates at higher levels of MMI.  Once the 

                                                            
3 PGA hazard is generated for the 475-year return period for all surface locations.  
4 PGV hazard is generated for the 475-year return period for all surface locations.  
5 A weighted average PGV is calculated using the population at each location as the weight 
6 https://earthquake.usgs.gov/data/pager 
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population within different bands of shaking has been calculated, empirical vulnerability functions are 

used to estimate the losses, Reference [17]. Furthermore, the paper by Allen et al, Reference [18], 

states that earthquake mortality appears to be systematically linked to the population exposed to 

severe ground shaking (MMI VIII+, which would be PGV values above 0.30 m/s according to Wald et 

al. (1999)). The population weighted PGV again reflects a response of the entire system, it is calculated 

by multiplying each cell of the hazard map with the population in that location.  

The population density is given in Figure 2-3. 

 
Figure 2-3 Population map in relation to the Groningen gas field (log scale) 

2.5 Boundary conditions 

The following boundary conditions were imposed for the optimisation: 

2.5.1 Production profile 

The total field production as used for this study was taken as per the production profile “Basispad 

Kabinet” for average temperature, Figure 2-4, which was received by NAM from the Ministry of 

Economic Affairs on 2/5/2018, Reference [14]. Note that this production profile is slightly different 

compared to the 29/3/2018 profile as mentioned in section 1.1, Reference [8].   

The optimisation window is for this production scenario limited to 4 years, from 1/10/2018 to 

1/10/2022. Hence the (relatively) low production volumes from gas-year 2022/2023 onwards are 

excluded from the optimisation.  These years follow the onstream date of the additional nitrogen 

plant. For these low production-volumes, the pressure equilibration between the northern and 

southern areas of the field will dominate the seismic response, masking the effect of the production 

controls. 
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For the optimisation and data driven analysis, a flat production profile throughout the production year 

is assumed (no seasonal fluctuation). For the operationalisation and risk calculations the monthly 

production variations as specified in Reference [14] are included. 

 

Figure 2-4  Production profile “Basispad Kabinet” for average temperatures, as received by NAM from the Ministry 

of Economic Affairs on 2/5/2018. The optimisation window is highlighted (1/10/2018 to 30/9/2022). 

2.5.2 Production fractions 

Within the production profile, the production fractions of the various model controls were kept 

constant, an example is given in Figure 2-5.  

 

 

 

Figure 2-5 Break-down of optimisation production profile by control 

2.5.3 Optimiser  

• The optimiser is allowed full freedom in the requested production from each control, clusters 

are allowed to produce anything between 0 and their full capacity.  

• The optimiser is allowed to vary all controls in order to minimise the objective (although the 

Loppersum clusters were set to zero during the optimisation runs to limit the calculation 

effort). 
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• The maximum cluster capacity is imposed by means of a simple fixed THP constraint, providing 

a first order reflection of the currently installed compressor capacities. 

• There are no additional constraints imposed to reflect the surface facilities (e.g. pressure 

losses in the Groningen pipeline ring). 

• A simple cluster uptime assumption of 90% to reflect planned and un-planned downtime was 

used.  

2.6 Subset of uncertainty tree 

The epistemic uncertainty in the hazard and risk model is captured in a logic tree (section 3.4). The 

2017 optimisation study showed there is a highly congruous behaviour between the various branches 

of the Hazard uncertainty tree, Reference [4]. Given the time pressure on this study update and 

stretched calculation resources, it was decided to limit this study update to 5 branches out of the total 

24 branches comprising the hazard logic-tree. The five branches were selected to reflect the full 

spread of the hazard logic-tree (Figure 2-6).  The following branches have been used: 

• Branch 22  = U_3_2 

• Branch 24  = U_4_2 

• Branch 6    = C_3_2 

• Branch 9    = L_1_1 

• Branch 14  = L_3_2 

In chapter 5 the results for these branches are reviewed to establish the representativeness of this 

subset versus the potential need to evaluate additional branches. 

 

Figure 2-6 Selected subset of branches from the Hazard logic tree 
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3 Hazard and Risk Model 
This study update utilises the V5 Hazard and Risk Model. This is the same HRA models as used in the 

HRA assessment of the Basispad Kabinet production scenario, Reference [13].   

3.1 Dynamic reservoir simulation model 

The dynamic response of the reservoir to the choices in production distribution across the various 

production clusters are modelled with the dynamic reservoir model. For the 2017 optimisation study 

the V4 Mores model was used, Reference [10], whereas this study update utilises the V5 Mores model. 

A full description of model V5 and the main changes with respect to V4 are given in Reference [19]. 

The history matched pressure in 2018 and differences between V4 and V5 models are shown in Figure 

3-2. The most prominent changes for the pressure match resulted from a shift in focus towards the 

(high resolution) CITHP-to-CIBHP data, to better capture production induced transient effects that 

were induced by the Ministerial production caps.:  

• The connectivity between the Ten Post, De Paauwen and Overschildt production clusters was 

reduced, aligned with the large fault (125 meter throw) in between these production clusters. 

A fault seal factor multiplier was assigned to this fault in the history matching process. 

• From CITHP data it was observed that there is a 3-5 bar pressure lag within the Southwestern 

area of the field between West (clusters Kooipolder, Slochteren, Froombosch and Sappemeer) 

and East (clusters Spitsbergen and Tusschenklappen). These two areas are separated by a 

series of relatively large faults (>100m throw) which to the North are associated with the pop-

up blocks. To reproduce this pressure lag in the reservoir model, additional fault seal factors 

had to be applied. 

• The RFT data acquired in 1998 from the Rodewold-1 well (Southwestern periphery) showed 

depletion. In the V4 history match a depletion path was implemented via the graben 

separating the northwest from the southwest periphery. The V5 model utilises an alternative 

depletion path to establish a pressure match. Depletion is implemented along the horst block 

via Ten Boer towards Eemskanaal.  
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Figure 3-1 Biggest dynamic changes between Mores model V4 and V5. Faults that were made more sealing indicated by 

red arrows, alternative depletion paths in southwestern periphery indicated by red and orange arrows. 
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Figure 3-2  History matched pressure using V5 Mores model at 1st January 2018 and differences w.r.t. V4 model at the 

same time.  

3.2 Seismological model 

For this study, the V5 seismological model was used as described in References [11] and [12]. 

3.3 Ground-Motion-Prediction Equation 

As part of the V4 to V5 update of the HRA model, the Ground-Motion-Prediction Equation did see 

some material changes. Up to Base North Sea the GMPE is more or less the same, but the amplification 

factors governing the propagation of the seismic energy between the Base North Sea and surface were 

updated. 

Figure 3-4 shows the difference between the PGA maps for the Base North Sea and the surface for 

both the V4 and the V5 model over a period of 5 years for the 21.6 Bcm production scenario. It can be 

observed that the V4 model calculates a somewhat uniform increase in PGA as the seismic energy 

travels through the shallower subsurface, whereas the V5 model shows a dampening in the 

Loppersum and Southwestern area of the field and a strengthening in the East. 

Although the GMPE is a highly intricate calculation and as such it is not possible to extrapolate 

observations from a single production scenario, Figure 3-4 does show that there are significant 

differences between the V4 and V5 model. 
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Figure 3-3 Schematic illustration of the HRA model layers 

 

V4 V5 

Figure 3-4 Net difference in PGA between Base North Sea and surface for V4 and V5 HRA model, over the period 

1/1/2017 to 1/1/2022 for a 21.6 N.Bcm offtake. 
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3.4 Model uncertainty 

There are two levels of uncertainty in the model results: 

• Aleatory uncertainty  

Aleatory uncertainty is the result of the natural randomness in a process. Given the stochastic 

nature of the HRA simulation, how big should the reduction in the various metrics be for these 

to be larger than the stochastic variability of the results? For a given choice of metric and initial 

condition, this applies to each of the optimisation runs. 

 

• Epistemic uncertainty  

Epistemic uncertainty is the scientific uncertainty in the model of the process. It is due to 

limited data and knowledge. The epistemic uncertainty is characterised by alternative models, 

which were captured in a logic tree. Since it is not known which of the 24 logic-tree branches 

reflects the field reality, how do the gains due to optimisation compare to the alternative HRA 

model’s represented by different branches of the logic tree?  

3.4.1 Epistemic uncertainty 

In the HRA model, it is assumed that the uncertainty in the reservoir pressure is smaller than the 

uncertainty in other parameters and hence it was not explicitly included as an uncertainty in the logic 

tree. To reflect that pressure cannot be measured outside of well control, a spatial smoothing step is 

applied.  

Within the HRA model the epistemic uncertainty is captured by means of an uncertainty tree. The V5 

vintage of the HRA model involves a logic-tree for Hazard with 24 branches, and for Risk of 216 

branches.  

The logic tree for the hazard assessment comprises three sets of branches to capture the uncertainty 

in the most uncertain elements, Figure 3-5.  The first branches cover the uncertainty with respect to 

Mmax in the seismological model, and the second and third sets capture the uncertainty related to the 

GMPE (tau and sigma).  Each branch of the logic tree represents a scenario, and by combining all 

scenarios using the weights in the logic tree, the mean hazard map can be calculated.   

 
Figure 3-5  Hazard logic tree. 
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3.4.2 Aleatoric uncertainty 

Especially the Monte Carlo setup of the HRA model introduces an aleatoric model variability (also 

referred to as statistical or stochastic uncertainty). 

The approach taken to address the stochastic variability works as follows. For each branch of the logic-

tree, the HRA model was run multiple times, using fixed control settings, a fixed grid size, and a fixed 

number of Monte Carlo draws (‘catalogue size’). Each time the seed value for the random-number 

generator was varied. The resulting set of values was then used to validate stability of the estimated 

hazard and risk metrics. An example is given in Table 3-1. The aleatoric uncertainty within the HRA 

model was found to be typically around 1-2%.  

 
Table 3-1  Aleatoric uncertainty in the HRA model as tested for branch 6 using 10 different random seeds 

3.5 Model robustness 

In line with section 3.4 the model robustness was assessed. 

3.5.1 Robustness with respect to aleatoric uncertainty 

Each run of the HRA model is performed on an observation grid (with user-supplied spacing) and 

involves the sampling of probability distributions for the various HRA model parameters. Using finer 

grids and increased sampling will result in better estimation of the outcome (i.e. smaller confidence 

intervals), but also consumes more computational resources and consequently slows down the 

optimisation process. The execution time is roughly linear in the number of draws and quadratic in 

terms of the grid-size. It is, therefore, necessary to strike a balance between accuracy and overall 

computational time. 

To this end, a number of production scenarios were tested: 

• Production fractions based on 2017 actual data 

• Production fraction as used in the HRA calculation for Basispad Kabinet (GY 18/19) 

• Minimisation of number of Events (earthquakes) 

• Minimisation of maximum Peak Ground Acceleration 

• Minimisation of population weighted Peak Ground Velocity 

Each of these production scenarios were simulated for varying resolutions of the sampling grid:  

• 250m 

• 500m 

• 1000m 

• 1500m 
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And for a varying number of Monte Carlo draws (catalogue size):  

• 50,000 

• 75,000 

• 100,000 

• 150,000 

• 200,000 

The associated model results are summarised in Figure 3-6. 

Event count 

 

maxPGV 

 

maxPGA pwPGV 

 
Figure 3-6 Robustness assessment for varying grid resolution and catalogue size 

The Event count is hardly affected by the choices in grid resolution and catalogue size. 

The pwPGV metric is obviously affected by the gridsize (number of people per gridblock varies), but 

between the various gridsizes there are no differences in the order of the scenarios. 

From Figure 3-6, it can be concluded that there are no big differences between 250 and 500m 

resolution, but at 1000 and 1500m differences start showing with respect to the 250m reference. 

Consequently, the 500m grid was selected. At this grid resolution, a catalogue size of 75,000 yields 
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stable results. An overview of the numerical performance is given in Table 3-2. For the selected 

numerical settings the associated runtime for the HRA model is approximately 1:45 hr7. 

