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1 Summary 
This report describes the work done to explain and reduce the difference between the NAM-

predicted long-term subsidence and the field data in the Ameland field, The Netherlands: The 

subsidence appears to continue even though the depletion rates have been decreasing significantly 

over the past years. As a result, the maximum subsidence and the subsidence patterns predicted by 

previous subsidence models did not fully agree with the field data, making predictions of subsidence 

uncertain. The long-term subsidence study addresses this issue with part two (LTS-II) being a follow-

up of part one that was finished in 2015 and outlined in NAM (2015a). The study work in part one 

(LTS-I) concluded on the relevant physical mechanisms that could explain the anomalous subsidence 

observed above the Ameland field. The main objective of the LTS-II project is the implementation of 

the results obtained in LTS-I into a new confrontation workflow, applied on a real field case: the 

Ameland field. A unique feature of this developed confrontation workflow is that it considers the 

uncertainty of geodetic data, the reservoir model and the geomechanical model in the forecasting of 

subsidence resulting from gas production. 

A key element of the new workflow is that model results are compared with subsidence 

measurements in an objective way. The workflow incorporates the findings of the LTS-I study and as 

demonstrated here is able to identify the most likely model factors, like reservoir and aquifer 

depletion scenarios, and parameter values for the compaction model and influence function (i.e. a 

model that translates the compaction source to surface subsidence). Moreover, posterior (after 

confrontation with the geodetic data) probability distributions for the model data show redefined 

distributions for the input values of the model data. The workflow consists of 5 main components as 

visualised in Figure 1, that are summarised here. 

 

 

Figure 1. Main components of the confrontation workflow as adopted in this study. 

Results of the LTS-II study demonstrate that a successful workflow was created that confronts 

subsidence model results with measurements in an objective way. The workflow incorporates the 

findings of the LTS-I study and as demonstrated here can identify the most likely model factors, like 

reservoir and aquifer depletion scenarios and parameter values for the subsidence model. Moreover, 
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posterior (after confrontation with the geodetic data) probability distributions for the model 

parameter values show redefined distributions when compared to the prior input values of the 

model parameters.  

Pressure scenarios 

To describe the possible variation in the pressure scenarios for Ameland, 58 reservoir scenarios were 

created that were all history matched to the available pressure and production data. The scenarios 

are characterized by different levels of depletion in time of both the western and eastern aquifers. 

Because of the long production history of the field (since 1986) combined with the regular 

measurements of the pressures in the producing wells, the development of the pressure in the gas 

bearing part of the structure is narrowly constrained and therefore shows little variation between 

the 58 models. 

Subsidence members 

For every pressure scenario, the parameter values of the compaction model and influence function 

were varied in a Monte Carlo simulation. In the current study, one generic compaction model is used, 

the RTCiM model (Pruiksma et al, 2015), with the addition of a linear elastic branch. For the influence 

function, a modified Geertsma and van Opstal (1973) model is used with the addition of a time 

dependent shape factor that is calibrated to the viscous behaviour of a salt layer embedded in an 

elastic overburden, modelled by a finite element model. The two time-dependent processes (one in 

the compaction and one in the influence function) have a distinctly different effect on the subsidence 

rate. Subsidence as a result of reservoir compaction always leads to a change of the subsidence bowl 

volume. In contrast to this, the viscous behaviour of the salt only impacts the shape of the 

subsidence bowl and not the volume. 

Each parameter picked by the Monte Carlo procedure results in a subsidence model member, with a 

group of members defining the ensemble.  

Geodetic data 

Several significant innovations were applied in the use of geodetic data. Observations from levelling 

and GPS techniques have been used in the format of spatio-temporal (i.e. in space and time) double-

differences. Uncertainties are described by a fully populated covariance matrix, that also takes 

shallow movements into account (idealisation noise). Outlier removal has been implemented in a 

formal way.  

Confrontation 

Each member is confronted to the geodetic data. The resulting test statistic defines the probability 

and weight of the specific member. The used theory to calculate the test statistic is based on Nepveu 

et al. (2010) with modifications, explained in this report. 

Output and results 

The modelled results versus the geodetic data are presented for two E-W profiles over the island and 

for many individual double-differences. The overall fit to the data is good, matching better to the 

location of the deepest point of the bowl and matching better to the benchmarks on the eastern part 

of the island as compared to results from earlier models. The weighted average was also used to 

calculate the subsidence rates in the Pinkegat area along with their confidence intervals. It is 

observed that the confidence interval is narrow and is, at present, far below the defined boundary 

for the rates (called the “meegroeivermogen”). 
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The same workflow has been applied to two “emergency stop scenarios”. The results show a clear 

reduction in the subsidence rates after a hypothetical stop in 1996, but also smaller but clear 

reduction following a hypothetical stop in 2016. The latter being smaller can be explained by the 

reduced effect of a later stop on the pressures in the gas field, knowing that most of the gas has been 

produced by 2016. For a hypothetical stop in 1996, the production stop is ten years after the start of 

production, which is comparable to the current field life of the Waddenzee fields like Nes and 

Moddergat. Based on this analogue it can therefore be concluded that an emergency stop scenario in 

the Waddenzee for fields like Nes and Moddergat would result in a significant decrease of the 

subsidence rate in the Waddenzee. 

A verification of the effect of more geodetic data on the accepted model ensemble members when 

bringing in longer time series has also been performed as part of this study. The results show a 

narrowing band specifically in the early monitoring period, i.e. early measurement campaigns quickly 

narrow the uncertainty.  

In summary, the application of further detailed (statistical) analysis to pressure scenarios, field data 

and geomechanical models improved our ability to describe the Ameland subsidence, giving 

confidence in the ability of our models to predict subsidence in the Ameland field. 
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2 Introduction 
Thanks to extensive subsidence monitoring, NAM observed that subsidence at the Ameland field 

continues after production-induced depletion has slowed down significantly from the rates in the 

first decades of the field (80s and 90s). More precisely, the rate of subsidence per unit depletion (at a 

particular location above the Ameland field) is increasing over time, suggesting a time-dependent 

(combination of) mechanism(s) at work in or around the reservoir.  

This report describes the results of the Long-Term Subsidence Study part 2 (LTS-II), which is a follow-

up study of part 1 (LTS-I, NAM, 2015a). Both studies are aimed to better understand the observed 

spatial and temporal behaviour of subsidence measurements above the Rotliegend gas reservoirs in 

the northern part of the Netherlands, with LTS-I focussing on the possible physical causes and LTS-II 

applying this knowledge for an actual field case: subsidence above the Ameland field.  

The LTS research is framed around geodetic observations above the Ameland field that show a 

continuing subsidence even after the rate of reservoir pressure depletion has slowed down 

significantly. This behaviour was not well understood in 2011 but was mathematically resolved by the 

introduction of a function describing a time-dependence of subsidence on depletion (the Time decay 

model, Mossop, 2012). This new function resolves largely the mismatch between model predictions 

and subsequent survey measurements, but the possible underlying physical mechanisms were not 

properly understood. This situation was unsatisfactory for NAM, SodM and other stakeholders like 

“de Waddenvereniging” and led to a condition in the approval of the licence (“winningsplan”) that 

allows gas production in the Waddenzee area. 

As mentioned before, LTS-I (NAM, 2015a) focused on the possible mechanisms that could explain 

such observations. The main conclusions from this study are listed below.  

2.1 Summary of part 1 (NAM, 2015a) 
 The main findings of the LTS-I study are listed below: 

• The time dependent subsidence is “real”, i.e. it results from physical mechanisms operating 

in and around the Ameland reservoir and not an artefact of noise and uncertainty in the 

geodetic data. 

• Time dependent creep behaviour is observed and predicted to be associated with 

compaction of the sandstone in the gas reservoir, pressure diffusion and partial depletion of 

the aquifers as well as flow of the overlying salt. Salt flow in isolation appears not to be a 

plausible explanation for time dependent subsidence, while the compaction and pressure 

depletion models remain viable hypotheses within the possible uncertainty ranges. 

• Deformation experiments of Rotliegend reservoir core material under in-situ conditions show 

that reservoir compaction involves a porosity-dependent element of inelastic deformation 

through grain cracking and an elastic (reversible) element. The contribution of non-reversible 

inelastic strain increases with increasing porosity. 

• The subsidence modelling precision can significantly be improved by taking correlation 

structures in the surveillance data into account. By appropriately differencing the survey 

data, biases as well as complexities in covariance structures can be reduced. In addition, 

methods have been developed to identify and handle outlier measurements, data reduction 
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techniques for large geodetic data sets, as well as improvements to processing, including GPS 

data. 

• An improved and more formal statistical method is proposed to validate and test the quality 

of subsidence predictions against the survey data. It is based on a Bayesian framework that 

can provide a coherent structure for the creation of initial models built on prior information, 

the objective updating of these models using collected geodetic data and the quantitative 

testing of future predictions.  

2.2 Previous LTS-II reports 
The LTS-II research started in March 2016 by a consortium of NAM, TNO and TU Delft. A workplan 

(NAM, 2016d) was written with the aim to deploy the knowledge on geomechanics and ensemble 

based confrontation techniques by TNO (TNO, 2017) and geodetic processing by TU Delft (van Leijen 

et al., 2017) on Ameland. The application to the Ameland field and the results of the first 

confrontation of the subsidence model members to the geodetic data are described in two reports 

(NAM, 2017, 2017b). 

Even though significant technical progress was recognised by the reviewers, the Dutch regulator 

SodM (State Supervision of Mines) concluded that the work should be improved by a number of 

modifications (SodM letter, 2017), to be addressed in a follow-up study (this report): 

1. Improve the fit of the subsurface models to the measured data (see Section 7.4) 

2. Include the effect of the large observed overpressure in the subsurface model (see Section 

4.2.2) 

3. Use a single generic compaction model instead of 4 specific compaction models (see Section 

4.2.1) 

4. Use a realistic range of salt parameter values (see Section 4.3.1) 

5. Consequently, consider some neglected co-variances (see Chapter 6) 

6. Resolve geomechanical modelling issues that were introduced by the TNO program AEsubs 

(see Section 4.3) 

The current report is written as a stand-alone report, i.e. it can be read without first digesting the 

previous LTS reports. It describes in detail the latest insights in Ameland subsidence modelling, and 

presents a complete overview of the confrontation workflow, addressing the six suggestions for 

improvement listed in the SodM letter. 
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3 Static and dynamic reservoir modelling of the Ameland area 

3.1 Summary of the static model 
The static model provides the properties to the dynamic reservoir model. The model is described in 

detail in NAM (2010). A summary of that work is presented in below. 

The objective of the study in 2010 was to prepare dynamic reservoir model scenarios that 

incorporate the key uncertainties that pertain to subsidence modelling of the Ameland gas fields and 

the aquifers. Before 2010, a Petrel static reservoir model was built in 2005 for late life field 

development planning using the analysis of the comprehensive Ameland Field Review (subsurface 

study during 2005-2007). Subsequently, a Petrel static reservoir model rebuild was undertaken in 

2009 to incorporate new insights and analysis based on field performance and well results. In 2010, 

these models were deemed unsuitable to underpin subsidence modelling for an update of the 

Ameland Winningsplan, hence, a full subsurface model rebuild was undertaken, described in the 

NAM (2010) report. The main characteristics of this model are: 

• Rebuild from scratch delivering a new base case static model for a new large dynamic model 

that delivered pressure information for subsidence modelling in the whole Waddenzee area, 

including Ameland fields and Waddenzee fields (Ameland-Oost, Ameland-Noord, Ameland-

Westgat; Nes-Noord area; Ternaard; Nes, Moddergat, including all southern aquifers (Figure 

2). 

• Vertical layer thickness of only 1 m. 

• 2 scenarios based on porosity distribution. The scenario based on a continuous porosity 

deemed to be more likely and is chosen as the base case static model that serves the 

dynamic model in the LTS-II study. 

• Application of new (sequential Gaussian simulation) techniques for property modelling 

honouring geological trends. 

• Based on the 2009 PreSDM (Prestack depth migration) seismic cube. 
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Figure 2. Outline of Petrel2009 model showing model coverage of aquifers and Ternaard gas field. The model extends 
into the Waddenzee fields (Modddergat, Nes, and Lauwerszee-Oost) and onshore NL to cover areas of surface subsidence 
monitoring. Also, the well paths of the wells used in the NAM (2010) report are visualised.  

 

Figure 3. Overview of the fields and drilled wells in the Waddenzee area (status 2017). 
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3.2 Dynamic modelling 
As described in the previous section, a base case static model was constructed and used to build the 

dynamic model. Even though the full area of interest is present in the dynamic model, it was decided 

to only investigate the effect on the subsidence because of the production from the Ameland-Oost, 

Ameland-Westgat and Ameland-N07FA fields (Figure 3). The production of the Ameland-Oost field 

will have a dominant effect on the subsidence data because: 

• The geodetic measurements are above or close to this field 

• It is the biggest field (area- and Gas Initially In Place (GIIP)-wise) 

• It has the highest cumulative gas production 

• It has, at present, the lowest reservoir pressure and therefore the highest depletion. 

 

Therefore, in the sections below, the focus will be on the Ameland-Oost field, and the approach, 

applied in the dynamic modelling domain, will be explained. 

3.2.1 Ameland-Oost field overview 

The Ameland-Oost field is in the Dutch part of the Southern North Sea area. The field was discovered 

in 1964 by well AME-1 drilled from the Ameland Island. The field contains several intra field faults, 

further sub-dividing the field into several producing blocks with different degree of connectivity 

across the faults. The fault blocks in this field are E11-15, E12-13, E14, E21, E22, E23, E24, E25 and 

E27 (Figure 4). 

 

Figure 4. Ameland-Oost field overview. The contour lines are the depth of the top of the reservoir in meters.  

E21 E11-15

E14

E12-13
E22

E25E23
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3.2.2 Ameland-Oost field development history 

Gas production from the field commenced in 1986 with wells AME-102, AME-104 and AWG-102, 

which were drilled into the central part of block E11-15, the biggest fault block of the Ameland-Oost 

field (Figure 4). Drilling continued, and in 2009 the last Ameland-Oost well was drilled, completed 

and brought to production. 

The initial reservoir pressure of the field (as measured by several Repeat Formation Tests, giving 

direct bottom hole pressure measurements) was 555 bar. Today, the pressure varies significantly 

across the field, ranging from 45 bar in the central part (block E11-15) up to 400 bar on the edge of 

the gas reservoir (block E23). The main reasons for such a difference in reservoir pressures are: 

1. the geological structure of the field: Ameland-Oost consists of several fault blocks with a 

different degree of inter- and intra-block communication 

2. production timing: production from E11-15 block started in 1986, while block E23 was 

brought to production only in 2009. 

3.2.3 Dynamic modelling process 

The current dynamic model is based on a static model built in 2010. It is the same model that is used 

for the measurement and control cycle (NAM, 2016a), i.e. an annual close the loop cycle that allows 

for the calibration of subsurface models to the acquired data. The long production history of 

Ameland, together with the firm geological concept mean that the remaining uncertainty in the static 

model has only limited effect on the pressure uncertainty over the gas field itself as the input is 

constrained by the actual pressure measurements. 

The main idea behind the reservoir simulation exercise during this study was to achieve variability in 

reservoir pressure while honouring the existing field pressure and production data, i.e. while 

maintaining a history match. In this way, possible depletion (hence, subsidence) variation could be 

investigated. 

Since the gas part of the field is well covered by producing wells and there is 30+ years of production 

and pressure measurement history, significant changes in reservoir pressure in the gas part would 

distort the history match. On the other hand, there is no well (i.e. no pressures measurements) 

control in the aquifers in the southeast and southwest of the field (Figure 4). Hence, the applied 

approach was: 

1. to investigate the possible variation for several reservoir parameters by changing each within 

a defined range, 

2. while maintaining history match in the gas part of the field, and 

3. see what effect it will have on the depletion in the south eastern and southwestern aquifers. 

Reservoir parameters, which were selected to be altered during this study, were (in italic, the 

parameter name is defined): 

• Multiplier to the residual gas saturation in aquifers – Sgr 

• Fault 13 transmissibility in the southwestern aquifer (E21 block) – Fault_13 

• Permeability multiplier in the southwestern aquifer (E21 block) – E21_Kaqf 

• Permeability multiplier in the southeastern aquifer (E11-15 + E14 block) – E11_15_Kaqf 

• GIIP multiplier in the central part of the Ameland-Oost field (E11-15 block) – E11_15_GIIP 
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The first four parameters would directly affect the behaviour and strength of the aquifers while the 

fifth parameter was used to balance out energy increase coming from aquifers to the gas leg to 

maintain the history match of the gas bearing part to the production data. 

In more detail, the Fault_13 parameter was used to investigate the possible degree of 

communication in the southwestern aquifer that could affect the subsidence in that area; the GIIP 

multiplier was mainly used as a matching parameter to account for effects caused by Sgr and Kaqf 

changes, which, in turn, were the main parameters defining aquifer depletion. 

Values for the parameters were picked up from the ranges described below. 

Table 1. Range of values for Sgr. 

Parameter Value range 

Sgr 0 0.5 (5%) 1 (10%) 

Sgr value of 0 would mean no residual gas saturation in the aquifer at all, while the values 0.5 and 1 

would result in 5% and 10% residual gas saturation respectively. 

Table 2. Range of values for Fault_13. 

Parameter Value range 

Fault_13 0 1 

The values 0 and 1 were used in the model as seal factor for the Fault 13, which separates the aquifer 

of the E21 block in 2 parts. A seal factor of 0 represents a fully sealing fault while a seal factor 1 

makes this fault fully transmissible. 

Table 3. Range of values for E21_Kaqf. 

Parameter Value range 

E21_Kaqf 0.01 0.1 1 5 

These numbers were used not as absolute permeability values in the model, but instead as 

multipliers to the current permeability/transmissibility areal distribution in the aquifer part of the 

E21 block. 

Table 4. Range of values for E11_15_Kaqf. 

Parameter Value range 

E11_15_Kaqf 0.001 0.005 0.01 0.025 0.05 0.1 0.25 0.5 1 

Just like with the E21_Kaqf parameter, these values are permeability/transmissibility multipliers for 

the south-eastern aquifer of the Ameland-Oost field. 

Table 5. Range of values for E11_15_GIIP. 

Parameter Value range 

E11_15_GIIP 0.88 0.9 0.91 

These values were used as multipliers to the volume of Gas Initially In Place (GIIP) in the E11-15 block 

of the Ameland-Oost field. 

Several (dynamic) subsurface realizations were generated in the work process. Parameter ranges 

were tested to find minimum and maximum values, beyond which models’ behaviours deviate 

significantly from the observed historical performance of the field. The effect of those parameters 

and their mutual interdependencies were thoroughly analysed, i.e. for permeability multipliers, high 
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values of the parameter will make the aquifer “very active”, resulting in high reservoir pressure in the 

gas part and very high water production from the wells (what is not observed). On the other hand, 

low values of permeability multiplier parameters will make the aquifer “weak” (or, in other terms, 

immobile). In this case, there is virtually no depletion, hence, no subsidence, in the aquifer, while 

some level of subsidence is observed in that area. Increase of residual gas saturation (Sgr) brings 

more energy to the aquifer, making it more “active”. To counter this effect in the gas part of the field 

(to preserve history match there), permeability multipliers and GIIP multipliers had to be reduced 

accordingly. This explains how the boundaries of the abovementioned ranges were defined. 

The careful selection of exact values for different parameters allowed generating a set of history 

matched scenarios, from which the final set of 58 unique scenarios was selected. All the scenarios 

from the final set are acceptably history matched in the gas part of the field, while allowing 

significant variation in aquifers depletion. The parameters for these 58 scenarios are listed in Table 6. 
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Table 6. Final set of selected 58 models with their parameters’ values. 

Model Name Sgr Fault_13 E21_Kaqf E11_15_Kaqf E11_15_GIIP 

90 1 0 1 1 0.88 

91 1 0 0.1 1 0.88 

92 1 0 0.01 1 0.88 

93 1 1 1 1 0.88 

94 1 1 0.1 1 0.88 

95 0.5 0 1 1 0.88 

96 0.5 0 0.1 1 0.88 

97 0.5 0 0.01 1 0.88 

98 0.5 1 1 1 0.88 

100 0 0 5 1 0.88 

101 0 0 1 1 0.88 

102 0 0 0.1 1 0.88 

103 0 0 0.01 1 0.88 

104 0 1 1 1 0.88 

902 1 0 1 0.05 0.9 

903 1 0 1 0.025 0.9 

981 0.5 1 1 0.1 0.88 

982 0.5 1 1 0.05 0.91 

983 0.5 1 1 0.025 0.9 

1001 0 0 5 0.5 0.88 

1002 0 0 5 0.25 0.88 

1003 0 0 5 0.1 0.88 

1011 0 0 1 0.5 0.88 

1012 0 0 1 0.25 0.88 

1013 0 0 1 0.1 0.88 

9001 1 0 1 0.001 0.9 

9002 1 0 1 0.005 0.9 

9003 1 0 1 0.01 0.9 

9101 1 0 0.1 0.001 0.9 

9102 1 0 0.1 0.005 0.9 

9103 1 0 0.1 0.01 0.9 

9201 1 0 0.01 0.001 0.9 

9202 1 0 0.01 0.005 0.9 

9203 1 0 0.01 0.01 0.9 

9301 1 1 1 0.001 0.9 

9302 1 1 1 0.005 0.9 

9303 1 1 1 0.01 0.9 

9501 0.5 0 1 0.001 0.9 

9502 0.5 0 1 0.005 0.9 

9503 0.5 0 1 0.01 0.9 

9601 0.5 0 0.1 0.001 0.9 

9602 0.5 0 0.1 0.005 0.9 

9603 0.5 0 0.1 0.01 0.9 

9701 0.5 0 0.01 0.001 0.9 

9702 0.5 0 0.01 0.005 0.9 

9703 0.5 0 0.01 0.01 0.9 

9801 0.5 1 1 0.001 0.9 

9803 0.5 1 1 0.01 0.9 

10001 0 0 5 0.01 0.9 

10002 0 0 5 0.05 0.9 

10101 0 0 1 0.01 0.9 

10102 0 0 1 0.05 0.9 

10201 0 0 0.1 0.01 0.9 

10202 0 0 0.1 0.05 0.9 

10301 0 0 0.01 0.01 0.9 

10302 0 0 0.01 0.05 0.9 

10401 0 1 1 0.01 0.9 

10402 0 1 1 0.05 0.9 
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3.2.4 Simulation results 

To monitor pressure changes in the aquifer and to check that the history match in the gas part is still 

preserved, several locations were selected in the model. This also allowed more efficient and visual 

comparison of the models against each other. Figure 5 below depicts the position of these locations. 

 

Figure 5. Selected locations for pressure/water production control in Ameland-Oost. 

For history matching purposes, it was important to select locations close to existing wells in the main 

producing blocks, so a direct (with all associated uncertainties involved) pressure measurement 

history would be available. Additionally, modelled water production in those locations was calculated 

and compared to measured data. Ameland does not produce much water, so all subsurface scenarios 

with excessive water production in control points were excluded during the simulation workflow. 

Location 1 in block E21 is the AME-105 well, the well closest to the southwestern aquifer. This is an 

appropriate location to check the water production rates and reservoir pressures, since the possible 

increase in the southwestern aquifer strength will be first felt in this well. 

Location 2 in block E11-15 is the AME-106 well, one of the main production wells in the Ameland-

Oost field, which is still producing and has a reliable pressure data history. 

By checking these 2 locations, it could be very quickly confirmed whether the history match was still 

preserved after varying certain parameters. 

There are no wells drilled into southern aquifers of the Ameland-Oost field. To get an understanding 

of how parameters influence the aquifer pressures and to what extent, several control locations 

were selected based on the geometry of the aquifers. Locations 3 and 4 were selected in the 

northern and central parts for the southwestern aquifer (E21 aquifer). 

Locations 5, 6 and 7 were chosen in the northern, central and southern parts of the south-eastern 

aquifer (E11-15 + E14 aquifer). 

1
2

3

4 5

6

7
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Figure 6 and Figure 7 below show the quality of the history match in Locations 1 and 2 respectively. 