 
Table 3-2  Model calculation times as a function of grid resolution and catalogue size 

3.5.2 Robustness with respect to epistemic uncertainty 

Qualitative assessment of the robustness with respect to epistemic uncertainty is somewhat more 

complicated and was done by running the HRA simulation for the full logic-tree and comparing it to a 

reference case. A somewhat more rigorous approach to the assurance of robustness with respect to 

the epistemic uncertainty is to calculate, for each of the optimisation results, the expected value of 

optimisation metric. To ensure that the results are optimised with respect to the entire uncertainty 

range as captured in the logic tree, a dedicated optimisation is run for each of the uncertainty-tree 

branches, using the following process (Figure 3-8): 

• First the objective function and initial production distribution is selected 

• The following steps are executed in parallel for each branch of the logic tree 

o Given the selected set of objective function and initial rate, a dedicated SPMI 

optimisation is run, 

o An optimum production distribution is obtained,  

o The optimisations’ end results are each evaluated on the entire logic tree (24 branches) 

and the value of the logic-tree mean is calculated for each metric using the weights of the 

various branches 

After running the full uncertainty-tree on the optimal distributions obtained for each branch and 

weighting the resulting metric values by the probabilities associated with each branch, the optimal 

distribution (lowest expected value for the optimisation metric) is selected. 

This process setup ensures a consistent hazard assessment (i.e. taking into account the epistemic 

uncertainties) and enables a like-for-like comparison of the optimisation outcomes’ performance for 

each branch. The comparison is done for both PGA and PGV differences. Figure 3-7 shows an example 

of the areal PGA, along with uniform hazard spectra at specific locations (e.g. Groningen, Loppersum, 

Ten Boer, etc.), where two scenarios are compared. Although the epistemic confidence intervals do 

still overlap, there is a significant reduction of hazard in Delfzil and Loppersum. 

                                                            
7 Note that solely for the optimisation purpose these settings are excessively strict. The optimisation would only 

require the model response to production changes to be stable within limits. So the model used for optimisation 

does not need to delivery accurate hazard and risk metrics only changes to these metrics with the correct sign 

under production changes. Having these tight settings does however allow for a more quantitative comparison 

with previous HRA analyses. 
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Figure 3-7  Sample HRA output visualisation showing the PGA map for the EZK reference case (see section 6.3.2) along with uniform hazard spectra for the reference case with a comparison 

to an optimised case (event count) for selected locations. The reference and optimised scenarios are plotted in red and blue respectively, with shaded area representing the 

epistemic uncertainty The PGA map shows the acceleration at 0.01s. 
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Figure 3-8 Optimisation process-flow for an optimisation metric/initial distribution pair 
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4 Optimisation  

4.1 Setup 

4.1.1 Controls 

To reduce the calculation time, only 8 out of the 10 controls (section 2.1) were used in the optimisation 

runs. The two controls within the Loppersum region were excluded, and their production fractions 

were set to zero in all runs: 

• [ZND_LRM] = 0 

• [PAU_POS_OVS] = 0 

The validity of this assumption is cross-checked and validated in chapter 5. 

4.1.2 Reference Case 

The actual production split as of calendar year 2017 was used as the reference case and as the initial 

starting point for the optimisation. 

 Control Production fraction 

1 [BIR] 0.11 

2 [EKL] 0.02 

3 [AMR_TJM_SDB] 0.29 

4 [OWG_SCB] 0.12 

5 [EKR_SZW_ZPD] 0.20 

6 [FRB_KPD_SLO] 0.13 

7 [SAP_TUS] 0.05 

8 [ZVN_SPI] 0.08 

 Sub total 1.00 

   

9 [ZND_LRM] 0.00 

10 [PAU_POS_OVS] 0.00 

   
Table 4-1  Production and production fractions of the reference case (calendar year 2017) by model control 

4.1.3 Optimisation window 

A four-year optimisation window was used, to avoid “noise” from pressure equilibration effects once 

field offtake drops significantly (after nitrogen plant comes on-stream). 

4.2 Results 

In Table 4-2 to Table 4-5 the optimised production fractions are given for the various optimisation 

objectives. Per objective function, a dedicated optimisation was executed on each of the selected 

branches of the uncertainty tree. Each set of optimised fractions were then evaluated across the entire 

logic tree (24 branches) to yield the logic tree mean. The branch that yielded the best result for the 

logic tree mean for a given objective function is highlighted in bold. For reference, the initial rates for 

the optimisation are included, named “branch 0”. These are the actual production fractions as per 

calendar year 2017. 
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Table 4-2  Production fraction for each control across the various branches when optimised for Events 

 
Table 4-3   Production fraction for each control across the various branches when optimised for maxPGA. 

 
Table 4-4  Production fraction for each control across the various branches when optimised for maxPGV 

 
Table 4-5  Production fraction for each control across the various branches when optimised for pwPGV. 

The results for the various optimisations are summarised in Figure 4-1, where the optimum production 

fraction is given for each control. It can be observed that only the pwPGV optimisation is utilizing the 

[BIR] control, and only the maxPGA optimisation is utilizing the [EKL] control. None of the 

optimisations are using the [AMR_TJM_SDB] control. The remaining controls are utilised to varying 

degrees by the different optimisations. Event count optimisation is exclusively producing from the 

South, while pwPGV optimisation avoids the more populated South-West by not utilizing the 

[FRB_KPD_SLO] and [ZVN_SPI] controls. 

Events

Branch Itr Case  BIR  EKL AMR_TJM_SDB OWG_SCB EKR_SZW_ZPD FRB_KPD_SLO SAP_TUS ZVN_SPI

0 CY 2017 actual 0.11   0.02   0.29                   0.12         0.19                  0.13                 0.05       0.08      

6 8 7 -     -     -                     -           0.32                  0.27                 0.12       0.29      

9 10 5 -     -     -                     0.06         0.32                  0.19                 0.15       0.29      

14 10 5 -     -     -                     0.06         0.32                  0.19                 0.15       0.29      

22 7 18 -     -     -                     -           0.30                  0.28                 0.13       0.30      

24 7 18 -     -     -                     -           0.30                  0.28                 0.13       0.30      

maxPGA

Branch Itr Case  BIR  EKL AMR_TJM_SDB OWG_SCB EKR_SZW_ZPD FRB_KPD_SLO SAP_TUS ZVN_SPI

0 CY 2017 actual 0.11   0.02   0.29                   0.12         0.19                  0.13                 0.05       0.08      

6 9 5 -     0.22   -                     0.14         0.27                  0.19                 0.08       0.10      

9 8 5 -     0.01   -                     0.23         0.34                  0.29                 0.13       -        

14 5 11 -     0.01   -                     0.24         0.36                  0.27                 0.12       -        

22 7 12 0.01   0.17   -                     0.14         0.35                  0.23                 -         0.11      

24 7 1 0.04   0.22   -                     0.15         0.22                  0.16                 0.09       0.12      

maxPGV

Branch Itr Case  BIR  EKL AMR_TJM_SDB OWG_SCB EKR_SZW_ZPD FRB_KPD_SLO SAP_TUS ZVN_SPI

0 CY 2017 actual 0.11   0.02   0.29                   0.12         0.19                  0.13                 0.05       0.08      

6 7 15 -     0.03   -                     0.16         0.24                  0.23                 0.09       0.25      

9 5 16 -     -     -                     0.16         0.25                  0.21                 0.11       0.27      

14 6 5 0.01   0.08   -                     0.15         0.25                  0.19                 0.11       0.20      

22 8 12 -     -     0.01                   0.16         0.23                  0.22                 0.16       0.23      

24 7 8 -     0.01   -                     0.22         0.23                  0.23                 0.09       0.22      

pwPGV

Branch Itr Case  BIR  EKL AMR_TJM_SDB OWG_SCB EKR_SZW_ZPD FRB_KPD_SLO SAP_TUS ZVN_SPI

0 CY 2017 actual 0.11   0.02   0.29                   0.12         0.19                  0.13                 0.05       0.08      

6 2 14 0.06   0.01   0.18                   0.07         0.25                  0.08                 0.03       0.31      

9 10 10 0.19   -     0.11                   0.23         0.36                  -                   0.11       -        

14 8 17 0.19   -     -                     0.29         0.39                  -                   0.13       -        

22 2 7 0.07   0.01   0.20                   0.24         0.29                  0.09                 0.04       0.06      

24 10 5 -     -     -                     0.31         0.32                  0.13                 0.13       0.11      
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Figure 4-1 Optimised production fractions of the controls for the different optimisation objective functions 

The improvements in hazard metrics are given in Table 4-6. These results are derived from the logic 

tree mean, i.e. the production fractions in Figure 4-1 evaluated across all 24 logic tree branches. The 

improvements vary between 5 and 14 percent depending on the metric that is optimised based on 

the objective function. 

Objective   Hazard Metric   Improvement 

   Events maxPGA maxPGV pwPGV  Events maxPGA maxPGV pwPGV 

Reference (2017 Act)  62.4 0.155 0.127 0.039          

Event Count  53.6 0.152 0.110 0.039  -14% -2% -13% 0% 

maxPGA  56.3 0.140 0.112 0.040  -10% -10% -12% 2% 

maxPGV  56.0 0.150 0.112 0.039  -10% -3% -12% -1% 

pwPGV  58.7 0.149 0.123 0.037  -6% -4% -3% -5% 

Table 4-6   Optimisation results with respect to the HRA metrics 

In Figure 4-2 to Figure 4-6 the optimisation results are given in map view. In Figure 4-2 the reference 

case is displayed. The bottom left-hand panel gives the starting point for the optimisation: the 

reservoir pressure at 1/10/2018. The production fractions for the reference case (Table 4-1) are 

displayed as a bubble map in the top centre panel. The resulting depletion over the four-year 

optimisation period (1/10/2018 to 1/10/2022) is given in the top left-hand panel, and the associated 

event density in the bottom centre panel (in total, there are some 46 events expected in the North of 

the field, and 16 in the South). The subsequent PGA and PGV maps are in the left-hand side of the 

panel. For reference, the fault pattern is displayed in the background. Additionally, the main cities are 

highlighted as orange dots (labelled in the top right-hand panel), and the production clusters as black 

dots (labelled in the bottom right-hand panel). 
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This same visualisation panel was used to present the optimisation results for the various objective 

functions, but now the differences are displayed with respect to the reference case. Table 4-3 gives 

the results for the Event count optimisation. Note that the production fraction bubble map highlights 

the optimised production fractions in red, with the reference case production fractions kept in blue. 

All production is moved towards the southernmost 4 controls. As a result, the depletion has increased 

in the South (compared to the reference case) and reduced in the North. In terms of absolute 

depletion (top left-hand panel), there is even some pressure rebound just south of the city of Delfzijl. 

In total a reduction of some 9 events is expected as compared to the 62 events in the reference case. 

This constitutes of a reduction of 16 in the North, and an increase of 7 in the South. The net effect in 

terms of PGA and PGV gives an almost horizontal divide between increase and reduction with respect 

to the reference case (right-hand panel). 

The optimisation with respect to maxPGA utilises the [EKL] and [OWG_SCB] controls, resulting in 

increased hazard in the South-West, rotating the net hazard effect by some 45o. 

The maxPGV optimisation does not utilise the [EKL] control, with more offtake from the central 

controls in the South,[ZNV_SPI] and [SAP_TUS]. This makes the net gain with respect to the reference 

case similar to the Event count optimisation, although less pronounced both in terms of event count 

and hazard. The net reduction in Event count has reduced to 6 (North: -12, South: + 6). 

The population weighted PGV optimisation yields the biggest areal reduction in PGA and PGV 

including the entire South-West, although the magnitude of reduction is somewhat modest compared 

to the other optimisation strategies. This is achieved by opening up the Northern-most [BIR] control 

and not utilizing controls in the South-West that are close to the city of Groningen. The net reduction 

in events is also less than in the other strategies (+2 in the South and -6 in the North).
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Figure 4-2 Optimisation reference case – production distribution and subsequent impact on pressure, event density and hazard 
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Figure 4-3 Optimisation for Event count – Changes with respect to reference case (Figure 4-2) in terms of production distribution and subsequent impact on pressure, event density and 

hazard. The relative reduction in event count and maximum values of PGA and PGV are summarised in Table 4-6. 
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Figure 4-4 Optimisation for maxPGA – Changes with respect to reference case (Figure 4-2) in terms of production distribution and subsequent impact on pressure, event density and 

hazard. The relative reduction in event count and maximum values of PGA and PGV are summarised in Table 4-6. 
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Figure 4-5 Optimisation for maxPGV  – Changes with respect to reference case (Figure 4-2) in terms of production distribution and subsequent impact on pressure, event density and 

hazard. The relative reduction in event count and maximum values of PGA and PGV are summarised in Table 4-6. 
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Figure 4-6 Optimisation for pwPGV – Changes with respect to reference case (Figure 4-2) in terms of production distribution and subsequent impact on pressure, event density and 

hazard. The relative reduction in event count and maximum values of PGA and PGV are summarised in Table 4-6.
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5 Data driven analysis of model response 

5.1 Random Forest proxy models 

To further complement the understanding of the behaviour of the HRA model (rather than to only 

state the optimal production fractions), the complex HRA model was approximated with a simpler but 

still reasonably accurate proxy model that can be analysed more directly using experimental design 

type techniques, e.g. variable importance plots and partial dependence plots. The chosen class of 

proxy models are Random Forests. Although other models may have worked equally well, Random 

Forests have the following features that contribute to their particular utility in this case: 

• Can capture non-linear effects and interactions between controls 

• Good out-of-box performance without tuning of algorithm parameters 

• Computational efficiency 

• Diagnostic tools that allow to extract information like variable importance and partial 

dependence of model response on a subset of controls. 