The lines on those plots are simulation results (reservoir pressure on the left, water production on 

the right) for all 58 selected models. Red diamonds on the left plots are measured reservoir 

pressures observed in wells AME-105 (Location 1) and AME-106 (Location 2). There are no direct 

water measurements available for the individual wells, so the water production check here is more 

qualitative, rather than quantitative. To put in numbers – it should not exceed the value of 

approximately 50 m3/day. Note that the present measured Ameland water production so far has 

always been very small (50-60 m3/day). 

 

Figure 6. Left: History match quality of 58 models in Location 1. Red dots in the left-hand graph represent the data while 
the lines show the modelled results. Right: modelled water production. 

 

Figure 7. Left: History match quality of 58 scenarios in Location 2. Red dots in the left-hand graph represent the data 
while the lines show the modelled results. Right: modelled water production. 

In Location 1, the modelled reservoir pressures follow the measured data and, together with 

relatively low water production, it is concluded that Location 1 is history matched. 

In Location 2 an almost perfect history match is achieved with very minor deviation of simulated 

pressures from observed ones. Virtually no water production is observed in Location 2, which is also 

in line with the actual observations. 

Altogether this means, that though some variations are there, all 58 selected models are history 

matched. Figure 8 and Figure 9 below show the variation in reservoir pressure in Locations 3 and 4, 

respectively, for the same set of 58 history matched models. Figure 10, Figure 11 and Figure 12 show 

the reservoir pressure is in Locations 5, 6 and 7 respectively for the same set of models. These figures 

do all show a large variation of possible pressures in the aquifer, up to 500 bar.  
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Figure 8. Pressure variation with time for the 58 scenarios in the northern part of the southwestern aquifer (Location 3). 

 

Figure 9. Pressure variation with time for the 58 scenarios in the central part of the southwestern aquifer (Location 4). 
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Figure 10. Pressure variation with time for the 58 scenarios in the northern part of the south-eastern aquifer (Location 5). 

 

Figure 11. Pressure variation with time for the 58 scenarios in the central part of the south-eastern aquifer (Location 6). 
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Figure 12. Pressure variation with time for the 58 scenarios in the southern part of the south-eastern aquifer (Location 7). 

Overall, this result of the simulation study shows (Figure 13), that even though a history match in the 

gas part of the field is achieved, aquifer depletion can vary significantly – up to a few hundred bar for 

the same location. This adds significantly to the possible variation in subsidence in the area, since 

subsidence (to large extent) is driven by pressure depletion. The full set of 58 history matched 

scenarios was handed over to the geomechanics team for further study and investigation. 

 

Figure 13. Summary of the simulation study. The plots in this figure are presented and explained in the previous sections. 
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4 Geomechanical model 

4.1 Introduction 
To calculate reservoir compaction and surface subsidence for the 58 history matched models 

(describing reservoir pressure depletion and depleting thickness) provided by the reservoir engineer, 

a geomechanical model is required. The geomechanical model has two components: a compaction 

model to calculate reservoir strain resulting from pressure depletion and an influence function to 

translate the compaction strain into a subsidence signal at the surface.  

4.2 The compaction model 
The number of publications on subsidence and compaction in the Netherlands has increased 

significantly over recent years (e.g. van Thienen-Visser et al. 2015, Fokker and van Thienen-Visser 

2016, van der Wal and van Eijs, 2016). This is probably due to the observed link between reservoir 

compaction and induced seismicity in the Groningen field. The compaction models presented in 

these publications and used in NAM are summarized below: 

Linear compaction model 

The simplest geomechanical compaction model assumes compaction of a depleting reservoir layer to 

have a linear elastic relationship with depletion, depleting thickness and the uniaxial compressibility 

(𝑐𝑚) of the reservoir rock. This is a good first order approximation and a suitable compaction model 

for short term (up to 5 years) predictions but fails to predict the temporal behaviour of the observed 

subsidence above the Ameland gas field. 

Bi-linear 

Geodetic observations above the gas fields in The Netherlands show an increase of the subsidence 

rate after the first years of production, which is a phenomenon observed globally in many oil- and 

gas fields (Hettema et al., 2002). The first phenomenological model used in NAM (till 2011) to match 

this observation was a bi-linear compaction model consisting of two branches with different Cm 

values, where a stiffer branch changes at a certain transition pressure to a softer branch. From 

geodetic observations above the Ameland field (NAM, 2011, 2015a) it became clear that the bi-linear 

model could not describe the ongoing subsidence observed above this field at the end of field life 

when the depletion rate had decreased significantly.  

Time-decay 

Both the delayed response of compaction at the start of production and at the end of production can 

be reasonably fitted by the NAM Time-decay model (Mossop, 2012). Although the precise cause of a 

volumetric time decay process is unknown, the time-decay model is the simplest model that 

reasonably matches the spatial-temporal developments of the subsidence above the Ameland field. 

The strain of the constrained volume, 𝑒𝑖𝑖, at a point, 𝐱, in the reservoir is then the instantaneous 

product of pressure change, ∆𝑝, and constrained uniaxial compressibility, 𝑐𝑚, but now convolved 

with a time decay function.  

𝑒𝑖𝑖(𝐱, 𝑡) = ∆𝑝(𝐱, 𝑡) 𝑐𝑚(𝐱) ∗𝑡  
1

𝜏
exp [

−𝑡

𝜏
] 

In this formula, 𝑡, is time, ∗𝑡, is the convolution operator with respect to time and, 𝜏, is a time-decay 

constant. The best fitting time decay constants for the Groningen field were found by inversion using 
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a semi-analytic geomechanical model and typically have values of 3 to 8 years. For the Ameland field, 

the numbers that were used to calibrate to the subsidence varied between 5 and 7 years (NAM, 

2016b). 

It is quite possible that the observed time-decay is not a material property of the reservoir rock, but 

could be due to particularities of the reservoir geometry, pore fluids or some other factor. Therefore, 

the time-decay constant for one reservoir is not necessarily appropriate for another reservoir simply 

based on rock type. Even though the time-decay model leads to reasonable fit to the observed 

subsidence above the Ameland field, it provides a worse fit to stress-strain curves for core plug tests 

where the loading has been varied during the test (Pruiksma et al., 2015). 

Rate type compaction model 

De Waal (1986) proposed a rate type compaction model where the compaction (strain) of a 

sandstone is dependent on the loading rate of the rock. This model originates from soil mechanics 

principles (e.g. Bjerrum, 1967) but is applied as well to describe the stress strain response of a 

sandstone plug in the laboratory. In the Netherlands, a form of this model is the most accepted 

model for settlement calculations in soft soil. The model is also known as the a,b,c isotachen model 

(den Haan, 2003). Pruiksma et al. (2015) described the application of this model to laboratory 

experiments on Rotliegend sandstone core material. Improvements to the original work of the De 

Waal led to the definition of the isotach (i) formulation of the rate type compaction model (RTCiM) 

which was also implemented by NAM (e.g. van der Wal and van Eijs, 2016). 

The ideal compaction (+ influence model) should be able to describe both the lab data and the 

complex temporal subsidence behaviour observed above the Ameland field. The RTCiM model is 

used in this study, as it gives the best match to core experiments when compared to any of the other 

compaction models (see sources in Table 7). Another advantage of the RTCiM model is that with its 

versatility to span a wide range of temporal behaviours, it prevents the workflow from allocating all 

the observed temporal complexity to the influence function. The RTCiM can behave more linear with 

depletion or exhibit time decay and temporal characteristics. None of the other models is as 

versatile. This choice concurs as well with the findings of the LTS-I research. 

Pruiksma et al. (2015) demonstrated that the linear, bi-linear and Time Decay compaction models 

can be mathematically derived from the more complex RTCiM model but this requires a zero value 

for one or more parameters. This observation conflicts with another objective of this study, which is 

the application of realistic parameter value ranges for the RTCiM in the confrontation workflow. 

Section 4.2.3 describes the realistic value ranges for the RTCiM model that don’t incorporate zero 

values.  

This study considers the realistic ranges of the RTCiM to be more important excluding therefore the 

possibility of testing the simpler compaction models. 

The current study implements the RTCiM framework proposed by TNO (2017), with the addition of a 

linear branch to describe the effects of the significant overpressure observed in the Ameland field. 

This addition of the overpressure component is described in Section 4.2.2. 
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4.2.1 RTCiM implementation 

At a change of the loading rate, a first direct strain response, ɛd, is recorded followed by a more 

gradual response referred to as the secular strain, ɛs. The total strain is defined as the sum of a direct 

part and a time dependent secular part: 

𝜀 = 𝜀𝑑 + 𝜀𝑠           

The rate type isotach compaction model implemented in this workflow is derived from an explicit 

Euler finite-difference scheme keeping a constant time step ∆𝑡. To calculate the compaction of one 

grid block (𝑥, 𝑦), the applied numerical scheme can be divided into 5 steps (TNO, 2017): 

1) From the current effective vertical stress 𝜎′(𝑡) and strain 𝜀(𝑡), calculate the secular strain rate as: 

𝜀𝑠̇(𝑡) = (
𝜀(𝑡)−𝜀0

𝜎′(𝑡)
− 𝐶𝑚𝑑

) 𝜎̇𝑟𝑒𝑓
′ (

𝜀(𝑡)−𝜀0

𝜎′(𝑡) .𝐶𝑚𝑟𝑒𝑓
)

−1/𝑏

      

The vertical effective stress is derived from the reservoir depth, 𝑧𝑟, and the mean density, 𝜌𝑚𝑒𝑎𝑛, of 

the subsurface up to the reservoir top and the reservoir gas or fluid pressure, 𝑃(𝑡), as:  

𝜎′(𝑡) =  (𝜌𝑚𝑒𝑎𝑛. 𝑔. 𝑧𝑟) − 𝑃(𝑡)         

At 𝑡0 (the onset of pressure depletion/production), the direct elastic strain 𝜀𝑑(𝑡0) and secular or 

creep strain 𝜀𝑠(𝑡0) are both considered to be equal to zero, and thus total strain 𝜀(𝑡0) is set to zero. 

The reference total strain is expressed as: 

 𝜀0 = −𝐶𝑚𝑟𝑒𝑓
 . 𝜎𝑟𝑒𝑓

′           

with the reference vertical effective stress 𝜎𝑟𝑒𝑓
′ = (𝜌𝑚𝑒𝑎𝑛 . 𝑔. 𝑧𝑟) − (𝜌𝑤𝑎𝑡𝑒𝑟 . 𝑔. 𝑧𝑟), i.e. the vertical 

effective stress for a hydrostatically pressured rock. 

Three material parameters (𝐶𝑚𝑟𝑒𝑓
, 𝐶𝑚𝑑

, 𝑏) and one state parameter (𝜎̇𝑟𝑒𝑓
′ ) are needed to compute 

the rate type compaction. 𝐶𝑚𝑟𝑒𝑓
 is the reference compaction coefficient corresponding to the pre-

depletion loading rate, and thus by definition quite high. Parameter 𝐶𝑚𝑑
 is the direct compaction 

coefficient and dedicated to map out the direct effect at the change of loading rate, closely linked to 

the elastic response of the rock. In the scenario of the change of loading rate due to the onset of 

pressure depletion, 𝐶𝑚𝑑
 is expected to be low, to mimic the stiff (elastic) response of the reservoir 

rocks. The ranges and source for the values of these parameters are described in Section 4.2.3. 

2) The second step of the Euler scheme calculates the increase in creep strain as: 

∆𝜀𝑠 = 𝜀𝑠̇(𝑡) . ∆𝑡           

and update the creep strain as: 

𝜀𝑠(𝑡 + ∆𝑡) → 𝜀𝑠(𝑡) + ∆𝜀𝑠          

3) Following a linear stress-strain relationship, the direct elastic strain is:  

𝜀𝑑(𝑡 + ∆𝑡) = 𝐶𝑚𝑑
. (𝜎′(𝑡 + ∆𝑡) −  𝜎𝑟𝑒𝑓

′ )         

4) Finally, the total cumulative strain is: 

𝜀(𝑡 + ∆𝑡) = 𝜀𝑠(𝑡 + ∆𝑡) + 𝜀𝑑(𝑡 + ∆𝑡)         
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The total cumulative compaction is:  

𝑉𝑐𝑜𝑚𝑝(𝑡 + ∆𝑡) = −𝜀(𝑡 + ∆𝑡) ∙ 𝑉(𝑡0)          

with 𝑉(𝑡0) the grid block net volume, assumed constant over time. Accounting for changes in grid 

block net volume would not significantly change the compaction. After this final calculation, the 

workflow returns to the first step for the next time step. It is important to note that the present rate 

type isotach compaction model is attempting to describe the delay and persistence in subsidence 

rates at the onset and arrest of production, by only considering the reservoir compaction and 

assuming a purely elastic linear response of the rocks surrounding the reservoir rocks. The creep of a 

possible visco-elastic salt layer on top of the reservoir might also contribute to the non-linearity in 

the subsidence, which will be addressed in Section 0. 

4.2.2 Adding a linear branch to the RTCiM model 

The Ameland gas field initial pore pressure was around 555 bar, implying an overpressure of around 

165 bar relative to a hydrostatic pore pressure gradient of 0.11 bar/m. The overpressure is a result of 

a large, low density, gas column that developed after the deepest burial of the rock. This means that 

the Ameland field saw in geological history a phase of pore pressure increase and effective stress 

decrease. During burial, the reservoir rock compacted partly via an inelastic (visco-plastic) process 

and partly via an elastic process. During the gas fill phase the vertical effective stress was reduced 

with a partial rebound of the elastic strain only. A similar situation would occur as well in case of 

previous deeper burial and subsequent uplift, also called “over consolidation” (de Waal and Smits, 

1985).  

This elastic deformation path is also followed during the first stage of the depletion (as result of the 

gas production) until the depletion is equal to the initial overpressure. Once the overpressure has 

been relieved, inelastic deformation of the rock matrix starts to play a role in the compaction 

behaviour, which is captured by the RTCiM model. The rate type behaviour then takes over from the 

linear elastic compaction behaviour at the point when the pore pressure is below normal hydrostatic 

pressure.  

While the pore pressure is above the hydrostatic pressure (i.e. while the grid block is overpressured), 

the strain response is expected to be elastic. Therefore, while 𝜎′(𝑡) < 𝜎𝑟𝑒𝑓
′ , the secular creep 

component 𝜀𝑠 is assumed zero such that the total strain developed in each grid block is given by 

𝐶𝑚𝑙𝑖𝑛
. (𝜎′(𝑡 + ∆𝑡) −  𝜎𝑟𝑒𝑓

′ ). The 𝐶𝑚𝑑
 in the RTCiM model also represents the elastic behaviour of the 

rock, therefore 𝐶𝑚𝑙𝑖𝑛
= 𝐶𝑚𝑑

. 
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4.2.3 Parameter values for the RTCiM model 

The a priori parameter ranges for the RTCiM model are based on the calibration of the RTCiM model 

to laboratory experiments. Table 7 presents a list of values deduced from various literature sources. 

Table 7. Parameter values for the RTCiM model from various sources. 

𝐶𝑚𝑟𝑒𝑓
 

[10-5 bar-1] 

𝐶𝑚𝑑
 

[10-5 bar-1] 

𝑏 

[-] 
Source 

0.57 x f(por) 

 

0.26 *𝐶𝑚𝑟𝑒𝑓
- 0.44*𝐶𝑚𝑟𝑒𝑓

 

 

0.017-0.021 TNO (2013) 

0.7 - 1.29 0.42 - 0.69 0.01 – 0.03 NAM (2016) 

1-5  0.008-0.022 De Waal (1986) 

0.46-2.6 0.26 *𝐶𝑚𝑟𝑒𝑓
- 0.56 *𝐶𝑚𝑟𝑒𝑓

 0.01 – 0.024 De Waal et al. (2015) 

 

Rather than using a unique value for the 𝐶𝑚𝑟𝑒𝑓
 independent of any other parameter, the influence of 

the porosity on the 𝐶𝑚𝑟𝑒𝑓
 was investigated. The objective is to find possible relations between Cm and 

porosity to match to the core plug experiments performed on Dutch Rotliegendes sandstone (Figure 

14). The Cm value in this figure shows a large scatter with the porosity where both linear and non-

linear functions might fit the data. The posterior ensemble should not be impacted by an a priori 

subjective choice of a possible relation between the two parameters. A general exponential function 

has been defined that could describe different levels of complexity (linear to exponential): 

𝐶𝑚𝑟𝑒𝑓
(𝑃𝑜𝑟) = 𝐶4 + 𝐶210

𝐶3(𝑃𝑜𝑟−𝐶1) 

The parameters of this function 𝐶1 – 𝐶4 are chosen such that the 𝐶𝑚𝑟𝑒𝑓
 is always increasing with an 

increasing value for the porosity. They are also chosen such that the resulting Cm-Porosity relation fall 

within the search (grey) area shown in Figure 14. All four parameters in this function interact on the 

Cm-Porosity relation. Because of this interaction, only parameters 𝐶1 and 𝐶2 have a fixed range with 

parameter values selected by the Monte Carlo process. With the selected 𝐶1 and 𝐶2 the parameter 

range for 𝐶3 and 𝐶4 are determined such that the Cm value at 7 % porosity is between 0.25 and 2.5 x 

10-5 bar-1 and Cm value at 20% porosity is between 0.25 and 7 x 10-5 bar-1. The parameters 𝐶3 and 

𝐶4are drawn from these ranges. The resulting Cm space is shown as the grey area in Figure 14 where 

the space is defined by lines with slopes having a starting value for zero porosity and a description of 

the curvature. 
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Figure 14. Cm-Porosity values from core plug experiments. The cyan dots represent all North-Netherlands core plug 
experiments, the green dots the core plug experiments of Ameland. The grey area is the a priori range for the Cm-Porosity 
relations  

Figure 14 shows that the grey area spans a larger area, towards higher values, than given by 

the results for the core plug experiments. The reason for it is two-fold, as the average and 

effective Cm will be different after upscaling (will be explained in Section 4.5), and the 

compressibility in the field can be different from that observed in the lab due to different 

loading rates.  

When comparing properties used for the RTCiM model, especially the 𝐶𝑚𝑟𝑒𝑓
 directly with 

those obtained from core measurements, the applied upscaling process should be kept in 

mind. For the compaction calculation, the compressibility is determined based on the 

upscaled porosity, and the compressibility is not upscaled itself since a prior compressibility 

grid does not exist. If the relation between porosity and compressibility is non-linear, as 

seems to be the case here, then the compressibility determined from the upscaled porosity 

(= model compressibility) is different from the average compressibility of the area (= effective 

compressibility).  

The effect of the porosity upscaling on the resulting Cm values can be imagined as follows. From core 

data, it appears there is a possible exponential relation between porosity and compressibility,  

𝐶𝑚 = 𝑓(𝜙). Consider the area that is to be upscaled has some porosity distribution, with average  

(= upscaled) porosity 𝜙𝑎𝑣, and some compressibility distribution [linked to the porosity via 𝐶𝑚 =
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𝑓(𝜙)] with average or effective compressibility 𝐶𝑚𝑒𝑓𝑓. Since the compressibility itself is not 

upscaled, the value of the compressibility as used by the model will be based on the upscaled (or 

average) porosity as 𝐶𝑚𝑚𝑜𝑑𝑒𝑙 = 𝑓(𝜙𝑎𝑣). For an exponentially increasing function, 𝑓(𝜙), the 

effective compressibility, 𝐶𝑚𝑒𝑓𝑓, will be higher than the determined model compressibility, 

𝐶𝑚𝑚𝑜𝑑𝑒𝑙, derived from the upscaled porosity. For example, assume the area to have a Gaussian 

porosity distribution, then the compressibility for this area will follow a log-normal distribution. The 

average, or effective, compressibility, 𝐶𝑚𝑒𝑓𝑓, of this area will be the average of the log-normal 

distribution, which will in general be higher than the 𝐶𝑚𝑚𝑜𝑑𝑒𝑙 derived from the average porosity: the 

average of a log-normal distribution (𝐶𝑚𝑒𝑓𝑓) is generally higher than its mode (𝐶𝑚𝑚𝑜𝑑𝑒𝑙). Therefore, 

for an upscaled model to obtain the same effective compaction as the non-upscaled model, it should 

apply a slightly higher porosity – compressibility relation. Hence, the range should be chosen slightly 

wider than the ranges from core measurements for the models to use the same effective 

compressibility. The discrepancy between the two becomes larger for wider porosity distributions. 

Note that it also holds for other porosity distributions, like uniform distribution. 

In addition to the effect resulting from the upscaling of the grids in size, there can also be a 

difference in the compressibility derived from lab data and observed in the field, that originates from 

differences in applied loading rates (de Waal, 1986). Cm-Porosity relations on the field time scales are 

different from those on lab time scales.  

Therefore, the Cm values that appear in the accepted members, after the confrontation with the 

data, cannot be compared directly to the core plug experiments.  

The a priori parameter value ranges used in this study for both the Cm-Porosity relation and the 

RTCiM compaction model are provided in Table 8. 

Table 8. Selected parameter ranges for the RTCiM compaction model. 

Parameter range 

𝐶1 0.02 - 0.17 

𝐶2 0.01 - 2.5 

𝐶3/𝐶4 * 

𝐶𝑚𝑟𝑒𝑓
 = 𝐶4 + 𝐶210

𝐶3(𝑃𝑜𝑟−𝐶1) 
 

𝐶𝑚𝑙𝑖𝑛
 

 

 = 𝐶𝑚𝑑
 

 

𝐶𝑚𝑑
/𝐶𝑚𝑟𝑒𝑓

 

 

0.2- 0.7 
 

𝑏 0.01 - 0.03 

* Parameters 𝐶3 and 𝐶4 are derived based on the values of 𝐶1 and 𝐶2 such that the used Cm-Porosity relations 

cover the full range of observations from core plug experiments (grey area of Figure 14). 
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4.3 The influence model 
The influence model describes the translation of the reservoir compaction into surface deformation. 

Next to the correct physical conditions of the model, a second requirement of the confrontation 

workflow is that the expressions in the influence model can be calculated fast. The well-known and 

widely applied theory published by Geertsma (1973) fulfils these requirements, building on the 

physical principles of elasticity theory.  

However, the bowl shape resulting from this model is in many applications too wide when compared 

with geodetic data in the Netherlands (Geertsma & van Opstal, 1973). In their paper, they proposed 

to add an infinitely stiff reflective boundary or rigid basement (RGB) to the solution, which sits below 

the reservoir. This additional RGB is partly justified by stiffness data. In general, it is known that the 

stiffness increases with depth but not with a sudden step to an infinite stiff layer. Still the solution 

provides a reasonable fit to the measured subsidence bowls in the Netherlands (NAM, 2015). 

Note that the effect of a stiff layer below the reservoir on the shape of the subsidence bowl is similar 

to the effect of a soft layer above the reservoir and therefore a “soft” response of the salt layer 

above the reservoir could act as an additional (temporal) component to the steepening of the 

subsidence bowl, postulated in the LTS-I study (Marketos et al. ,2015, 2016).  

 

The account for the viscous and therefore temporal effect, the influence function for the Ameland 

case requires an additional component. TNO (2011) introduced the idea to move the RGB with time 

to mimic the behaviour of a viscous salt layer that is present in the overburden. Their solution not 

only approaches results from far more complex finite element (FE) models, it also allows for a very 

fast routine that is very suitable for the Monte Carlo approach used here. The formula that is 

implemented in this study is the same as the TNO equation: 

𝑐 𝑘(𝑡)⁄ = 𝑐 𝑘(0)⁄ + 𝑑(𝑐 𝑘⁄ ) ∗ (1 − 𝑒
−(𝑡−𝑡0)
𝜏𝑠𝑎𝑙𝑡 ) 

Where 𝑐 is the depth of the reservoir, 𝑘(0) the depth of the RGB, 𝜏𝑠𝑎𝑙𝑡  , the relaxation time of the 

field specific salt/overburden combination, 𝑐 𝑘(0)⁄  the starting position of the rigid basement and 

𝑑(𝑐 𝑘⁄ ) the translation of the basement. 