A detailed description of the underlying theory and further references are provided in Appendix A.  

Dedicated Random Forest proxy models were built for each combination of branch and objective 

function, that can mimic the relation between model input (controls setting) and model output 

(optimisation metric), to be analysed further.  

5.2 Sampling of the control space 

To fit the Random Forest models, the control space8 had to be sufficiently sampled. A detailed 

description of the sampling strategy is given in Appendix B. Table 5-1 summarises the applied 

boundary conditions. 

 control production fraction  control production fraction 

 BIR 0.01 ≤ ci ≤ 0.25  FRB_KPD_SLO 0.01 ≤ ci ≤ 0.35 

 EKL 0.01 ≤ ci ≤ 0.25  SAP_TUS 0.01 ≤ ci ≤ 0.16 

 AMR_TJM_SDB 0.01 ≤ ci ≤ 0.51  ZVN_SPI 0.01 ≤ ci ≤ 0.30 

 OWG_SCB 0.01 ≤ ci ≤ 0.31  ZND_LRM 0.01 ≤ ci ≤ 0.36 

 EKR_SZW_ZPD 0.01 ≤ ci ≤ 0.38  PAU_POS_OVS 0.01 ≤ ci ≤ 0.60 

Table 5-1  Sampling space for control fraction of each control 

Even though constraints were already applied on the �� to ensure that (most of the) combinations 

would achieve the minimal production threshold, some of the more extreme combinations can still 

drop out. To fit the proxy models, only samples were considered that have at least an average 

production ≥15.675 Bcm/year (0.2 Bcm deviation). When applying ±0.2 Bcm deviation on total 

optimisation window (i.e. ±0.05 Bcm deviation annually) instead of annually 4,227 versus 4,366 

samples passed the filtering rule 

(on averaged over the forecasting period production volume). Limited impact when applying stricter 

production threshold was observed. 

                                                            
8 The control space is span by all possible combinations of production fractions for the various controls (the 

(lumped) production clusters) 
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5.3 Overall model quality assessment 

Random Forest models were trained on the filtered sample sets and the quality of each model is 

assessed using blind testing. 

As shown in Table 5-2, it was established that the normalised RMSE (defined as the root mean squared 

error of the model normalised by the mean response of the MoReS-HRA coupling) is close to the actual 

variability in prediction responses from the HRA which is between 1% and 2% depending on the branch 

and metric, section 3.4.2. 

The predictive quality of the model is evaluated out-of-sample. Further details on the methodology 

can be found in Appendix A. Once the model quality reaches a certain threshold value which comes 

close to the aleatoric uncertainty (between 1% and 2% depending on the HRA branch), the number of 

samples is considered sufficient. Through this procedure, it was established that between 3,500 and 

4500 uniform samples per branch are sufficient to build a suitable proxy model. The exact number of 

control configurations that managed to make the minimal production constraints and the out-of-

sample performance of the respective Random Forest models for the different metrics that were 

trained on the available samples is shown in Table 5-2. The estimated standard error for the reported 

out of sample �� was between 1% and 2%, hence there is little variability in this measure of model 

performance. 
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Table 5-2  Random Forest model statistics for the various metrics
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In order for the model diagnostics tools to be meaningful (e.g. variable importance and partial 

dependence plots), the controls need to be reasonably uncorrelated. The uniformly random sampling 

setup provides some asymptotic guarantees in that regard. To establish that no high correlations arise 

by chance, the correlations between the controls were additionally checked explicitly, see Table 5-3. 

It was indeed found that no strong correlations are present in the controls for the different branches. 

On average there is a slightly negative correlation between controls which is due to the fact that all 

the production fractions of all controls need to sum up to 1. 

 
Table 5-3  Correlation between controls for samples from branch 6 

5.4 Random Forest model analysis 

Using the Random Forest models, variable importance plots and one dimensional partial dependence 

plots were generated.  

Variable importance plots 

Variable importance plots are used to estimate the overall contribution (including non-linear and 

interaction effects) of a control on the (Random Forest) model response. An example plot is contained 

in Figure 5-1, which shows a variable importance plot for a RF model of branch 6 that predicts pwPGV. 

The variables are ordered decreasingly with respect to their cumulative impact on pwPGV. The 

associated standard error in the estimates are indicated by the whiskers on the bars. This type of plot 

does not allow to draw any conclusions about the nature of the relationship between a variable and 

the objective function, as in “an increase/decrease in production from region X leads to an 

increase/decrease in metric Y”. However, this plot gives an indication about the order in which 

controls should be investigated based on their impact on the metric. How the average effect of 

changes in a control can be assessed will be discussed in section about partial dependence plots. 

Figure 5-1 implies that changes to controls [POS_PAU_OVS], [EKR_SZW_ZPD] and [EKL] have the 

largest impact on the modelled pwPGV response for branch 6. Additionally, variables that are deemed 

insignificant in this representation, i.e. variables whose estimated increase in MSE is close to the 

standard error of the measurement are variables that can be changed without significant changes in 

the general model response. Based on Figure 5-1 this would imply that changes to controls [ZND_LRM], 

[ZVN_SPI] and [SAP_TUS] have virtually no effect on the model response for branch 6. Since the 
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model is known to be a good proxy for the coupled Mores HRA setup, it can be concluded that those 

parameters are essentially in the model null-space. 

 
Figure 5-1 Variable importance plot for population weighted PGV (pwPGV) on Branch 6 

Partial dependence plots 

The partial dependence analysis provides a qualitative indication of whether, for a fixed total field 

production, increasing or decreasing the relative offtake percentage of a model control (or production 

cluster) would be beneficial for reducing a prediction metric (such as maxPGA, pwPGV, etc.). A set of 

example plots for the average modelled pwPGV response on changes in individual controls is shown 

in Figure 5-2. 

For any (deterministic) model realisation, the total of the production fractions over all controls adds 

up to 1. Changing the production fraction for a single control would involve having to make a choice 

on how to offset that change by an opposite change in the total production fraction from all other 

controls. However, any specific choice would impact on the outcome. The power of the partial 

dependence plots is that it allows to evaluate the impact of a single control with respect to an 

“averaged” response of the rest of the system.  

A positive slope means that an increase in the production fraction of that specific control on average 

increases the value of the objective function (i.e. increases the Hazard/Risk). A negative slope means 

that increasing the production fraction on average leads to a reduction in the value of the objective 

function (i.e. getting closer to the optimum). A zero slope means that the value of the objective is 

essentially not affected by the production fraction of that control. 

It was found that the overall relationships are mostly linear and that there are no strong interaction 

effects (if that were not the case, higher dimensional partial dependence plots would be required). 
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Figure 5-2 Partial dependence plot for population weighted PGV (pwPGV) on Branch 6 

In Figure 5-3 to Figure 5-6 partial dependence analyses are provided for the various objective 

functions. Each figure contains four elements: 

• On the top left-hand side, a trellis of the partial dependence plots for all 10 controls are given 

with respect to the seismicity metric. For each control, the 5 branches9 are plotted as a 

dedicated colour.  

• On the bottom left-hand side, the corresponding best fit linear slopes are given for all controls, 

again colour coded by branch. The arithmetic average from the 5 branches is given as a yellow 

dot. 

• On the bottom-centre graph, the quality of fit for the linear slopes is given (R2), again with a 

yellow dot for the arithmetic average over the 5 branches. 

• The map on the right-hand side super-imposes the average slope for each control on top of 

the map that indicates the areal location of the 10 controls over the field. The averaged slopes 

are plotted in a traffic light style.  

o The red part of the colour spectrum reflects the positive slopes. For those controls, an 

increase in the production fraction will increase the objective function (i.e. increase 

the hazard or risk).  

o The green part of the colour spectrum reflects the negative slopes, hence increased 

production from those controls will reduce the hazard or risk.  

o The white controls are indifferent, more or less production will not impact the hazard 

or risk. 

It can be observed from Figure 5-3 to Figure 5-6 that the slopes of these partial dependence curves 

are highly consistent across all branches: they are either all positive, all negative, or all zero. All slopes 

are also roughly linear; the relationships can be approximated by fitting a linear trend line through 

each slope (R2 values close to 1). For each control, the partial dependence curves for the various 

                                                            
9 As described in section 2.6, only 5 branches were evaluated from the total 24 branch uncertainty tree for 

Hazard 
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branches generally show a fairly linear behaviour as a function of its production fraction. Given this 

behaviour, the controls were regarded fairly independently. For each control, best fit linear slopes 

were derived from the partial dependence curves for all branches. Next the average from these slopes 

was taken. These “averaged slopes” were visualised on a map. 

Some clear patterns stand out from Figure 5-3 to Figure 5-6. The [PAU_POS_OVS] control in the middle 

of the seismic-prone Loppersum area has consistently the most negative impact on the seismic hazard 

and risk. The [EKR_SZW_ZPD] control in the South-East of the field is consistently positive.  

For each objective function, the consistency of the partial dependencies across the various branches 

clearly comes out: either all positive, negative, or (near) zero. This provides a clear guidance for the 

optimisation. There is an epistemic uncertainty range, which is span by the branches of the hazard 

tree. Despite the fact that we don’t know which branches best approximate the truth, we can still 

optimise because all branches reflect the same directionally. 

Depending on the objective function: the controls favour production from the more densely populated 

South of the field for hazard, and the sparsely populated North of the field for risk. 
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Figure 5-3 Analysis of the partial dependence curves for Events 
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Figure 5-4 Analysis of the partial dependence curves for Maximum PGA 
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Figure 5-5 Analysis of the partial dependence curves for Maximum PGV 
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Figure 5-6 Analysis of the partial dependence curves for Population Weighted PGV 
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5.5 Observations from Random Forest models 

The results are generally consistent across the examined branches, and it was concluded that there is 

no need to run more branches on lower and higher sides. There is a good consistency between two 

lower branches, and between two upper branches for all metrics 

Production from the [EKR_SZW_ZPD] control consistently has a favourable impact on seismic hazard 

and risk for all objective functions. Likewise, production from the [PAU_POS_OVS] control consistently 

has a negative effect.  

[EKL] switches from negative to positive between metrics. 

It was a valid assumption to exclude the [PAU_POS_OVS] and [ZND_LRM] controls from the 

optimisation (chapter 4). In the Random Forest analysis these controls were found to consistently have 

a negative impact on any of the optimisation metrics. 

5.6 Consistency between Random Forest models and Optimisation runs 

To check for consistency between the Random Forest models and the optimisation results (chapter 

4), the optimum production fractions for the various controls (Table 4-2 to Table 4-5) were 

superimposed on the Random Forest maps for the various objective functions, Figure 5-7.  

In Figure 5-7 the optimum production fractions are displayed as bar charts, with dedicated bars for all 

evaluated branches of the logic tree. The first bar (indexed by 0) reflects the initial rates, the starting 

point of the optimisation runs. The optimised branch that yielded the best overall improvement is 

highlighted (diagonal stripes) in each branch. 

Each bar chart also includes a horizontal line, to indicate how far each control is opened up with 

respect to its total production capacity. These capacities were established from the total production 

capacity in 2019, normalised to the Basispad Kabinet demand in 2019 (20.4 N.Bcm), Table 5-4. 