Unlike the salt viscosity, the relaxation time of the salt in this equation is not a physical property of 

the salt itself. It is a measure of the full response of an overburden where a salt layer is embedded 

between other elastic layers. Therefore, the value of this relaxation time can only be derived from 

another model, e.g. a finite element model. In this study, the Ameland FE model is used as a 

reference. This model is described in NAM (2011) and can be regarded as the state-of-the-art 

geomechanical model for the Ameland field to provide the subsidence volume contribution caused 

by the Ameland gas production in the annual measurement and control process as part of the “Hand 

aan de Kraan” procedure. The model contains the structural grids that represent the 3D geology of 

the Ameland area. The requirement of an additional numerical model complicates the application of 

the confrontation workflow on other fields. In a possible application for a new field situation, a 

simple FEM should be built to provide the input to new calibrations. This FE model requires, in that 

case, the input of viscosity values for the salt. The basis for the value range that was used is explained 

in the next Section.  
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4.3.1 Value range for the salt viscosity 

Finding the right experimental data to calibrate the salt parameters in the models used in this study 

is difficult. The level of applied shear stress (S1-S3) in laboratory experiments on salt should ideally 

be close to the expected shear stresses caused by reservoir compaction in the field. From the 

Geomec model it can be observed that the induced shear stresses in the salt show values up to 1 

MPa. In most of the laboratory experiments performed on natural salts, the applied shear stresses 

are much larger, thereby involving other creep mechanisms than only linear pressure solution creep, 

which is the dominant mechanism in this pressure-temperature domain (Marketos et al., 2015). 

Experimental data at conditions close to the stress conditions that would apply to our case are 

presented by IFG (2006) and Berest et al. (2012). IFG (2006) provides experimental data at ambient 

temperatures on the Zechstein salt that is mined close to the Ameland field (Harlingen, Frisia Zout 

B.V.). Although, the applied level of shear stress in the IFG (2006) experiments is very low, it is still 

higher than required for direct use in the Ameland models. The results from Berest et al. (2012) were 

performed at a differential stress of 1 bar (0.1 MPa), which is at the low side of the possible induced 

shear stress range of the model, keeping in mind that the experiments were conducted at a 

temperature of only 14.4 °C. Via the equations shown in Section 4.3.2, the viscosity can be 

recalculated to a value at a temperature of 105 °C, similar to the temperature of the other 

experiments but more importantly, similar to the ambient average temperature of the salt above the 

Ameland field. 

Figure 15 shows the strong non-linear dependency of the viscosity with the differential stress. The 

extrapolation of the IFG data to lower stress values gives a good match to our temperature corrected 

data of Berest et al. (2012). This result would imply that the possible range for the salt viscosity value 

is rather well constrained to a range of around 5.1015 to 5.1016 Pas at the stress levels valid for the 

Ameland case. Section 4.3.2 demonstrates that this viscosity range results in very fast relaxation 

times (half times) for the salt, i.e. between 1 month and 1 year. 

However, indirect evidence for viscosity ranges at low shear stress might come as well from the 

process of salt diapirism (e.g. Keken et al., 1993). The speed of this process can be inferred from 

geological observation and subsequently be used for the calibration of the salt viscosity value in 

geomechanical models. This was exactly the objective of the study by Keken et al. (1993), which 

concluded a range of viscosity values between 1017 and 1020 Pas at strain rates between 10-12 and  

10-15 s-1, i.e. significantly higher values for the viscosity than obtained by the above described 

experiments. Combining all these observations leads to the conclusion that the uncertainty of the 

viscosity value is large, up to almost 5 orders of magnitude, and that a possible a priori range should 

be influential at all time scales during and after the gas production process. 

The next Sections describe how a ‘pulse model’ translates viscosity values into a relaxation time for 

the RGB expression, 𝜏𝑠𝑎𝑙𝑡. This work demonstrates that the range between 5.1015 and 5.1018 Pas 

addresses the earlier conclusion on the a priori range. 

 



31 
 

 

Figure 15. Viscosity versus differential stress for experiments; result found in literature (Berest) or provided by salt 
mining operators (IFG-Frisia). 

4.3.2 Results of the ’pulse-model’ for different viscosities 

The obtained range for the viscosity led to the definition of 5 FE model scenarios where the viscosity 

value is varied in the salt layer above the reservoir. In these scenarios, the total depletion of the field 

was applied as a load case in just one month (for the pulse model, see also Section 4.4.2). The 

objective of using a “pulse-model”, is to compare the response from a certain salt viscosity in the FE 

model to a clear event in time, and match its behaviour with a relaxation time for the moving-rigid-

basement model, without obscuring the signal by adding other temporal components like pressure 

changes. 

The main geomechanical layers and values for the elastic parameters of the FE model are listed in 

Table 9 (NAM, 2011). The stiffness or Young’s modulus (E) of the reservoir layer is lower when 

compared to the overburden layer. This is mainly caused by the assumption that these low porous 

rocks outside the reservoir would respond more to the undrained modulus, i.e. reflecting a stiffer 

response of the rock because of the effect that fluids in the rock cannot escape during small stress 

changes. The relative higher values of the dynamic moduli, measured by a sonic tool, are 

representative for this undrained response and used in the model. Obviously, the porous reservoir 

response or compaction is better reflected by the drained moduli. 
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Table 9. Average values of the finite element model. 

Layer name Average depth of 

top of layer [m] 

Mean E 

[GPa] 

Mean  Viscosity 

Pas 

Cm 

[10-5bar-1] 

North Sea  0 2 0.3 - 3.7 

Chalk  1000 10 0.25 - 0.83 

Cretaceous/Jurassic 1500 16 0.25 - 0.52 

Zechstein 2000 30 0.35 variable 0.21 

Ten Boer Claystone 3200 40 0.2 - 0.23 

Rotliegendes Sandstone (reservoir) 3300 8 0.2 - 1.13 

Limburg 3410 40 0.2 - 0.23 

 

Creep parameter values in Geomec (the FE software used) were translated into viscosity values as 

defined by a Maxwell model (pers. Comm. P. Fokker, TNO and P. Fokker, Shell) following the scheme 

of equations below. 

In Geomec vertical strain rate is defined by: 

𝜀3̇3 = 𝐷(𝜎33 − 𝜎11)
𝑛        

with 𝐷 = 𝐴 ∙ 𝑒𝑥𝑝 (−
𝑄

𝑅𝑇
)       

Here 𝐴 the “creep factor” [MPa-1s-1], 𝑄 the activation energy [J mol-1], 𝑅 the gas constant [J mol-1K-1] 

and 𝑇 the temperature [K]. 

With 𝑛 being 1 for linear viscosity and for the condition that radial strain (𝜀11 and 𝜀22) is zero and 

𝜎11 = 𝜎22. 

Maxwell viscosity is defined by: 

2𝜇𝜀𝑖̇𝑗 =
𝜇

𝜂
(𝜎𝑖𝑗 −

1

3
𝜎𝑘𝑘𝛿𝑖𝑗) and for 𝑖𝑗 = 33       

𝜀3̇3 =
1

2𝜂
(𝜎33 −

1

3
(𝜎11 + 𝜎22 + 𝜎33)) and 𝜎11 = 𝜎22   ,    

Therefore 𝐷 =
1

3𝜂
        

The response of a “pulse model” scenario is visualised via a cross section through the deformation 

bowl in Figure 16. The red line (least subsidence) in this graph shows the linear elastic response of 

the model, while the curves below this red line are a result of the viscous flow of the salt. This figure 

shows the definition of a model halftime and a maximum extra subsidence caused by the salt flow, 

indicated by the blue arrows in the figure. The maximum extra subsidence is equal for all scenarios, 

whereas the model halftime depends on the chosen viscosity.   
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Table 10 shows the scenario halftime values for 5 different viscosities. These results show that all 

viscosity values in the range would impact the spatial-temporal shape of the subsidence bowl during 

the lifetime or production time of the field. 

 

Figure 16. Result of the Geomec pulse model for a viscosity of 1.1017 Pas. The use of the term ‘halftime’ in Table 10 is 
also explained in this figure. Within this model the full field depletion has been taken place in the first month. The elastic 
deformation is the direct response to this pressure pulse. The additional deformation shown for the later years is caused 
by the effect of salt only. 

  

Extra maximum 

subsidence caused by 

salt Half of the signal 

already reached in 

1988 halftime = 1 

year 
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Table 10. Results for the signal half time because of viscosity variation. 

Model name  A factor in Geomec 

(MPa-1S-1) 

Maxwell Viscosity 

(Pas) 

Signal half time 

estimated (year) 

Ame_Pulse_ZE-A2.26E-07_TD7_C1_I2 2.26 10-7 5.0 1015 0.1 

Ame_Pulse_ZE-A1.13E-08_TD7_C1_I2 1.13 10-8 1.0 1017 1.5 

Ame_Pulse_ZE-A1.69E-09_TD7_C1_I2 1.69 10-9 6.7 1017 10 

Ame_Pulse_ZE-A1.13E-09_ TD7_C1_I2 1.13 10-9 1.0 1018 15 

Ame_Pulse_ZE-A2.26E-10_TD7_C1_I2 2.26 10-10 5.0 1018 70 

 

The values for the “moving RGB” were derived from matching the analytical model with the output 

of the Geomec scenarios. The compaction model in both Geomec and Geertsma & van Opstal models 

is a linear model and therefore the viscosity of the salt is the only time dependent process in these 

scenarios. Several scenarios, uniquely defined by different values for the salt viscosity, were matched 

with the analytical model and results are provided in Table 11. The parameters were derived from 

different parts of the maximum subsidence vs time curve (Figure 17). 𝑐 𝑘(0)⁄  was determined by the 

initial subsidence, 𝑑(𝑐 𝑘⁄ ) by the total effect of the viscous part, and 𝜏𝑠𝑎𝑙𝑡 from the duration in which 

the creep took place.  

  

Figure 17. Subsidence versus time curve for a salt viscosity of 6.7 1017 Pas. The elastic deformation is the direct response 
to this pressure pulse. The additional deformation shown for the later years is caused by the effect of salt only. 

The matching exercise resulted in fixed parameters for the 𝑐 𝑘(0)⁄  and 𝑑(𝑐 𝑘⁄ ). These fixed values 

are simply a result of this comparison using a single location in both models. These values may 
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change with salt thickness and thickness of the ROCLT, the claystone layer between the salt and the 

reservoir. To investigate this possible effect, the same matching exercise was performed at different 

locations of the models but yielded small differences for each parameter as demonstrated by Figure 

18. For a fixed set of calibrated values, it is shown that the results of the Geomec model versus the 

Geertsma and van Opstal solution with the moving rigid basement are not impacted by thickness 

variation of the salt layer and/or ROCLT. More evidence for the small impact of a heterogenous 

subsurface on the shape of the bowl is provided in the next Section. 

Table 11 provides an overview of values that were obtained during this calibration process and 

shows that the 𝜏𝑠𝑎𝑙𝑡 values are roughly 50% higher than the half time values that are listed in Table 

10. From the literature, a large a priori range for the 𝜏𝑠𝑎𝑙𝑡 was deduced, varying between 0.3 and 100 

years. The other two parameters in the equation, 𝑐 𝑘(0)⁄  and 𝑑(𝑐 𝑘⁄ ) show less variation in the 

obtained values. Narrow ranges are defined around these values (respectively 0.75 - 0.85 and 0.15 - 

0.25). 

Table 11. Match of the analytical model to the Geomec output for different salt viscosities. 

Geomec creep factor (s-1) viscosity 

[Pas] 

 𝜏𝑠𝑎𝑙𝑡  

[year] 

𝑐 𝑘(0)⁄  𝑑(𝑐 𝑘⁄ ) 

2.26 10-7 5 1015 0.2 0.3 0.87 0.15 

1.1310-8 1 1017 0.2 2 0.8 0.2 

1.69 10-9 6.7 1017 0.2 15 0.8 0.2 

2.26 10-10 5 1018 0.2 100 0.8 0.2 
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Figure 18. Comparison of Geomec and Geertsma and van Opstal moving RGB solution. The subsidence with time is 
presented at different locations having a different thickness (metres) of the salt package (see top figure). 
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4.4 The possible role of the overburden on the position of the subsidence 

bowl 
The previous Sections demonstrate that a complex 3D model can be represented by a simplified 

analytical solution. However, this solution does not account for the possible influence of a 3D varying 

salt layer. A model with a realistic 3D overburden with different values for the geomechanical 

behaviour of this overburden might position the subsidence bowl differently than a simple “layer 

cake” model of the subsurface. To verify the existence of such a 3D effect, several tests were 

performed. First an elastic (time independent) overburden is examined in Section 4.4.1 and then 

possible time dependent effects are examined in Section 4.4.2.  

4.4.1 Possible time-independent effects 

In the 3D model, the largest difference in thickness exists in the salt layer. This layer is therefore used 

to test the hypothesis that a different value for the Young’s modulus would lead to a different (time-

independent) position of the bowl. To test the hypothesis, two scenarios with different elastic 

properties for the salt were created. 

Scenario A uses a Young’s modulus value of 3.5 GPa while Scenario B uses a value of 35 GPa. Note 

that these values span a range larger than what is realistic for the Zechstein salt elastic values. Both 

scenarios have been tested in Geomec by a “pulse model” as described before, i.e. the total 

depletion applied in one “time” step.  lists the position and value of the maximum modelled 

subsidence for both scenarios. Although the difference in the value of the Young’s modulus of the 

salt causes a difference in the amount of the subsidence, the position of maximum is the same. The 

accuracy of this assessment is however defined by the grid size of the Geomec model, which is in our 

case 500 m. 

Table 12 lists the position and value of the maximum modelled subsidence for both scenarios. 

Although the difference in the value of the Young’s modulus of the salt causes a difference in the 

amount of the subsidence, the position of maximum is the same. The accuracy of this assessment is 

however defined by the grid size of the Geomec model, which is in our case 500 m. 

Table 12. Position and value of the maximum subsidence for variation of Young’s modulus. 

 Esalt 3.5 GPa Esalt 35 GPa 

year x y Value [cm] x y Value [cm] 

1987 190563 609163 26.5 190563 609163 24.7 

A possible influence of Poisson’s ratio has been investigated for a model with a fixed value of the 

Young’s modulus of 35 GPa. Table 13 shows that the position of the deepest point is not influenced 

by Poisson’s ratio. 

Table 13. Position and value of the maximum subsidence for variation of Poisson’s ratio. 

 Esalt 35 GPa,  0.35 Esalt 35 GPa,  0.1 

year x y Value [cm] x y Value [cm] 

1987 190563 609163 24.7 190563 609163 25.0 
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The results of these tests show that the combination of a strong heterogeneous and spatially variable 

thickness of the overburden doesn’t affect the position of the deepest point of the subsidence bowl. 

This is further illustrated in Figure 19. The shape of the contour lines is very similar for both 

scenarios. 

 

Figure 19. Left: total subsidence after full depletion for a salt layer having a Young’s modulus of 3.5 GPa. Right: for a salt 
layer having a Young’s modulus of 35 GPa. 

4.4.2 Possible time dependent effects of viscous salt on the position of the deepest point 

The pulse model is used again to rule out any time dependent effects of a combination of a complex 

3D structure and the viscous behaviour of salt on the position of the subsidence bowl. Using various 

values for the viscosity, the impact of this depletion “pulse” on the salt above the reservoir is 

analysed. The hypothesis to test is that the position of the subsidence bowl is not influenced by the 

3D structure of the salt. This would provide confidence that incorporation of a simple overburden in 

the analytical model would not compromise the results. 

Table 14. Position of the bowl for two salt viscosity values. 

 Viscosity 5 1018 Pas Viscosity 5 1015 Pas 

year x y Value [cm] x y Value [cm] 

Feb 1986 190563 609163 24.7 190563 609163 27.3 

1990 190563 609163 25.0 190563 609163 33.6 

2001 190563 609163 25.7 190563 609163 33.6 

2010 190563 609163 26.2 190563 609163 33.6 

2020 190563 609163 26.7 190563 609163 33.6 

2030 190563 609163 27.3 190563 609163 33.6 

2040 190563 609163 28.2 190563 609163 33.6 
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Table 14 demonstrates that the location of the deepest point of the subsidence bowl is not affected 

by the 3D thickness variation of the salt layer, both for a high viscous and a low viscous salt. Figure 20 

shows the subsidence contours after 10 years (left) and after 30 years (right) for a pulse model with a 

salt viscosity of 6.7 1017 Pas. The shape of the contour lines is very similar leading to the conclusion 

that there is no significant time dependent spatial influence of the salt layer on the shape of the 

subsidence bowl. 

 

Figure 20. Subsidence contours for a “pulse” test model with a salt viscosity of 6.7E+17 Pas. Left, subsidence after 10 
years, right: subsidence after 30 years. 

4.4.3 Earlier published LTS-I results by Marketos et al. (2015) 

Figure 36 of the Marketos et al. (2015) report (Figure 21, this report) shows the results of the 

deformation for different time-steps via a contour map and 3 cross sections through the subsidence 

bowl. Figure 21 c seems to suggest a shift in the location of the bowl, which possibly contradicts the 

observations described in the previous Section.  

The FEM code, used by Marketos et al. (2015) is developed by the University of Utrecht (UU) and 

they were asked (pers. com. University of Utrecht) to replicate a simulation as described in Section 

4.4.2 to verify the results from NAM with the “pulse model”. Again, like NAM, the UU simulated the 

total Ameland depletion as one load case at t=0, where after the salt relaxes the imposed shear 

stresses over time. Contour plots of the normalised subsidence over time are presented in Figure 22. 

These plots indicate that there is no significant change in shape of the subsidence contours. Also, the 

location of the centre of the subsidence bowl does not shift over time. These results confirm the 

obtained results by NAM. 
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Figure 21. Deformation in time after 150 years of evolution (figure above). The subplots a, b, and c show Cross sections 
through the model showing vertical deformations (figure 36 from Marketos et al. 2015). 
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Figure 22. Normalised subsidence at resp. 0, 10, 30 and 50 years from UU FEM model for the “pulse model”. 

 

4.4.4 Conclusions on possible time-dependent and time-independent effects from a 

spatial varying overburden. 

The tests described here and the further analysis by the University of Utrecht suggest that the (time) 

dependent influence of the spatial thickness variation in the overburden layers above the Ameland 

field on the location of the subsidence bowl is small, over time periods up to 50 years. This 

strengthens the conclusion that the influence function as used in the analytical model is a reasonable 

approximation of the complex model to translate the reservoir strain to the surface. To support the 

above statement, Figure 23 shows the results of a comparison between the analytical and numerical 

model for a pulse model. The shape of the contours of both models are very similar. The small 

differences in the magnitude of the subsidence that can be observed in these figures are most likely 

caused by the stiff elastic layers surrounding the reservoir in the much more detailed 3D finite 

element Geomec model. 
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Figure 23. Comparing the analytical model (blue contour lines) with the complex FE model (green contour lines). Left 
figure: results of the pulse model for 1999, right figure: 2016. 

4.5 Upscaling 
Ideally the compaction calculations are run on the same grid size as used in the dynamic reservoir 

simulator (MoReS). However, the grid used in the MoReS dynamic reservoir simulator is very fine and 

contains too many grid cells to be used for computationally efficient compaction calculations. An 

upscaling step is introduced to generate a regular, one layer grid with horizontal dimensions of 500m 

x 500m as input for the compaction models. For each grid block, the location, grid block volume, 

porosity and the pressure over time is specified. 

Upscaling is common practice in the building of subsurface models. When building a geological 

model, a geologist “upscales” very detailed measurements and observations from cores, into a fine 

scale geological model. When building the dynamic reservoir simulator in MoReS, this very fine scale 

geological model with millions of grid cells is “upscaled” into a coarser grid of a few hundred 

thousand grid cells to ensure that the computation time does not exceed 12-24 hours. The resulting 

input for the geomechanical modelling work flow is a grid with pressures that change over time. To 

enable the computation of many Monte Carlo simulations (in the case of this study 1.2 mln models 

were simulated) a further “upscaling” had to take place to convert the MoReS grid into a single layer 

of grid cells of 500m x 500m with changing pressure over time.  

The upscaling process from MoReS to the geomechanical model is kept simple by using the 

(arithmetic) upscaling equations below. This set of equations preserves bulk volume  

[𝑉𝑡𝑜𝑡 = ∑ 𝑉𝑘
𝑛
𝑘=1  ], pore volume [𝑉𝑝𝑜𝑟𝑒 = ∅𝑎𝑣 ∙ 𝑉𝑡𝑜𝑡 = ∑ ∅𝑘 . 𝑉𝑘

𝑛
𝑘=1 ] and  

[ 𝑃𝑎𝑣 ∙ 𝑉𝑝𝑜𝑟𝑒 = ∑ 𝑃𝑘 . 𝑉𝑝𝑜𝑟𝑒,𝑘
𝑛
𝑘=1 ] with 𝑛 the total number of fine scaled grid blocks. 

The vertical upscaling is performed first, followed by a horizontal up-scaling over a coarser grid.  

The vertically averaged pressures 𝑃𝑎𝑣, volumes 𝑉𝑡𝑜𝑡, porosities ∅𝑎𝑣 and grid block centre positions 

𝑋𝑎𝑣 and 𝑌𝑎𝑣 for one vertical column of the 3-D grid can be expressed as: 

𝑃𝑎𝑣 =
∑ ∅𝑘.𝑃𝑘.𝑉𝑘
𝑛
𝑘=1

∅𝑎𝑣.𝑉𝑡𝑜𝑡
            

𝑉𝑡𝑜𝑡 = ∑ 𝑉𝑘
𝑛
𝑘=1            
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∅𝑎𝑣 = ∑ ∅𝑘 .
𝑉𝑘

𝑉𝑡𝑜𝑡

𝑛
𝑘=1             

𝑋𝑎𝑣 = ∑ 𝑋𝑘 .
𝑉𝑘

𝑉𝑡𝑜𝑡

𝑛
𝑘=1             

𝑌𝑎𝑣 = ∑ 𝑌𝑘 .
𝑉𝑘

𝑉𝑡𝑜𝑡

𝑛
𝑘=1            

The first step of vertical upscaling yields a 2D irregular fine grid for 𝑃𝑎𝑣, ∅𝑎𝑣, 𝑉𝑡𝑜𝑡 at upscaled 

positions (𝑋𝑎𝑣, 𝑌𝑎𝑣). 

The next step involves the horizontal upscaling of the vertically up-scaled grid. Basically, the 

horizontal upscaling follows the same equations as used for the vertical up-scaling. The end product 

is a 2D coarser regular grid. 
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5 Geodetic data 
Levelling and GPS (Global Positioning System) data have been prepared for subsidence modelling 

following the new approach proposed in LTS-I (see next section). Data processing has been carried 

out by NAM with substantial support by Delft University of Technology (Van Leijen et al., 2017). 

5.1 Innovations as recommended in LTS-I (2013-2015) 
1. The observations from different survey techniques are not combined prior to subsidence 

modelling in a single dataset. Handling separate datasets for levelling and GPS avoids 

assumption-based interpolation that would be required for their alignment. 

2. Spatio-temporal double-differences are used instead of the previously used temporal 

referenced single-differences. The confrontation of measurements and subsidence model 

predictions takes place at the level of changes of surface positions between two points in 

space and two epochs in time (see Figure 24). Thus, no assumptions on a stable reference 

point are necessary. The original recommendation from LTS-I was to use multiple reference 

points and multiple reference epochs to form the set of double-differences. This 

recommendation has been revised in the meantime (Samiei-Esfahany and Bähr, 2017), 

because the assumption that using a single reference point and epoch would introduce a bias 

turned out to be invalid. Therefore, many double-differences in LTS-II have identical 

reference points and epochs. 

 

Figure 24. Concept of double-differences (figure provided by TU Delft). 

3. The stochastic properties of the geodetic observations are described by their full covariance 

matrix. Compared to previous approaches this yields a more realistic assessment of 

uncertainties. 

4. Individual outliers are identified by a more formal and objective approach. The 

recommendation from LTS-I was to identify outliers based on an a priori subsidence model 
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(based on a reservoir scenario and geomechanical parameters) and to account for residual 

model uncertainties by relaxing the threshold in a way that only the most obvious outliers 

are rejected. This approach turned out to be too conservative, which is why the a priori 

subsidence model was replaced by the assumption that the observed deformation is smooth 

in space and time. This allowed for a stricter outlier identification while “tuning” the 

measurements towards a previous model prediction could be avoided. 