 
Table 5-4  Production capacities in 2019 (at 90% load factor), normalised to 20.4 N.Bcm (Basispad Kabinet in 2019) 

It can be observed from Figure 5-7 that there is generally a good agreement between the Random 

Forest maps and the optimised production fractions. The “red controls” generally get zero or very low 

production fractions assigned, and the “green controls” high fractions (in cases all the way up to its 

maximum capacity). 
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Figure 5-7 Comparison of the Random Forest models (maps) to the optimisation results (superimposed bar charts). 
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6 Operationalisation of results 

6.1 More realistic reflection of operational envelope 

The production optimisation described in chapter 4 was consciously implemented to evaluate the 

theoretical maximum scope for optimisation across the full control space. Each control was allowed 

to produce anywhere between zero and maximum capacity, with maximum capacity imposed by 

means of as a simple THP constraint. However, in reality the operational space is smaller. For instance, 

production clusters are constrained by minimum gas throughput at the production facilities and 

cannot physically produce at e.g. 1% of maximum capacity. The maximum capacity, in turn, is not 

governed by a single tubing head pressure. The production rates that can maximally be achieved are 

governed by several factors, including the compressor envelope, possible compressor speed 

restriction due to noise constraints, and the backpressure that is exerted on the compressor outlet. 

The outlet pressure at a production cluster is a function of its location in the pipeline-ring, the number 

of transfer stations that are in use and their respective rates, the operational settings within the ring 

(e.g. whether or not the double lines can both be used, possible high/low pressure ring split, etc.), and 

the backpressure within the GTS network.  

6.2 Model description 

The importance of accurately modelling the surface facility constraints has long been realised by NAM. 

Over the last 30 years this has evolved into the Integrated Gas Production System Model (IPSM) 

software toolsuite called GenREM, a robust, strongly integrated business tool supporting operational 

gas field development and forecasting.  GenREM is in operation for all NAM operated gas fields in the 

Netherlands and has gained countless capabilities over the years, continuously evolving to address 

the changing technical and regulatory demands of both the gas fields and the stakeholders of NAM.  

Development of GenREM has been a combined NAM/ORTEC effort between mathematicians, IT 

specialists and Petroleum engineers, resulting in a time-step driven gas capacity and production 

forecasting tool, using a detailed gas facility treatment network definition. This network solver can be 

coupled to the Mores subsurface reservoir simulator, resulting in an integrated model capturing the 

entire Groningen system up to the export points to GTS.  

Modelling the Groningen Ring, as previously described in [4], is a challenge for a surface facilities 

model. For this purpose, a dedicated surface network ring solver has been developed. Being a pressure 

balanced solver, GenREM is completely thermal driven. Every cluster is modelled in detail, defining 

every physical Groningen surface device in place. All the cooling devices are based on Heat Transfer 

Research Institute (HTRI) modelling. In Figure 6-1 a typical layout of the devices associated with a 

cluster location is shown. 

The Groningen specific design of the centrifugal compressors is completely implemented, up to the 

level of its efficiency, which is based on a neural network implementation based on actual conditions. 

The compressor characteristics are based on the envelopes and checked against anti-surge control 

and speed line limits. Recycling is fully implemented. Multi stage power control usage has been 

specifically designed for GenREM in close cooperation with the NAM and Siemens engineers (the 

supplier of the compressors). 
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GenREM handles constraints for numerous physical parameters like flow, pressure and gas quality 

throughout the whole surface definition to ensure realistic results of the simulation. Calibration of the 

input parameters is established by means of big data analysis of real-time production data.   

In addition to a realistic representation of the operational envelope, the operational model also 

includes planned maintenance downtime. Unplanned downtime is captured through an uptime 

fraction based on historical availability data.  

GenREM is being used for short, medium and long-term forecasting of gas production and capacity. 

Additionally, it is also being used for electricity forecasting due to the high-power demand of the 

compressors.  

 

Figure 6-1 Typical layout of surface facilities at a cluster location 

It should be realised that GenREM assumes that the installed equipment is always available with no 

functionality deterioration takinges place over time, other than an assigned uptime factor. 

Additionally, the restrictions and distribution of the gas across the custody transfer stations into the 

GasUnie operated pipeline network is not addressed in this optimisation.  

6.3 Simulation setup 

6.3.1 Production profile 

The runs were done for the “Basispad Kabinet” scenario for an average temperature (section 2.5.1) 4-

year period starting 1/10/2018. While the optimisation was based on a simplified annual demand 

profile, these runs are based on the monthly demand profile, as defined in the “Basispad Kabinet”, to 

ensure that monthly demand variation can be met.  
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Figure 6-2  Monthly demand profile as per “Basispad Kabinet”. Analysis is done for the first 4 gas years. 

6.3.2 Reference case – WP2016 Addendum June 2018 (EZK) 

The reference case for benchmarking the impact of the optimisation was chosen to be the seismic risk 

assessment for the “Basispad Kabinet” [20], as requested by the Ministry of Economic Affairs, 

hereafter referred as the “EZK” profile. This HRA was to evaluate the impact of the Ministerial decision 

to close-in the Groningen field by 2030. The Ministry had prescribed the scenario specifications in its 

2/5/2018 Expectation Letter, Reference [14]. The production distribution for this scenario was 

requested to be based on the 2017 Optimisation Study, Reference [4]. This was implemented by 

means of a start-up list. Groups of production clusters (aligned with the specified Ministerial regions) 

are opened up until the prescribed production profile can be delivered. The resulting “EZK” production 

profile is given in Figure 6-3, with a breakdown by Ministerial region.   

Figure 6-3 Production distribution for the WP2016 Addendum June 2018 (EZK), breakdown by Ministerial region 

 

6.3.3 Production scenarios – Start-up list 

The same approach as used for the EZK profile was applied here to test the operational viability of the 

optimised scenarios described in chapter 4. The same 8 controls (section 4.1.1) were implemented as 

a start-up list in the surface network model. In order to meet monthly gas demand (section 6.3.1), the 

surface network model starts by opening up the first control on the start-up list, up to a maximum 
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utilisation factor. If the associated production falls short of the demand, the next control from the 

start-up list is opened. This process continues until demand is met.  

A dedicated start-up list for each objective is given in Table 6-1, based on the Random Forest partial 

dependence analysis, Figure 6-4. The “EZK” reference case is also included, which was based on the 

same logic but using the results of the 2017 Optimisation Study [4].  

Region Control EZK Events maxPGA maxPGV pwPGV 

North [BIR] 6 mln m3/d 7 7 8 4 

Eemskanaal [EKL] 2 mln m3/d 5 2 2 8 

South-East [EKR_SZW_ZPD] 1 1 1 1 1 

East-Central (1) [OWG_SCB] 2 6 6 6 5 

East-Central (2) [AMR_TJM_SDB] 4 8 8 7 7 

South-West (1) [ZVN_SPI] 3 2 5 5 2 

South-West (2) [SAP_TUS] 5 3 4 4 3 

South-West (3) [FRB_KPD_SLO] 6 4 3 3 6 

Table 6-1  Production start-up list for achieving total required field production. Starting from number 1, groups of 

clusters are sequentially opened-up by the surface network model until the total required production can 

be achieved. The sequence was derived based on insights from the production optimisation study 

 

 
Figure 6-4 Start-up list as derived from the Random Forrest analysis (section 5.4) 

6.3.4 Model resolution 

Results from the full fidelity (GENREM) model are evaluated for hazard using 250m surface resolution 

(compared to 500m resolution used in chapter 4). 

6.4 Scope for optimisation 

The gas production capacity of the Groningen field is significantly higher than what is required by the 

production scenario Basispad Kabinet, even when excluding the Loppersum clusters. Figure 6-5 shows 

the production capacity prediction associated with the EZK reference case. This excess capacity 

provides room to redistribute production. In Figure 6-6 the monthly production and capacity for the 

EZK reference case is shown for the various Ministerial regions. It is clear that the South-East is 

essentially producing at capacity, as expected given its high priority on the start-up list. Most excess 

capacity is available in the South-West.    
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Figure 6-5  Field gas capacity associated with the EZK reference case (excluding Loppersum clusters).  

 

Figure 6-6  Gas production and capacity as per EZK reference case.  
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6.5 Results – Hazard 

The model results for the different optimisation scenarios are given in Table 6-2. The biggest reduction 

can be achieved in Event count and maxPGV (both about 10% reduction). These results are with 

respect to the EZK reference case. It is worth noting that the EZK case in itself yields an improvement 

over the reference case used for the optimisation in chapter 4, which used fixed regional fractions 

based on 2017 actual production data. The fixed fractions case has also been evaluated in this full 

fidelity model, referred to as 17Actual in Table 6-2. With respect to this original reference case, the 

improvements in the optimisation scenarios are similar to those obtained in the less constrained 

analysis in chapter 4 (Table 4-6).    

The amount of gas being produced from a given region, e.g. East-Central (2) in Table 6-1, is not only a 

function of its order in the start-up list but also how much of its capacity is being utilised.  A high 

utilisation will maximise volume withdrawal from clusters high in the start-up sequence, but at the 

same time also increase production fluctuations from clusters low in the start-up sequence (due to 

fluctuating demand). It should be noted that, based on historic performance, the achieved utilisation 

range between 70% and 80%. A 70% utilisation factor was found to be a good compromise between 

optimising production distribution while minimising regional fluctuations. A maximum utilisation of 

90% was also tested and found to only give marginal improvements in seismic hazard, as tabulated in 

Table 6-2. The remaining analysis will focus on the 70% utilisation cases. 

 

Scenario Utilisation   Hazard Metric   Improvement 

  Factor  Events maxPGA maxPGV pwPGV  Events maxPGA maxPGV pwPGV 

EZK    61 0.160 0.127 0.041          

17Actual     63 0.162 0.131 0.042   4% 1% 4% 3% 

Event 

Count 

70%  55 0.157 0.116 0.041  -10% -2% -9% 2% 

90%  55 0.160 0.115 0.041  -10% 0% -9% 2% 

maxPGA 70%  56 0.152 0.116 0.042  -8% -5% -9% 4% 

  90%  55 0.151 0.115 0.042  -10% -6% -9% 4% 

maxPGV 70%  56 0.155 0.116 0.042  -8% -3% -9% 4% 

  90%  55 0.152 0.115 0.042  -10% -5% -9% 5% 

pwPGV 70%  58 0.153 0.124 0.041  -5% -4% -2% 0% 

  90%  57 0.152 0.122 0.040  -7% -5% -4% -2% 

Table 6-2  Optimisation results for Hazard using the surface network model 

 

In Figure 6-8 to Figure 6-11 the areal impact of the different scenarios is investigated. The observations 

are largely in line with those from section 4.2. 

• All scenarios shift production to the South-West region compared to the EZK reference case, 

Figure 6-8. The result is more depletion (coloured red) in the South-West with respect to the 

reference case. Consequently, less production is required from the East-Central region, with 

corresponding less depletion (coloured green). Depletion in the North-West, that includes 

most of Loppersum, remain largely similar between all scenarios. The maxPGV and maxPGA 

scenarios shifts more production to the far South-West compared to the Event count and 

pwPGV scenarios.  
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• The impact on earthquake density is shown in Figure 6-9. The EZK reference case estimates 

61 tremors over the four-year period, with 47 in the northern main area of seismicity and 14 

in the southern area. As expected, earthquake density is higher in the South-West for the 

maxPGA and maxPGV cases due to the increased depletion. The Event count and pwPGV 

cases show the best improvement ratio of 2:1, with 2 earthquakes less in the North for every 

1 added in the South. 

• The improvement in hazard, Figure 6-10 and Figure 6-11, is consistent with the observations 

for depletion and earthquake density. Significant improvement in the East-Central area does 

come with some increase in hazard in the South-West.  
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Figure 6-7 Production distribution for various objective functions, and difference with respect to Basispad Kabinet 
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Figure 6-8 Pressure depletion maps for various objective functions, and difference with respect to Basispad Kabinet 
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Figure 6-9 Earthquake density maps for various objective functions, and difference with respect to Basispad Kabinet. The relative reductions in event count are summarised in Table 6-2. 
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Figure 6-10  PGA maps for various objective functions, and difference with respect to Basispad Kabinet (EZK). The relative reductions in maximum values of PGV are summarised in Table 

6-2. 
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Figure 6-11 PGA maps for various objective functions, and difference with respect to Basispad Kabinet (EZK). The relative reductions in maximum values of PGA are summarised in Table 

6-2.
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6.6 Results – Risk 

6.6.1 From hazard to risk – brief overview 

As explained in section 2.4.1, given the finite calculation capacity the optimisation work was restricted 

to the Hazard domain. Optimised production distributions were established using seismicity- (event-

count) and hazard-related (maximum PGA, maximum PGV, population-weighted PGV) metrics only. 

However, once these optimised production distributions are established, they can be evaluated using 

the full risk tree. 

As indicated in section 2.4.4 which introduces pwPGV as an optimisation metric, the move from hazard 

to risk introduces additional heterogeneities, which make the relationship from hazard to risk highly 

non-linear. The following elements prevent the derivation of a simple one-to-one relationship 

between changes to the hazard distribution and changes to the overall risk: 

• Population distribution 

As indicated in Figure 2-3, most of the population resides in the greater Groningen city area, 

which mainly lies outside the Groningen field outline. Therefore, all things being equal, 

changes to the hazard in that region would results in far greater impact on the overall risk (i.e. 

buildings above the Meijdam norm) than a similar change elsewhere in the field. 

• Distribution of building typologies 

Beyond the spatial distribution of the population throughout the field, the nature of the 

buildings themselves plays a crucial role in the translation of hazard to risk. As in the case of 

the population distribution, had all the buildings been of identical type, changes to the hazard 

would be readily relatable to changes in risk (accounting for the population distribution). As 

observed in [21] (and references  therein), the majority of buildings not meeting the Meijdam 

norm have one of four typologies as their primary structural systems: URM1L, URM4L, 

URM3M, and URM8L. Plotting their spatial distribution throughout the area of interest (see 

Figure 6-12), it is clear that their distribution, for the most part, is far from uniform. That, in 

turn, means that a reduction in hazard could result in a lesser reduction of overall risk. 
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Figure 6-12  Spatial distribution of the vulnerable structural systems throughout the area of interest 

6.6.2 Risk outcomes and discussion 

When reflecting the facilities and operational constraints in the production distributions as optimised 

for hazard, it appears that there is significant scope to reduce the number of buildings that exceed the 

Meijdam risk norm. This can be seen in in Table 6-3 which lists the number of buildings exceeding the 

Meijdam norm for each of the optimised distributions, including a comparison to the reference case. 

Note that the exceedance numbers in Table 6-3 are for the 5-year period 1/1/2018 to 31/12/2022. A 

breakdown including the annual numbers is given in Figure 6-13. 

 

  



Page 63 of 98 

 

 

Scenario   Total Improvement  Unchanged Removed Added 

EZK  1136         

Event  760 -33% 715 421 45 

maxPGA  752 -34% 674 462 78 

maxPGV  780 -31% 677 459 103 

pwPGV  1033 -9% 1025 111 8 

  

Table 6-3 The number of buildings with Mean LPR greater than 1E-5 for the different optimised scenarios. 

Unchanged buildings are shared between scenarios, Removed are those exclusive to EZK reference case 

and Added are those exclusive to the scenario in question. 

 

Buildings with Mean LPR > 10-5 

 

 
Figure 6-13 Number of buildings with mean LPR > 10-5 for optimised scenarios compared to the EZK profile, showing 

both the yearly and the five yearly numbers.  

 

For a more detailed view of the impact of the optimisation on risk, consider the maps shown in Figure 

6-14. Each row, associated with one optimisation objective function, contains three maps showing 

buildings that are – from left to right – in excess of the norm in both reference and optimised cases; 

no longer above the norm in the optimised distribution; and, finally, buildings that were below the 

norm in the reference case, but are above the norm in the optimised case. 

As can be seen from the maps, buildings with higher LPR than in the reference case are mainly located 

in the Ten Boer/ Eemskanaal area.   
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Optimisation impact on buildings ≥ 10-5 (Mean LPR) 
70% utilisation of production capacity 
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Figure 6-14 The number of buildings with Mean LPR greater than 1E-5 for the different optimised scenarios. 

Unchanged buildings are shared between scenarios, Removed are those exclusive to EZK reference case 

and Added are those exclusive to the scenario in question 
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6.7 Non-linear relation between hazard and risk 

Optimising directly on risk is not computationally feasible, as outlined in section 2.4.1, but as evident 

from this chapter, using hazard as a proxy for risk does seem to generally be a valid approach.  

However, while the dependence of risk on hazard is well understood and modelled, it cannot be 

distilled into a simple correlation without sacrificing accuracy and applicability. It is thus worth re-

visiting some aspects of the chosen hazard metrics.    

• The metrics maxPGV and maxPGA are both single points within the modelled area. Due to the 

bimodal behaviour of the earthquake density, with peaks both in the Loppersum and South-

West area, a relative small reduction in e.g. maxPGV can result in quite a large increase in 

hazard in the South-West as production is shifted in that direction, as depicted in Figure 6-5.  

• Event count and pwPGV metrics are both integrating hazard across the entire modelled area 

and thus providing a more holistic hazard metric. 

 

Figure 6-15  Schematic of point-based hazard behaviour. 

In addition to the cautionary notes on the hazard metrics, there are also subsurface aspects of the 

field that has a direct impact on the resulting risk. While most of the field is well connected in terms 

of pressure communication, the Eemskanaal cluster is in a fault block that is significantly baffled from 

the remaining South-West area of the field. The associated rock volume is such that 1 bcm of 

production from here yields more depletion and compaction than elsewhere, and this is largely 

contained locally. Combined with its location being relatively far from the points of maximum PGV and 

PGA, is resulting in its positive ranking in the random forest analysis for maximum PGV and PGA.  

  



Page 67 of 98 

 

Depletion Earthquake Density Hazard (PGV) 

Figure 6-16  Change in areal properties for maxPGV optimisation going from 70 to 90% utilisation factor. 

Common for maxPGV 

Optimisations – 764 buildings 

Exclusive to 90% utilisation 

factor – 144 buildings 

Exclusive to 70% utilisation 

factor – 16 buildings 

   
Figure 6-17  Building above the norm 1E-5 (Mean LPR)  for the maxPGV optimised case for different utilisation factors. 

70% utilisation factor has 780 buildings while 90% has 908 buildings exceeding the norm. 

The impact on risk has been further analysed using increased utilisation factor. Going from 70 to 90 

percent utilisation has relatively modest impact on the hazard metrics as shown in Table 6-2. In Figure 

6-16 the areal impact of the increased utilisation is shown. It is worth noting that the largest impact is 

in the Eemskanaal area. In terms of gas production from the Eemskanaal cluster this represents an 

increase from 3 to 3.5 bcm for gas-year 2018/19.  

While the hazard metrics show a slight decrease, risk does not behave similarly. In fact, the 

increased hazard in the South-West results in more houses exceeding the norm, see Figure 6-17.  
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7 Production Distributions as per “Bouwstenen” document 
In the document “Bouwstenen voor Operationale Strategie Groningenveld 2018/2019” (here referred 

to as the “Bouwstenen document”, Reference [22], NAM outlined two possible production strategies 

(“Inzetstrategiën”) resulting in different volume distributions across the regions of the field. In 

summary, these strategies are: 

• “Inzetstrategie 1” 

This strategy uses an ordered start-up list with higher priority given to those clusters in the 

less seismically active areas. This strategy results for an average year in an approximate equal 

volume offtake from the three main regions; South-West, South-East and East-Central. Bierum 

contributes by continuous production (approximately 15% of field total) and Eemskanaal only 

as capacity provider.  

• “Inzetstrategie 2” 

This strategy is close to how Groningen has been produced in previous years, with a fixed 

volume distribution across regions. This is irrespective of the total annual production volume 

(or temperature scenario), resulting in a distribution with the lowest achievable regional 

fluctuation exceedance.  The Bierum cluster is to be produced as per strategy 1 and the 

Eemskanaal cluster is to be produced at a maximum share of 5%.  

Although the operational production strategies defined in the “Bouwstenen document” only apply to 

gas year 2018/2019, it is possible to analyse the associated behaviour in terms of hazard and risk when 

assuming that the same strategy is maintained for subsequent years. An exact like-for-like comparison 

is however not feasible. In the “Bouwstenen document” a detailed analysis is done to establish an 

expectation for daily demand fluctuations in gas year 2018/2019, based on the actual temperature 

profiles from the past 31 years. Such resolution is not feasible in the HRA analysis, which only evaluates 

hazard and risk on an annual basis based on a monthly demand profile based on a single temperature 

profile (average temperature used for this study). Also, the minimisation of production fluctuations 

was not part of this study. With these limitations, the following comparison was made: 

• “Inzetstrategie 1” is based on a start-up list10 derived from insights from the 2017 optimisation 

study, Reference [4]. To evaluate for hazard and risk the associated volume distribution 

mentioned above (for gas year 2018/2019) was reflected in new optimisation case “Scenario 

1”.  This new scenario is then evaluated in terms of hazard and risk. 

 

• The annual volume distribution of “Inzetstrategie 2” is close to the scenario evaluated in 

chapter 6 called “17Actual”, that has fixed production fractions over time, as shown in Figure 

7-1.   

 

  

                                                            
10 The start-up list approach is described and applied in chapter 6. 
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Region Control Scenario 1 EZK Reference Case 

North [BIR] 6 mln m3/d 6 mln m3/d 

Eemskanaal [EKL] 2 mln m3/d 2 mln m3/d 

South-East [EKR_SZW_ZPD] 1 1 

East-Central (1) [OWG_SCB] 4 2 

East-Central (2) [AMR_TJM_SDB] 5 4 

South-West (1) [ZVN_SPI] 2 3 

South-West (2) [SAP_TUS] 3 5 

South-West (3) [FRB_KPD_SLO] 6 6 

Table 7-1   Modified production start-up list for scenario 1, reflecting strategy 1 from the Bouwstenen document. 

 

Scenario 1 17Actual EZK Reference Case 

   

 
Figure 7-1  Relative regional production volumes for Scenario 1, reflecting production strategy 1 from “Bouwstenen” 

document, 17Actual reflecting strategy 2 and the EZK reference case. The resulting regional volumes for 

gas year 2018/19, marked in red for scenario 1, correspond to volume distributions reported in the 

“Bouwstenen” document for strategy 1.  

 

The resulting relative region production volume over time for an average year is shown in Figure 7-1. 

As mentioned in section 6.4, South-East production region is largely capacity constrained for both 

scenarios, at a share of about 26% of field total (in gas year 2018/2019). In the EZK scenario the relative 

contribution of East-Central is higher when compared to Scenario 1, and for South-West vice versa. 

This reflects insights obtained from this study. Note that the resulting volume distribution for the gas 

year 2018/2019 for Scenario 1 (red box Figure 7-1-left) is nearly identical to the volume distribution 

resulting from an average year under strategy 1 in the “Bouwstenen” document. Over time, as 

production volume decreases, the contribution from the lower priority clusters decrease, evident in 

the production share from East-Central.  

The resulting hazard metrics are shown in Table 7-2 with corresponding risk metrics in Table 7-3 and 

Figure 7-2. The areal distribution of properties, going from depletion to risk, are shown in Figure 7-3 

to Figure 7-7. It is worth noting that Scenario 1 is very similar to the population weighted PGV case 

from chapter 6. The total number of buildings with mean LPR greater than 1E-5 is similar with 1037 

building versus 1033 for the pwPGV case. The areal difference between the scenarios is shown in 

Figure 7-8.  
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While risk has not been evaluated for the case 17Actual, corresponding to “Inzetstrategie 2”, the 

hazard metrics are the worst of those evaluated, as evident from Table 7-2. 

In general, it can be concluded that Strategy 1 defined in the “Bouwstenen” document is reducing 

seismic risk similarly to the pwPGV optimised scenarios described in this study. Based on the resulting 

volume distribution, the impact on hazard and risk should be an improvement over the EZK reference 

case. 

    Events maxPGA maxPGV pwPGV   Events maxPGA maxPGV pwPGV 

EZK Reference   61 0.160 0.127 0.041          

Scenario 1   59 0.155 0.126 0.040   -3% -3% -1% 0% 

17Actual   63 0.162 0.131 0.042   4% 1% 4% 3% 

Table 7-2  Hazard metrics for Scenario 1, that is a reflection of Stategy 1 of the “Bouwstenen” document, and 

17Actual, that is a reflection of Strategy 2. Percentage changes are w.r.t. the EZK reference case.  

 
  Total Improvement Common Added Removed 

EZK Reference  1136         

Scenario 1  1037 -9% 1030 7 106 

Table 7-3  Buildings with Mean LPR ≥ 1E-5. Common buildings are shared between scenarios, Added are those 

exclusive to Scenario 1 and Removed are those exclusive to the EZK reference case. 

 

Figure 7-2  Buildings with Mean LPR ≥ 1E-5, comparing Scenario 1 to the EZK reference case. 
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Scenario 1 EZK Reference Case ∆ w.r.t. EZK reference 

   
Figure 7-3  Pressure depletion over 4 years from gas year 2018/19 until 2021/22 for scenario 1, with comparison to EZK reference case. 