5. The discrepancy between measurements and subsidence model predictions originates not 

only from uncertainty of geodetic observations (measurement noise) and model uncertainty 

but also from shallow movements. These movements, like building settlements, cannot be 

attributed to measurement imperfection and are not considered in the geomechanical model 

either. Thus, they are subsumed by the so-called idealisation noise, which is now taken into 

account. 

5.2 Survey data and measurement noise 
Figure 25 provides an overview of the datasets used in the study. 

 

Figure 25. Spatial distribution of geodetic observations used in this study (final dataset, after outlier handling). 

5.2.1 Levelling 

Levelling data from 26 campaigns between 1986 and 2017 have been used in this study. An attempt 

was made to complement optical levelling data by hydrostatic levelling observations. This technique 

of measuring height differences by means of a water-filled tube has been applied by Rijkswaterstaat 

in the study area until 2002. Thus, also benchmarks in the Waddenzee could be connected to the 

levelling network on the island. However, the levelling observations in the Waddenzee are too sparse 

for effective quality assurance (see section 5.4.1) and have thus been excluded from the final 

dataset. To quantify the measurement uncertainty, standard models have been used. 

5.2.2 GPS network (since 2006) 

The more recent GPS observations originate from a network of permanent monitoring stations 

established in 2006. Four of them have been used in LTS-II (see Table 15). The network is extended 
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campaign-wise by the benchmarks in the Waddenzee. The first campaign was in 2006, and the last 

campaign considered for this project was in 2016. Benchmarks on the platforms AWG1 and AME2 

have been observed in several campaigns before installing continuously operating stations in 2014.  

Table 15. Continuous GPS stations used in this study. 

Name Location Installation 

AME1 Production location on Ameland 2006 

AME2 Production platform 2014 

AMEL Nes village  2014 

AWG1 Production platform 2014 

 

The data from the four continuously operating stations have been sampled at the average dates of 

the campaigns as well as an additional sampling epoch in January 2017. They have been corrected for 

temperature effects, atmospheric loading as well as annual and semi-annual harmonics (Van Leijen 

et al., 2017). The latter correction compensates for systematic errors that are inherent to the GPS 

system. The measurement uncertainty is modelled by the stochastic model proposed in LTS-I 

(Williams 2015), which comprises the uncertainty of determining the antenna position and a setup 

error. This setup error of 1.5 mm is applied to the campaign data only and accounts for the yearly 

mounting of the equipment. 

The previously mentioned concept of spatio-temporal differencing has been applied to the GPS data 

in a modified way. NAM obtains the processed data in form of displacements with respect to an 

assumedly stable reference network of currently more than 10 stations. Their stability is closely 

monitored in yearly intervals. The spatial differences are formed with respect to a virtual reference 

station representing the whole network of reference stations. 

For reliability purposes, the monitored benchmarks in the Waddenzee consist of clusters of three. 

Observations from all three benchmarks of a cluster have been used to maximise the information 

content and avoid a subjective and unnecessary preselection. 

5.2.3 GPS baselines (1993-2004) 

Prior to 2006, only few GPS observations have been carried out by NAM in the study area, mainly to 

establish a connection from the island to the platforms AWG1 and AME2. Benchmarks have been 

occupied and processed in pairs (baselines). Since very little is documented about the processing 

approach from more than a decade ago, the opportunities to a tailor stochastic model were limited. 

Hence, a conservative standard deviation of 11 mm has been assumed for these height differences, 

based on experience with comparable datasets. 

5.2.4 InSAR 

Despite the availability of InSAR (Interferometric Synthetic Aperture Radar) data from Ameland, 

these have not been used in the study for various reasons. The spatial coverage in the eastern part of 

the island, where the gas field is located, is very sparse. In addition, the quality of the available 

measurements is poor due to lack of stable Radar reflectors like well-founded buildings in that area. 

This together with pending imperfections in stochastic modelling would require a very conservative 

approach for quantifying the uncertainty. After all, there would have been little (if any) added value 

to this project while the effort of data preparation would have been disproportionately large. 
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5.3 Idealisation noise 
This noise component describes displacements of the measurement points due to shallow 

movements like building settlement or soil compaction. Together with the measurement noise, it 

models the uncertainty of geodetic observations when used to quantify subsidence caused by (deep) 

reservoir compaction. The model differentiates between two components: 

• Temporal component: This subsumes all shallow effects that are correlated in time and 

uncorrelated in space. It can be considered as an autonomous movement of an individual 

benchmark that has nothing in common with the behaviour of neighbouring benchmarks. An 

example would be settlement of the individual building a benchmark is attached to. 

• Spatio-temporal component: This subsumes all shallow effects that are correlated in both 

space and time. It can be considered as a coherence in movement with neighbouring 

benchmarks, whereas the level of coherence decreases with distance. Examples would be 

the compaction of a shallow peat layer or the response to ground water level changes. 

Both components can be described by a five-parametric model (Samiei-Esfahany and Bähr, 2015 and 

2017), for which different representations were discussed during LTS-I. For the spatial dependency of 

the spatio-temporal component both an exponential (𝑒
−(

∆𝑑

𝑳
)
) and a Gaussian (𝑒

−(
∆𝑑

𝑳
)
2

) model were 

considered. After an exponential model had been chosen in the final LTS-I report due to a slightly 

better fit, it was pointed out in the LTS-I review that this model is suboptimal, because it creates 

unrealistically shaped functions in least squares collocation. Against this background, it seemed 

reasonable to use a Gaussian representation in LTS-II. The full model reads for the variance of a 

double-difference observation: 

𝜎𝐷𝐷
2 = 2𝝈𝒕

𝟐∆𝑡𝒑𝒕⏟    
temp. comp.

+ 2𝝈𝒔
𝟐 (1 − 𝑒

−(
∆𝑑
𝑳
)
2

)∆𝑡𝒑𝒔
⏟              

spatio-temp. component

 

During the two phases of LTS, two datasets have been used to estimate idealisation noise parameters 

(see Figure 26): 

1. Calibration of both the temporal and the spatio-temporal component to an onshore levelling 

dataset from the LTS-I study area in Northern Friesland. In that area, both components can 

be estimated due to absence of gas production (Samiei-Esfahany and Bähr, 2015 and 2017). 

Both components turned out to be significant. 

2. Calibration of the temporal component to the relative intra-cluster movements of the 

offshore benchmarks (van Leijen et al., 2017). Levelling between these benchmarks, that are 

placed in clusters of three with mutual distances ≤ 15 m, provide the opportunity to estimate 

the temporal component in isolation. This is possible, because all spatially correlated signal 

components cancel out for short distances. 
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Figure 26. Study areas for the determination of idealisation noise parameters. Left: LTS-I onshore dataset (Samiei-
Esfahany and Bähr, 2015 and 2017). Right: LTS-II offshore dataset (van Leijen et al. 2017). 

The non-uniqueness of the model parameter estimation triggered an examination of its robustness in 

more detail. For that, the offshore dataset was a logical starting point, because a two-parametric 

model for the temporal component is less complex than a five-parametric model for both 

components. From Figure 27, it can be seen that even though the estimation is stable, it is not well-

constrained. Whereas point A marks the global minimum, the parameter set marked by B gives a 

slightly less optimal but still reasonable fit. In the figure on the right-hand side can be seen that 

models A and B yield similar standard deviations for time spans up to 9 years, which is the maximum 

time span covered by the underlying dataset. Model A, however, performs poor for longer time 

spans. It suggests quite high standard deviations, increasing almost linearly with time. This is not an 

expected behaviour for benchmark settlement, which is suspected to be the primary driving 

mechanism for spatially uncorrelated autonomous movements. Settlement would be expected to 

decelerate over time. 

 

Figure 27. Estimation of the temporal idealisation noise component from intra-cluster levellings between the Waddenzee 
benchmarks. Left: Solution space: A greenish colour (corresponding to a low L2 norm) indicates a good agreement 
between data and model. Point A marks the global minimum. Point B is arbitrarily chosen to represent an extreme case 
with a still reasonable fit. Point C represents the parameters estimated by Houtenbos and Kenselaar (2001). Right: 
Contribution of the temporal idealisation noise component to the standard deviations of double-difference 
measurements for the models indicated on the left-hand side. See Table 17 for the model parameters. 

B 

A 

C 

data coverage 

GPS measurement noise 
includeddata coverage 
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For comparison, also a third model is considered in Figure 27: Model C (Houtenbos and Kenselaar, 

2001)1 is close to model B, still reasonably close to the minimum area in the solution space (see 

Figure 27) but based on a considerably larger dataset (see Table 16). Model C is slightly less optimal 

than model A for describing the idealisation noise in the LTS-II offshore dataset, because it does not 

minimise the objective function and is not tailored to the benchmark type in the Waddenzee. 

However, it is more appropriate for longer time spans. Due to the size of the underlying dataset, 

which includes observations from the whole of the Netherlands, it is also considered a more precise 

estimate. Therefore, model C is considered most appropriate to be used for the temporal idealisation 

noise component of offshore benchmarks in LTS-II. Note that this doesn’t mean that a spatio-

temporal component is absent for these benchmarks; but it is not possible to determine its 

parameters based on the offshore dataset. 

Table 16. Comparison of studies to estimate idealisation noise parameters: Houtenbos and Kenselaar (2001), LTS-I 
onshore dataset (Samiei-Esfahany and Bähr, 2015 and 2017), LTS-II offshore dataset (Van Leijen et al., 2017). 

 Houtenbos and Kenselaar (2001) LTS-I onshore LTS-II offshore 

Data unadjusted sections adjusted networks benchmark clusters 

Area whole Netherlands Northern Friesland part of Waddenzee 

Temporal sampling 0.5...40 a (t = 1 a) 5...25 a (t  5 a) 1...9 a (t  1 a) 

Spatial sampling 0.05...1.6 km (s = 0.1 km) 0.25...12 km (s = 0.5 km) 0 km 

temporal component most stable estimation (large dataset) poorly constrained for t < 5 a poorly constrained for t > 9 a 

spatio-temporal 
component 

not significant (poorly constrained) estimation possible not estimable 

 

The dataset of Houtenbos and Kenselaar (2001) also suffered from too short spatial distances to 

reliably estimate the parameters of a spatio-temporal idealisation noise component. Therefore, the 

calibration of a full five-parametric model (including both temporal and spatio-temporal component) 

is tackled with the LTS-I onshore dataset. It had already been concluded that this estimation is very 

unstable. It fails for most of the simulations of Samiei-Esfahany and Bähr (2017). Therefore, it was 

deemed necessary to constrain at least one parameter to a given value. For providing an appropriate 

constraint, the model of Houtenbos and Kenselaar (2001; “OFF_C”) is a suitable candidate, because it 

is based on a large set of onshore observations from the whole of the Netherlands. Tests have shown 

that the result doesn’t change significantly if not only 𝑝𝑡 but also 𝜎𝑡
2 is constrained to this model. 

Constraining both parameters instead of one is also convenient, because this yields a homogeneous 

parameter set for both offshore and onshore observations. 

The parameters of the resulting idealisation noise model “ON_C” that comprises both a temporal and 

a spatio-temporal component are specified in Table 17, and the corresponding standard deviations 

for double-differences are evaluated in Figure 28. In conclusion, ON_C is considered the most 

appropriate idealisation noise model and has been applied in this study to both the onshore and the 

offshore benchmarks. Nevertheless, it should be noted that even though two of the five parameters 

have been constrained, the three estimated parameters are still uncertain to some degree. (The 

standard deviation of 𝜎𝑠
2 is about half the parameter value itself.) With a correlation coefficient 

between 𝜎𝑠
2 and 𝑝𝑠 of -0.95, the uniqueness of the parameters is also arguable. This should be kept 

in mind when using the parameters. 

                                                           
1 3-component model for “other” (i. e., non-underground) benchmarks with outlier removal up to 2.5  from 
Houtenbos and Kenselaar (2001), Table 5.5. Mind the different definition of pt in that publication. 
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Table 17. Parameters of different idealisation noise models with corresponding standard deviations. 