Scenario 1 EZK Reference Case ∆ w.r.t. EZK reference 

   
Figure 7-4 Earthquake density over 4 years from gas year 2018/19 until 2021/22 for scenario 1, with comparison to EZK reference case. 
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Scenario 1 EZK Reference Case ∆ w.r.t. EZK reference 

   
Figure 7-5 PGV over 4 years from gas year 2018/19 until 2021/22 for scenario 1, with comparison to EZK reference case. 

Scenario 1 EZK Reference Case ∆ w.r.t. EZK reference 

   
Figure 7-6 PGA over 4 years from gas year 2018/19 until 2021/22 for scenario 1, with comparison to EZK reference case. 
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Above norm in both scenarios (1030) Above the norm in Scenario 1 (7) Above the norm in EZK Reference (106) 

   

Figure 7-7 Building above the norm 1E-5 (Mean LPR)  for scenario 1, with comparison to EZK reference case.  

Above norm in both scenarios (1028) Above the norm in Scenario 1 (9) Above the norm in pwPGV case (5) 

  
 

Figure 7-8  Building above the norm 1E-5 (Mean LPR) for scenario 1, with comparison to the optimised pwPGV case.  
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8 Concluding remarks 
On the instruction of SodM, NAM has investigated the optimum production distribution for various 

hazard and risk metrics. Following the updated outlook on production (Basispad Kabinet), the decision 

on the distribution of production will be taken by the Minister of EZK. Therefore, the aim of this report 

is to establish optimal production distributions for several optimisation objectives, and the resulting 

hazard and risk associated with these. 

This report presents the options for the optimisation of the distribution of the gas production over the 

Groningen field, based on scientific research.  It includes the impact each change has for the 

population in Groningen as a whole and the regional differences. We have shown that seismicity in 

the 2018-2022 timespan can be reduced by redistributing production over de Groningen field. 

Dependent on the metric to be optimised (nuisance, hazard, risk), different optimised distributions 

result. Taking account of operational limitations, risk reduction or nuisance reduction up to 10% is 

possible relative to the reference case (WP2016 Addendum for Basispad Kabinet, June 2018). 

However, this represents a choice that needs to be made by the Minister of EZK. 

The V5 version of the HRA model has improved the spatial resolution of modelled seismicity. This 

update with respect to the previous V4 model version yields a systematic shift of the hazard from 

West to East.  Consequently, the 2018 optimisation yields different areal distributions as compared to 

the 2017 study for the various optimisation objectives investigated. The Eemskanaal and South-West 

areas are now less hazard prone, whereas the Eastern clusters are more prone to hazard. The 

combined effect is that the optimisation favours more offtake from the South as compared to the 

2017 results. 

Despite the update in the underlying models, the analysis presented in the report “Bouwstenen voor 

Operationale Strategie Groningenveld 2018/2019” was found to be robust. In terms of hazard, 

“Inzetstrategie 1” aligns roughly with the optimisation for population-weighted PGV as established in 

this study. Still greater reductions in hazard metrics can be achieved (albeit with spatial differences) 

when optimising production distribution for other objective functions. Detailed analysis (production 

fluctuations and temperature sensitivity) as done in Bouwstenen document for gas year 2018/2019, 

has not been performed for the various optimised scenarios.  

  



Page 75 of 98 

 

9 References 
 

[1]  “Technical Addendum to the Winningsplan Groningen 2016 - Production, Subsidence, Induced 

Earthquakes and Seismic Hazard and Risk Assessment in the Groningen Field, PART I – Summary 

and Production,” NAM, Assen, 1/4/2016. 

[2]  Minister of Economic Affairs, “Instemmingsbesluit winningsplan Groningenveld,” 30/9/2016. 

[3]  Minister of Economic Affairs, “Wijziging instemmingsbesluit winningsplan Groningenveld,” 

24/5/2017. 

[4]  L. Geurtsen and P. Valvatne, “Optimisation of the distribution of production over the Groningen 

field to reduce Seismicity,” December 2017. 

[5]  SodM, “Beoordeling "Optimisation of the Production Distribution over the Groningen field to 

reduce Seismicity",” 30/11/2017. 

[6]  SodM, “Reactie SodM op plan van aanpak "Optimisation of the Production Distribution over the 

Groningen field to reduce Seismicity",” 6/4/2017. 

[7]  SodM, “Beoordeling toepasbaarheid resultaten rapport "Optimisation of the Production 

Distribution over the Groningen field to reduce Seismicity",” 20/2/2018. 

[8]  Minister of Economic Affairs, “Letter to Parliament: Gaswinning Groningen”,” 29/3/2018. 

[9]  J. Van Elk and D. Doornhof, Assessment of Hazard, Building Damage and Risk, Assen: NAM, 

November 2017.  

[10] H. Van Oeveren, P. Valvatne and L. Geurtsen, “Groningen Dynamic Model Updates 2017,” NAM, 

Assen, 2017. 

[11] S. Bourne and S. Oates, Extreme threshold failures within a heterogeneous elastic thin-sheet and 

the spatial-temporal development of induced seismicity within the Groningen gas field, Journal 

of Geophysical Research: Solid Earth 122, 10,299--10, 2017.  

[12] S. Bourne, S. Oates and J. Van Elk, The exponential rise of induced seismicity with increasing 

stress levels in the Groningen gas field and its implications for controlling seismic risk, 

Geophysical Journal International 213, 1693—1700, 2018.  

[13] J. Van Elk, A. Mar-Or, L. Geurtsen and P. Valvatne, “Seismic Risk Assessment for Production 

Scenario “Basispad Kabinet” for the Groningen field,” NAM, Assen, June 2018. 

[14] Ministry of Economic Affairs, “Letter to NAM: Verwachtingenbrief aanvulling winningsplan 

Groningenveld 2016,” 2/5/2018. 



Page 76 of 98 

 

[15] SodM, “Advies Groningen-gasveld n.a.v. aardbeving Zeerijp van 8 januari 2018,” 1/2/2018. 

[16] D. Wald, V. Quitoriano, T. Heaton and H. Kanamori, Relationships between peak ground 

acceleration, peak ground velocity, and modified Mercalli intensity in California, Earthquake 

Spectra 15, 557-564., 1999.  

[17] D. Wald, K. Jaiswal, K. Marano, D. Bausch and M. Hearne, PAGER — Rapid assessment of an 

earthquake’s impact., U.S. Geological Survey Fact Sheet 2010–3036, 2010.  

[18] T. I. Allen, D. Wald, P. S. Earle, K. D. Marano, A. Hotovec, K. Lin and M. Hearne, An Atlas of 

ShakeMaps and population exposure catalog for earthquake loss modeling., Bull. Earthq. Eng., 

v. 7, DOI: 10.1007/s10518-009-9120-y., 2009.  

[19] Q. De Zeeuw and L. Geurtsen, “Groningen Dynamic Model Update 2017 – V5,” NAM, Assen, 

September 2017. 

[20] “Seismic Risk Assessment for a selection of Gas Production Scenarios for the Groningen field,” 

NAM, Assen, March 2018. 

[21] J. Uilenreef, J. van Elk and A. Mar-Or, “Exposure Database (EDB) voor het gebied van het 

Groningen veld -- Stand van Zaken september 2018,” 2018. 

[22] “Bouwstenen voor Operationele Strategie Groningenveld 2018/2019,” NAM, 15/06/2018. 

[23] T. Mitchell, Machine Learning, McGraw Hill. ISBN 0-07-042807-7., 1997.  

[24] T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning: Data Mining, 

Inference and Prediction, Springer. ISBN 978-0-387-84857-0, 2008.  

[25] L. Breiman, “Random Forests,” January 2001. [Online]. Available: 

https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf. 

[26] A. Liaw, “The randomForest package for R - Breiman and Cutler's Random Forests for 

Classification and Regression,” 7th October 2015. [Online]. Available: https://cran.r-

project.org/web/packages/randomForest/randomForest.pdf. 

[27] M. Kursa and W. Rudnicki, “Feature Selection with The Boruta Package,” Journal of Statistical 

Software, vol. 36, no. 11, 2010.  

[28] J. Friedman, “Greedy Function Approximation: A Gradient Boosting Machine,” Annals of 

Statistics,, vol. 29, pp. 1189-1232, 2001.  

[29] L. Devroye, “Non-Uniform Random Variate Generation,” Springer-Verlag, New-York, 1986. 

[30] S. Bourne and S. Oates, “Extreme threshold failures account for earthquakes induced by fluid 

extraction,” Shell, 15/2/2017. 



Page 77 of 98 

 

[31] “Assessment of Hazard, Building Damage and Risk,” NAM, Assen, November 2017. 

[32] S. Bourne and S. Oates, “An activity rate model of seismicity induced by reservoir compaction 

and fault reactivation in the Groningen gas field,” Shell, 22 June 2015. 

[33] S. Bourne and S. Oates, “An activity rate model of induced seismicity within the Groningen field,” 

30 September 2014. 

[34] “Bouwstenen voor Operationele Strategie Groningenveld 2018/2019,” NAM, Assen, 15/6/2018. 

[35] H. Van Oeveren, P. Valvatne and L. Geurtsen, “Groningen dynamic model updates 2017,” NAM, 

Assen, September 2017. 

[36] K. Jaiswal and D. Wald, “An Empirical Model for Global Earthquake Fatality Estimation,” 2010. 

[37] “Groningen Meet- en Regelprotocol,” NAM, 29/5/2017. 

 

 

  



Page 78 of 98 

 

Appendix A Model analysis using Machine Learning  

A.1 What is meant by Machine Learning 

In Reference [23] a popular definition of a Machine Learning algorithm is given. It is said to: 

“learn from experience E with respect to some class of tasks T and performance measure M if 

its performance at tasks in T, as measured by M, improves with experience E”.  

In the context of this report, this would translate as: 

 experience E control response combinations from the experimental design, 

 

 task T predicting the output for the objective of choice (population 

weighted PGV, max PGV, max PGA, number of tremors, or 

hybrid thereof) 

 

 performance measure M error metric, such as the Mean Square prediction Error (MSE). 

 

A.2 Measuring the Predictive Performance of a Model 

 

Mathematical Notation and Definitions: 

The mathematical notations and abbreviations used are as follows: �  number of controls, i.e. the number of cluster groups that can contribute to the total 

production (� > 0) �  number of available control response data points (� > 0)  ��	 fractional contribution of cluster 
 for branch � to the normalised production of 1,  

with 1 ≤ 
 ≤ � and 1 ≤ � ≤ � ; ��	 ∈ �0,1� 
 

Furthermore, we denote a response of the Mores-HRA coupling (e.g. pwPGV) by: 

 �� ∈ ℝ  

if the corresponding controls �� ∈ �0,1�� are used as input. Note that for the sake of simplicity the 

actual units are omitted since they should be clear from the context. 

 

To abbreviate our notation, we will refer to the 
-th data point, consisting of control settings and a 

Mores-HRA response, as: �� = ��� , ��� ∈ �0,1�� × ℝ,  with 1 ≤ 
 ≤ �.  

We introduce the following notations : � = ��� , … , ���,	 and � = �� , … , ���.  

Let ! ⊆ � be a subset of data points in �. We denote by |!| the number of points in the set. 

Furthermore, we denote a proxy model that has been trained/calibrated on the points in � that 

maps the controls to a response of the Mores-HRA coupling by 

 

 $%: �0,1�� ↦ ℝ 
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For a control point �� ∈ �0,1�� we denote the response of the proxy model, that was trained on !, 

by: 

 �̃� = $%����.  
In analogy to the previous abbreviations, we let 

 �) = ��̃� , … , �̃��. 

Finally, we call a function that allows to compare true Mores-HRA responses with predicted Mores-

HRA responses (through a proxy model) as an error metric:  *:ℝ� × ℝ� ↦ ℝ 

 

General Remarks: 

In order to calibrate the proxy model, it is “trained” on a subset of �, which we will call the training 

set: 

 ! ⊆ �.   

The performance of the model is measured on a separate subset of �, the so-called validation set: 

 + ⊆ �.  

When measuring the predictive performance of any model in an error metric *, it is important to 

have a methodology in place that can estimate the performance of the model on as-of-yet unseen 

data.  

If the performance of a model is assessed in sample, there is overlap between the training and test 

data sets, such that: 

 ! ∩ + ≠ ∅,  

For an in-sample assessment, the error metrics are to a certain extent only statements about how well 

the existing training data can be reproduced.  

For models that provide sufficient degrees of freedom in their internal representations, there is always 

the danger of over-fitting to !. In general, with increasing model flexibility and complexity the 

prediction error measured in sample tends to get smaller. However, this does not imply that the 

generalisation error of the model on data that was not used to train the model (such as points in � ∖!) will decrease as well. Hence, one commonly accepted way of measuring and reporting the 

predictive power of a model is to test it only on unseen data. This is termed out of sample validation.  

Practically speaking, for out of sample validation the data set � is partitioned into training and 

validation data sets  ! and +, normally in a ratio of around 80:20 or 90:10. The model is then trained 

on the respective training data set ! and used to predict the data in the corresponding validation data 

set  +. The performance metrics are then computed on the known responses of the validation data 

(from the Mores-HRA coupling) against the prediction by the model $%. Additionally, uncertainties in 

the error measure itself are quantified and reported in terms of the standard error, which is the 

associated standard deviation.  
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It is good practice to not only randomly partition the data set once in training and validation set, but 

to repeat this procedure several times. A common scheme for subdividing the data into equally sized 

partitions is cross-validation, which is described in more detail in the following.  

Estimating the Generalisation Error and Associated Standard Error via Cross Validation: 

The general objective, as outlined above, is to compute the generalisation error and associated 

confidence interval of a model $% on unseen data + in the chosen error metric(s). It is important to 

realise that the choice of the partition in which the given data is split into training and test set will 

have an impact on both the trained model $% and on the error metrics computed on the test set. In 

order to reduce this effect related to the partitioning of the input data, a common strategy is to run 

several model training and prediction experiments on different partitions of the data and to report 

the mean of the error metrics and the associated standard errors. If the experiment is performed 0 
times, the uncertainty in the estimates is reduced by a factor of  

 √2.  
A common partitioning technique is to split the given data into 0 (almost) equally sized bins which 

contain 3�2 4 elements, except potentially the last bin which may have less elements. We abbreviate the 

data points in the 
-th bin with  5�. Then consequently 0 training and test sets are formed where the 
-th test set is given by 5� and the 
-th training set is given by  � ∖ 5� . In total 0 models are trained and 

evaluated. In the end, the mean of the individual error metrics is reported and the associated standard 

error is computed. This procedure is known as cross-validation. A nice property of this scheme is that 

it ensures that every point in � is predicted exactly once out of sample. A schematic overview of 5-

fold cross-validation is contained in Figure A-1. 

 

  

5  5� 56 57 58 

� 

test train train train train 

Fold 1 

train test train train train 

train train test train train 

train train train test train 

train train train train test 

err. on 5  err. on 5� err. on 56 err. on 57 err. on 58 

mean error 

Fold 2 Fold 3 Fold 4 Fold 5 

Figure A-1  Stylised example of 5-fold cross-validation 
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Error Metrics 

The following error metrics are used related to the estimation of the predictive performance of the 

proxy models:  

 

• The Mean Squared Error of a model $%, with respect to training set ! and validation set +, is 

defined as: 

MSE�$% , +� = 1|+|<��� − �̃���,|>|
�?  

• The Root Mean Squared error is defined as: 

RMSE�$% , +� = A 1|+|<��� − �̃���|>|
�? .	

Note that in these error measures larger deviations in predictions from the true values get penalised 

more than smaller deviations.  

The associated Standard Errors are given by: 

• For MSE: 

SECDE�FG,>� = sd J�� − �)��KL|+| 	
 

• For RMSE: 

SEMCDE�FG,>� ≈ SECDE�FG,>�2 ∙ RMSE�$% , +� = 12 sd J�� − �)��K
Q∑ ��� − �̃��|>|�? �	

 where sd�∙� denotes the usual standard deviation and �� − �)�� = J�� − �̃ ��, … , ��|>| − �̃|>|��K. 
 

A.3 CART Trees and Random Forests 

A Classification and Regression Tree (CART) is a tree-based ML method. Tree based methods partition 

the feature space into a set of (high-dimensional) rectangles and fit a simple model for each rectangle, 

Reference [24]. We mention this method herein because it is important for understanding the Random 

Forest algorithm that is the primary ML algorithm we use for the analysis of the Mores-HRA coupling. 

To construct a CART decision tree, first a root node is created. From the list of features, which in our 

situation are the cluster offtake splits, an optimal feature for branching and an associated splitting 

value are determined based on the minimisation of the sum of the square errors between the 

prediction of the resulting model and the actual value of the prediction target. This branching feature 

and value is used to partition the training data into a “left” and “right” subset. The left and right 
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branches correspond to samples that have a value less than or equal to the splitting value and greater 

than the splitting value, respectively, for the feature upon which the splitting is applied. For each of 

the branches, a new child node is defined and the previous procedure is repeated, based on the subset 

of the data that remains in the branches in question. It is generally considered to be sensible to use a 

binary split, at each branch, primarily since it is easier to implement but also because in some 

situations not enough data would remain in each of the branches, in the next level down in the tree. 

The splitting procedure is applied, recursively, until only one data point remains in each of the sub-

branches. A terminal node is then defined, such that the value of the prediction target is stored. This 

is the value that the tree would predict for a new sample that follows the same route through the 

tree. In practice, for a single CART tree, it would be common to apply pruning, a method in which the 

terminal nodes contain more than one data point, for which an average would be taken. This avoids 

the tendency to over-fit to the training data by trading-off bias and variance. Note that the CART trees 

which are used inside the Random Forest algorithm are not pruned per-se, but they are also not grown 

to the point at which each termination node is a single data point. An ensemble of trees is used to 

reduce the chance of over-fitting. An illustrative example of an individual CART tree can be seen in 

Figure A-2. Internal nodes are represented by white circles and terminal nodes by red circles. Suppose 

that you have 10 controls and �6 = 0.1, then the prediction for pwPGV from this individual tree is 

0.06.  

 

Figure A-2  Illustrative example of a CART tree that relates controls to a Mores-HRA response 

The Random Forest algorithm uses an ensemble of CART trees. It was originally proposed by Breiman 

in 2001 and has since been cited more than 30000 times [25]. This illustrates its widespread use and 

acceptance throughout academia and in many industrial applications. Each of the CART trees is 

constructed on a random sub-sample of the training data and using only a subset of the features, 

chosen, again, at random. The prediction of the model is obtained by traversing each individual CART 

tree with the test data and in the context of regression, taking the mean of the predictions of each 

individual CART tree. An illustration of a Random Forest model, consisting of several hundred 

individual CART trees, can be seen in Figure A-3. The main tuning parameters are the number of trees 

and the number of features that are randomly sampled. The Random Forest is typically seen to be 

insensitive to hyper-parameter tuning and works well with default settings. It is good at capturing non-
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linear relationships in small to medium sized data sets but is considered too computationally 

expensive for “Big Data”. It can handle both categorical and numerical data and is essentially invariant 

to monotonic transformations of the features. All predictions it makes remain within the range of the 

observations in the training data. We use the implementation available in the ‘randomForest’ package 

for R, Reference [26]. Note that the programming language R is the de facto standard for statistical 

computing and contains many implementations that have been checked numerous times for statistical 

rigor.  

 

Figure A-3  Illustrative example of a random forest model, consisting of an ensemble of CART trees. 

 

A.4 Relative Variable Importance Analysis 

It is not our sole intention to build a proxy model for the relationship between the cluster offtake splits 

and the prediction target of choice, e.g. population weighted PGV. We note however, that by using 

the Random Forest algorithm, it is possible to construct a proxy model with an out of sample 

coefficient of determination of over 0.95. This would generally be considered sufficiently accurate 

such that a variable importance assessment, performed on the proxy model, would be informative.  

Our primary objective is to use the proxy model to understand the relative impact of changing each 

of the cluster offtake splits on the prediction target in question. In the simplest case, one could 

consider constructing a Pareto plot by systematically varying each of the cluster offtake splits in a 

univariate manner, adjusting each of the other offtake rates, proportionally. However, this analysis 

does not account for the interactions and subsequent impact on reservoir response of a multivariate 

setup. There may be combinations of cluster offtake splits that result in more extreme behavior. The 

univariate analysis could result in one developing an overoptimistic view of how well one understands 

the model response over the entire parameter space.  
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Some Machine Learning algorithms, such as the Random Forest method, have built-in functionality 

that allows one to capture the relative importance of features in the multivariate context. One such 

technique, involves systematically switching the information for a feature between different samples, 

to remove the information that it contains, Reference [25]. A Random Forest model is first built for 

the prediction target of choice, using the training data, with performance metrics assessed, out-of-

sample using test data (i.e. performing a blind test). For each of the features in turn, the values are 

permuted and re-run through the trained Random Forest model. For some of the features, there will 

be a detrimental impact on the accuracy of the predictions, as measured by the mean square 

prediction error (mse). If the feature in question is important, one would expect a large impact on the 

performance. If a relatively small impact on the performance is observed, then it can be inferred that 

the feature is not particularly important. The analysis can be repeated for each of the features in turn.  

Whether the estimated importance in terms of the permutation based increase in mse of a feature is 

statistically significant can be determined by applying a variant of Student’s t-test. The procedure is 

implemented for random forests in the Boruta algorithm and the associated R package. Further details 

can be found in Reference [27]. 

A.5 Partial Dependence Analysis 

The relative variable importance analysis does not indicate whether an increase in the feature in 

question would cause an increase or decrease to the prediction target considered. For simple methods 

like a linear regression model, it is easy to understand the underlying relationship between the 

features and the prediction target because one can look at the sign and magnitude of the model 

coefficients. A simple parametric description cannot be examined in a similar fashion for the Random 

Forest.  

Instead we can use the concept of a partial dependence plot, introduced by Friedman in Reference 

[28], that can be used for any so-called “black-box” style method. A Random Forest model is first built 

using the training data. The partial dependence analysis is then carried out, based on this model.  Note 

that the partial dependence can be estimated for any subset of variables, such that interaction effects 

can be better understood. Let S denote the set of  � controls on which the model response depends. 

We consider a subset ST of S, such that U ⊂ {1,… , �}, and the complement set of controls is defined 

as ST̅, such that U̅ = {1, … , �} ∖ U. For a set of controls S, the response of the Random Forest model 

is given by: 

 $�S� = $�ST , ST̅�.  
The partial dependence of the model on the controls specified in U is then defined as: 

  

$Z�ST� = 1�<$�ST, ��T̅�,�
�?  

where the ��T̅  are the values of the controls ST̅  of the 
-th point of the training data on which $�S� 
was trained.  

In order to graph the relationship, we evaluate the partial dependence function $Z�ST� on a regular 

grid spanned between the minimally and maximally observed values of SZ in the training set. Compare 
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Reference [24] for further details. The procedure can be performed for each of the subsets of the 

features, in turn. This can be a computationally expensive process but for decision tree based 

methods, the partial dependence can be rapidly computed, directly from the trees, Reference [24].   

Note that this partial dependence analysis provides more than merely the marginal dependence 

between the feature and prediction target. It represents the average effect of the feature in question 

on the predictions of the Random Forest model after controlling for the effects of all other features 

on the Random Forest model.  
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Appendix B Random Forest Sampling 
When creating a “proxy model”, it is important that a sufficient number of control and output pairs is 

available to which the proxy model is fit. To be able to make statements about the overall quality of 

the proxy model, it is necessary that the proxy model is based on a representative set of control output 

pairs that capture enough of the dynamic behaviour of the original HRA model. 

B.1 Workflow 

The control space was uniformly randomly sampled and it was tested whether the out-of-sample 

prediction performance of the proxy model exceeded a certain threshold that is deemed sufficient 

for the modelling purposes. This threshold is chosen to be close to the irreducible uncertainty level 

that is due to the aleatoric uncertainty of the HRA model (section3.4.2). Once this threshold is 

exceeded, no additional samples need to be generated.  

The epistemic uncertainty in the HRA model is captured by the various branches of the uncertainty 

tree. One proxy model is created for each of the HRA branches. A conceptual overview of the 

workflow for one individual branch of the HRA is shown in Figure B-1. 

 

 

 
Figure B-1  Sketch of proxy workflow for one HRA branch 

B.2 Mathematical Notation and Definitions 

The mathematical notations and abbreviations used are as follows: * number of HRA branches (* > 0) � number of controls, i.e. the number of cluster groups that contribute to the total 

production (� > 0) �	  number of samples for branch �, with 1 ≤ � ≤ * and �	 > 0 ��	  fractional contribution of cluster 
 for branch � for total normalised production of 1, 

 (0 ≤ ��	 ≤ 1)  
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Furthermore, for 1 ≤ � ≤ * the equality ∑ ��	 = 1��?  holds. For the sake of simplicity, in the 

following, the focus is on one individual branch at a time, and the corresponding branch index is 

omitted in the notation. 

 

B.3 Uniformly Sampling from a Convex Polyhedron 

The total control space is span by all possible combinations of production fractions for the various 

controls, whereby the sum of the production fractions is 1. Due to this constraint of ∑ �� = 1��? , the 

admissible control strategies all lie on a unit �� − 1�-simplex. A simplex is the generalisation of the 

concept of triangles and tetrahedra to higher dimensions. In Figure B-2 an illustration is given for a 

system of 3 controls, where a multitude of admissible combinations make up a triangle.  

 
Figure B-2  Admissible combinations for 3 controls lie on 2-simplex 

 

The theory for sampling uniformly from a unit simplex is well established and for instance described 

in Reference [29], page 568. A rather simple algorithm for drawing uniformly random samples that is 

also intuitive works as follows: 

1. Draw � − 1 samples uniformly from the interval �0,1�. Call the resulting set U. 

2. Add the numbers 0 and 1 to the set U. 

3. Order the set U in increasing order and denote its ordered elements by [� with 1 ≤ 
 ≤ � \ 1. 

4. Let �� = [�] − [�  for 1 ≤ 
 ≤ �. 

One can show that the algorithm described above will create uniformly random samples in the unit �� − 1�-simplex, see [29] p. 568 Theorem 2.1. The computational cost to create �	 	samples for a 

particular branch � is in ^��	 log �	 	�, which is negligible compared to the time it takes to run the 

associated Mores model in combination with the HRA. A set of 3000 samples that have been 

generated using this approach is contained in Figure B-2. 
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Remark: 

The strategy of drawing � times uniformly from the interval �0,1� and then normalizing by the sum 

to obtain ��  such that ∑ �� = 1��?  and repeating this procedure �	 times will yield samples that are 

not uniformly distributed in the control space. See Figure B-3 for an illustration. Extreme 

combinations of parameters are sampled with a lower probability which may mean that the control 

space is not properly covered. This may be even more of an issue in a high dimensional space, as 

with � = 10, and/or if the model response is complex towards the extreme points of the control 

space. 

 

 
Figure B-3  Non-uniform sampling of a 2-simplex 

 

 

B.4 Sampling strategy for calibration of the Random Forest proxy model 

The actual situation at hand is slightly more involved than just sampling from a unit simplex, since 

some of the controls themselves are subject to boundary conditions, which are based on the 

maximal contribution that individual production cluster can make over the forecasting horizon for 

which the contribution of the cluster is kept constant. These upper boundaries have been 

determined empirically based on a set of several prediction runs. The lower boundaries are in place 

to ensure the minimal operational constraints of the individual clusters are met.  

 

The following boundary conditions were applied:  

 0.01 ≤ � ≤ 0.25 0.01 ≤ �� ≤ 0.25 0.01 ≤ �6 ≤ 0.51 0.01 ≤ �7 ≤ 0.31 0.01 ≤ �8 ≤ 0.38 

0.01 ≤ �e ≤ 0.35 0.01 ≤ �f ≤ 0.16 0.01 ≤ �h ≤ 0.30 0.01 ≤ �i ≤ 0.36 0.01 ≤ � j≤ 0.60 
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Schematic illustration 

The resulting control space that one obtains if those boundary conditions are in place is a convex 

polyhedron. For illustrative purposes consider the case with 3 controls which have the following 

boundary conditions:  

 0.2 ≤ � ≤ 0.60 0.2 ≤ �� ≤ 0.60 0.10 ≤ �6 ≤ 0.90 

 

A visualisation of the associated control space is contained in Figure B-4.  

 
Figure B-4  Control space for 3 controls with constraints is a convex polyhedron 

 

Applied sampling strategy 

The strategy that is used to sample uniformly from a convex polyhedron is to sample uniformly from 

the associated unit simplex and to discard all samples which do not satisfy the boundary conditions 

on the �� as specified above. This rejection sampling strategy is straightforward to implement. Even 

though more direct techniques would exist that are computationally less costly, the cost to generate 

a few 1000 samples for 10 controls is still negligible (in the order of seconds) compared to the cost of 

running the coupled Mores and HRA models. The sampling depicted in Figure B-4 was obtained using 

this rejection sampling strategy. 
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Appendix C Comparison of 2018 to 2017 optimisation study 
The results as presented in this 2018 update of the optimisation study were derived using the updated 

V5 model suite. There are some significant differences in the optimised production fractions when 

compared to the 2017 optimisation study [4], which was using the V4 model suite. This chapter 

provides a more detailed investigation of the differences and their causes. 

 

C.1 V4 to V5 differences 

The update from the V4 to the V5 version of the model suite (dynamic reservoir model, seismological 

model, and ground-motion-prediction-equations) is discussed in Chapter 3. The differences in 

response between both model suites were assessed using the optimisation results of the 2017 study. 

The associated production rate (21.6 N.Bcm/y) and production distributions across the production 

clusters were evaluated with the V5 Mores model for the 5 year period from 1/1/2018 to 31/12/2022. 

Three production scenarios were considered (Figure C-2): 

• Reference case (Business Plan 2017) 

• 2017 optimisation for Events 

• 2017 optimisation for population weighted PGV 

The history matched pressure at the start of the period is shown in Figure C-2, while the associated 

pressure depletion for each scenario is given in Figure C-3 to Figure C-5. 

 
Figure C-1 2017 production distribution across the model controls 

 

  



Page 91 of 98 

 

History match 

V4 – Pressure at 1/1/2018 

 

V5 – Pressure at 1/1/2018 

 

V4 – V5 

 
Figure C-2 V4 versus V5 pressure match at 1/1/2018 

Reference case (2017 production fractions) 

V4 – Depletion 2018-2022 

 

V5 – Depletion 2018-2022 

 

V5 – V4 

 
Figure C-3 Depletion forecast from 1/1/2018 to 31/12/2022 for the Reference scenario. 

Optimised for Events 

V4 – Depletion 2018-2022 

 

V5 – Depletion 2018-2022 

 

V5 – V4 

 
Figure C-4  Depletion forecast from 1/1/2018 to 31/12/2022 for the event optimised scenario. 
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Optimised for pwPGV 

V4 – Depletion 2018-2022 

 

V5 – Depletion 2018-2022 

 

V5 – V4 

 
Figure C-5 Pressure depletion between 1/1/2018 and 31/12/2022 for pwPGV optimised scenario. 

It can be observed from Figure C-2 to Figure C-5 that the largest difference in depletion, both during 

history match and forecast, is at the edge of the modelled area. This is outside the area of well control, 

resulting in lack of data to constrain the subsurface model. Within the bulk of the field, where most of 

the seismicity occurs, the difference between the models is relatively modest, typically within 1 bar.  

As a next step, for each pressure depletion scenario, the difference in response between the V4 and 

V5 model suite can be assessed 

The estimated earthquake density (Figure C-6) and hazard (Figure C-7) resulting from the reference 

case depletion (Figure C-3) shows that the V5 model has a systematic shift in earthquake density and 

hazard towards the East.  

 

Reference Case (2017 Production Fractions) – Earthquake Density 

V4 V5 Difference 

   
Figure C-6  Estimated earthquake density from 2017 optimisation study using V4 and V5 model – reference case.   
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Reference Case (2017 Production Fractions) – Hazard (PGV) 

V4 V5 Difference 

Figure C-7 Estimated PGV hazard from 2017 optimisation study using V4 and V5 model – reference case. 

 

When optimising for event rate, production is mainly moved away from the South-West, including 

Eemskanaal, towards the South-East and East. The V4 model predicts a corresponding reduction in 

event rate in the West of the field, with only a limited increase in the East, Figure C-8. Using the V5 

model, the same production distribution results in less pronounced reduction in the West, while at 

the same time a larger increase in the East, Figure C-9. The result is that the optimisation gain from 

the 2017 study is significantly reduced when the same production distribution is re-evaluated with the 

V5 model. In Table C-1 and Table C-2, the calculated hazard metrics are summarised for each 

production scenario, respectively for the V4 and V5 model suite. For example, the improvement in 

event rate has dropped from 15% (V4) down to 4% (V5).  

 

 

Objective   Hazard Metric (V4)   Improvement (V4) 

   Events maxPGA maxPGV pwPGV  Events maxPGA maxPGV pwPGV 

Reference (BP17)  105 0.265 0.166 0.061          

Event Count  89 0.245 0.156 0.054  -15% -8% -6% -11% 

pwPGV  89 0.247 0.163 0.053  -16% -7% -2% -13% 

Table C-1  Outcome from 2017 optimisation study (results generated with V4 models). 

Objective   Hazard Metric (V5)   Improvement (V5) 

   Events maxPGA maxPGV pwPGV  Events maxPGA maxPGV pwPGV 

Reference (BP17)  96 0.195 0.167 0.055          

Event Count  92 0.200 0.162 0.051  -4% 2% -3% -6% 

pwPGV  96 0.198 0.178 0.050  -1% 1% 6% -9% 

Table C-2  2017 optimisation outcome re-evaluated with V5 models 
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Optimised for Event Rate – V4 Model (2017 Fractions) 

∆ Depletion ∆ Event Density ∆ Hazard (PGV) 

Figure C-8  Event rate optimised case from 2017 optimisation study – original V4 based results. 

 

Optimised for Event Rate – V5 Model (2017 Fractions) 

∆ Depletion ∆ Event Density ∆ Hazard (PGV) 

   
Figure C-9 Event rate optimised case from 2017 optimisation study – original results re-run with V5 model. 

 

Overall, a systematic shift in hazard is found between the V4 and V5 model suites from West to East. 

However, as illustrated in Figure C-10, the shift is well within the epistemic confidence intervals.  
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Figure C-10  PGA difference between V4 and V5 model in context of the epistemic uncertainty  

 

 

 

C.2 Comparing Random Forest analysis between V4 and V5 

The changes between the 2017 study and this update were also investigated for the Random Forest 

models. Figure C-11 compares the partial dependence summary map charts. It can be observed that 

the results for the V5 model are fairly similar between the Basispad Kabinet production profile and 

21.6 Bcm/y (note that the latter was evaluated using the 2017 model controls). When in turn 

comparing the 21.6 Bcm/y production profile between V5 and V4, there are significant differences. 

Most notably there is a polarity flip at the [EKL] control, and the relative impact of the [PAU_POS_OVS] 

control is substantially lower. 
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Figure C-11 Comparison between [V5 Basispad Kabinet], [V5 at 21.6 Bcm/y] and [V4 at 21.6 Bcm/y] for various objective function
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Appendix D List of Abbreviations 
 

Bcm N.Bcm refers to a volume of a billion normal cubic meters.  Normal means the volume is 

measured at a standard temperature (0 degree C) and pressure (1 bar) 

BHP Bottom Hole Pressure  

BP17 Business Plan 2017 

DCS Distributed Control System 

EZK Ministerie van Economische Zaken en Klimaat 

GPS Global Positioning System 

Gron Groningen 

GEM Global Earthquake Model (Global Science Forum of the OECD) 

GenREM Generalised Reservoir Evaluation Model 

GMPE Ground Motion Prediction Equation 

GMM Ground Motion Model 

GPS Global Positioning System 

GTS Gasunie Transport Services B.V. 

GWC Gas water contact 

HRA Hazard and Risk Assessment 

InSAR Interferometric Synthetic Aperture Radar 

IPSM Integrated Production System Model 

JT valve Joules Thompson valve 

KNMI Koninklijk Nederlands Meteorologisch Instituut 

KO drum Knock Out Drum 

M Earthquake Magnitude 

ML Local Earthquake Magnitude 

M/Mw Moment magnitude 

MEA Minister of Economic Affairs 

Mmax Maximum Earthquake Magnitude 

MoReS Modular Reservoir Simulator 

MSE  Mean Square prediction Error 

NAM Nederlandse Aardolie Maatschappij B.V. 

LTS Low Temperature Separation 

OV Overslagen (gas custody transfer stations) 

PGA Peak Ground Acceleration 

PGV Peak Ground Velocity 

pwPGV Population Weighted PGV 

SAC Scientific Advisory Committee (Winningsplan 2016) 

SodM Staatstoezicht op de Mijnen (also SSM State Supervision of Mines) 

SPMI Simultaneous Perturbation and Multivariate Interpolation 

THP Tubing Head Pressure 

TNO Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek,  

 Netherlands Organisation for Applied Scientific Research 

UGS Underground Gas Storage 
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