 𝝈𝒔
𝟐 

[mm2/km/aps] 
𝑳 
 [m] 

𝒑𝒔 
[−] 

𝝈𝒕
𝟐 

[𝒎𝒎𝟐/apt] 
𝒑𝒕 
[−] 

model description 

OFF_A – – – 0.070 

±0.003 

1.860 

±0.021 

LTS-II offshore dataset, global minimum 

OFF_B – – – 0.350 

– 

1.000 

– 

LTS-II offshore dataset, extreme case 

OFF_C – – – 0.160 

±0.002 

1.240 

±0.002 

Houtenbos and Kenselaar (2001) 

ON_C 0.465 

±0.229 

3956 

±390 

1.590 

±0.154 

0.160 

– 

1.240 

– 

LTS-I onshore dataset, 𝜎𝑡
2 and 𝑝𝑡 constrained to 

Houtenbos and Kenselaar (2001) 

 

 

Figure 28. Idealisation noise model estimated from the LTS-I onshore dataset, evaluated for standard deviations of 
double-differences covering spatial distances of 0, 1, 5 and 20 km. 

5.4 Outlier handling 
In the following, the different outlier handling procedures for levelling and GPS are explained in 

detail. 

5.4.1 Levelling 

For levelling data, a dedicated outlier handling approach has been proposed in LTS-I (Bähr and 

Samiei-Esfahany, 2015) and implemented by Van Leijen et al. (2017) with the intention to be applied 

in LTS-II. It will be referred to as LTS-I approach in the following. It is based on time series analysis per 

benchmark of double-differences with a common reference point and a common reference epoch. 

The expected deformation of an a priori subsidence model is subtracted from these time series. 

Subsequently, hypotheses on disturbances, identification errors and abnormal behaviour are tested 

on these time series of model residuals (see Figure 29). 

 

Figure 29. Types of alternative hypotheses for residual time series and corresponding actions: Identification errors are 
removed from the dataset. Where disturbances are detected, time series are split in two. In case of abnormal behaviour, 
the entire time series is rejected. 

identification error disturbance abnormal behaviour 

time time time 

data coverage 
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Disturbances are jumps in a time series and can be addressed by splitting the time series in two 

parts. Identification errors are outliers in a single epoch, caused for instance by misidentification of a 

benchmark. The appropriate remedy is here to reject the single observation from the affected epoch. 

Abnormal behaviour is stated if the time series of residuals does not match the presumed stochastic 

model. The stochastic model for the testing, comprises of both measurement noise and idealisation 

noise. To cover residual imperfections in this stochastic model, and since subsidence modelling 

imperfections and uncertainties are not covered at all, the testing threshold is largely increased. 

Drawbacks of this approach are its poor sensitivity, the assumption of a stable reference point, 

incomplete exploitation of spatio-temporal relationships and limited fitness for short time series. The 

consequences of its application were that many outliers remained undetected, because the 

conservative framework allows only for detection of clearly obvious outliers. This resulted in far too 

high test statistic values for the confrontation of geodetic observations and subsidence model 

predictions. 

To mitigate the large test statistics, some additional outlier handling was applied by visualising time 

series that were suspected of containing outliers based on some auxiliary analysis. Some more 

potential outliers have been assessed manually, and the dataset has only been altered in case of 

obvious outliers. Altering the dataset or “handling” outliers does not necessarily imply complete 

rejection of benchmarks. In most cases, depending on the type of error, time series are split in two 

independent parts (disturbances), or single observations are excluded from the dataset (see Figure 

29). 

Even after these remedies, the test statistic value was significantly above the expectation value. This 

may be an indication for a substantial (subsidence) model mismatch, but it became clear that 

remaining outliers in the geodetic data made a substantial contribution. Since all opportunities of 

conservative and (almost) assumption-free outlier handling had been exploited, other routes had to 

be explored. During progress meetings with experts there was general agreement on spatio-

temporal smoothness of subsidence signals that are caused by hydrocarbon production. This 

smoothness assumption has been exploited to detect some more still significant but less obvious 

outliers. To achieve this, the workflow has been complemented by a spatio-temporal analysis of the 

geodetic observations, and there was no longer a need to use an a priori subsidence model based on 

geomechanical parameters and reservoir scenarios. An overview flowchart is shown in Figure 30. 

The spatio-temporal analysis (Methode Houtenbos; TCBB, 2009) on the right-hand side works as 

follows. The levelled height differences are subdivided into two contributions: the height differences 

at a reference epoch (here: 1986) as estimable parameters and the deformation that has taken place 

since then. The latter is considered a stochastic signal that can be predicted for any point in space 

and time within the observed area and time interval. This is achieved by means of least squares 

collocation or Best Linear Unbiased Prediction (BLUP), respectively. 
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Figure 30. Outlier handling workflow for levelling data. 
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To minimise the prediction bias, a first order approximation of the deformation signal needs to be 

subtracted from the observations beforehand. Usually, an existing subsidence model is used for this 

purpose. But this would also contaminate the result with subsidence modelling assumptions. To 

avoid this, a two-step approach is pursued: As an initial approximation, zero deformation (a “null 

prognosis”) is used to estimate a spatio-temporally correlated subsidence signal from the geodetic 

data. From this signal, a gridded output is generated, which is used as approximation of the 

subsidence signal in a second run. 

During the spatio-temporal analysis, outlier hypotheses are tested, and the data model is adapted 

accordingly in subsequent iterations. The hypotheses cover observation errors (i. e., inconsistencies 

in single observations that would cause significant loop misclosures in an epoch-wise adjustment), 

identification errors (see Figure 29) disturbances (see also Figure 29) and abnormal velocities. The 

latter are related to autonomously behaving benchmarks with a significantly deviating linear 

subsidence rate. Abnormal velocities are disregarded as a hypothesis in the second run, because they 

cannot easily be integrated into the confrontation workflow. They would be detected in only a 

limited number of cases, which are covered by other hypothesis types. 

The list of detected outliers is exploited automatedly to handle all detected identification errors and 

disturbances in the LTS-II dataset according to Figure 29. (The absence of observation errors is 

guaranteed by the prior campaign-wise network adjustment). A second result from the spatio-

temporal analysis is a subsidence grid representing the predicted smooth surface based on geodetic 

data only. This is used for an additional crosscheck following the LTS-I outlier detection approach. In 

addition, only a few observations are removed manually for unquestionable and documented 

reasons (see section 5.4.4). 

A drawback of using the spatio-temporal analysis is that it is only valid in the area and time interval 

that is covered by observations with sufficient density. Since this is only the case for the island of 

Ameland, all levelling observations outside the island are excluded from the confrontation workflow, 

because their reliability cannot be guaranteed at the same level of confidence. Note that GPS data 

outside the island are still used. Whereas the GPS campaign data (since 2006) have some redundancy 

within the benchmark clusters, the GPS baseline data (until 2004) is considered of limited influence 

due to its larger uncertainty. 

5.4.2 Consistency of stochastic modelling 

Outlier assessment is always based on a data quality assumption. In geodesy, this assumption is 

usually parameterised in a stochastic model. If an observation does not satisfy the stochastic model 

with a high likelihood, it is considered an outlier. Since (levelling) outliers are identified in a separate 

workflow prior to the confrontation with subsidence modelling, it is essential to ensure that the 

stochastic models assumed in both steps are aligned with each other.  

The idealisation noise model used in the confrontation workflow consists of five parameters: two 

parameters (𝜎𝑡
2 and 𝑝𝑡) for the temporal component and three parameters (𝜎𝑠

2, 𝐿 and 𝑝𝑠) for the 

spatio-temporal component. The parameters for the temporal component have been determined by 

Houtenbos and Kenselaar (2001) from a dataset with outliers removed. The parameterisation of the 

spatio-temporal component is based on the variogram approach from Samiei-Esfahany and Bähr 

(2015, 2017). This approach uses a robust algorithm, which is insensitive to outliers in the underlying 

dataset. 



54 
 

All five stochastic parameters have been calibrated under the assumption that the underlying dataset 

is free of outliers. Consequently, it is consistent to also remove outliers from the data before applying 

these stochastic parameters in the confrontation workflow. Still, the principal consistency criterion is 

that the stochastic model parameters themselves are identical in both outlier removal and 

confrontation with subsidence modelling. This is the case for the second iteration of the spatio-

temporal analysis in the outlier identification procedure. In the first iteration, however, the five 

stochastic parameters have been calibrated by variance component estimation to obtain an optimal 

fitting smooth subsidence grid in space and time. This is necessary, because the signal does not 

comprise only idealisation noise but also the full subsidence signal due to reservoir compaction. Both 

contributions need to be modelled combinedly by the same a priori unknown stochastic parameters. 

After estimating the subsidence grid and subtracting it from the observations in the second iteration, 

no spatio-temporally correlated signal is present in the residuals. Hence, the three corresponding 

parameters have no effect on the resulting set of outliers. All that matters are the two parameters of 

the temporal component, which are aligned with the confrontation workflow. 

5.4.3 GPS 

For the GPS part, the outlier handling procedure from Van Leijen et al. (2017) has been applied. 

Outlier testing is based on redundant information that is available from the clusters of three 

benchmarks. Observations have been excluded in case of significant changes in the relative heights 

within a cluster. 

Since significant settlement effects can be observed on benchmarks placed in 2006 (M-points: 

M***N, M***M, M***Z), all observations on these benchmarks from 2006 had been excluded from 

the dataset beforehand. As it is unclear if the settlement is still an issue in the subsequent years, 

observations from one M-cluster in 2007 and two M-clusters in 2008 have additionally been 

excluded. 

In contrast to the GPS campaigns, the continuous GPS stations have no inherent means of validation. 

The reliability of the vertical component is assured by comparison with levelling (for AME1 and 

AMEL) or InSAR (for AWG1 and AME2). For the horizontal GPS observations, which are available only 

for AME1 (11 years) and AMEL (2 years) there are no redundant measurement points to be 

compared with. When it comes to uncertainties, there is absolutely no insight into eventual 

horizontal movement of the monument, nor are there any models for horizontal idealisation noise. 

While especially the horizontal movement of AME1 (close to the centre of the subsidence bowl) 

would be a valuable contribution to subsidence modelling, which has been stressed by many 

subsurface experts in the past, there is a substantial risk that unmodeled shallow effects leak into the 

model of the deep subsurface. To mitigate this risk, the horizontal GPS observations have not been 

used in LTS-II. 

5.4.4 Detailed documentation 

This section transparently provides detailed information on data selection and outlier removal. 

Initially, all available data inside the predefined area of interest (see Figure 45) have been considered 

except for two levelling campaigns (279H08 and 279H09). For these, contradictory indications existed 

regarding the year of observation (1987 or 1988), and it was not possible to resolve this 

inconsistency. In addition, horizontal GPS observations have been disregarded as explained in 
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section 5.4.3). Figure 31 gives an overview of the usage of all observations that remained after these 

previously mentioned exclusions. 

   

Figure 31. Usage of available (spatial) single-difference observations for the three observation techniques (1589 levelling, 
17 GPS baselines until 2004, 303 GPS network since 2006). 

While the confrontation between geodetic observations and subsidence modelling takes places on 

the level of double-differences, outlier identification and removal is applied to single-differences. 

There are 104 benchmarks in the dataset that are observed only once (83 by levelling, 21 by GPS). 

Their observations cannot be differenced with a second epoch. Hence, they cannot contribute to any 

double-difference and remain unused. 

Furthermore, it has been explained in section 5.2.1 that levelling observations outside the island of 

Ameland are disregarded, because their reliability cannot be assured by a spatio-temporal analysis. 

This concerns another 29 observations that are also excluded. 

Among the remaining observations, 45 identification errors have been detected, and 12 other 

observations have been excluded for individual reasons elucidated in section 5.4.5. 

Among the GPS observations of benchmarks that have been observed more than once, 18 

observations have been excluded due to suspected settlement (M-points placed in the year 2006). 

Another 20 observations have been excluded, because they have been identified as an outlier. 

The spatial distribution of excluded observations is visualised in Figure 32. Except for benchmark 

002C0117, where 10 out of 10 observations have been excluded (see section 5.4.5), the spread of 

outliers over the whole area of interest does not suggest any systematic impact on the modelling. For 

the GPS clusters in the Waddenzee it should be noted that there is no epoch, for which all three 

observations within a cluster have been removed due to outliers. This has only happened for the M-

benchmarks due to suspected settlement effects in the years 2006-2008. 

Figure 33 gives an overview of the detected disturbances. There are in total 9 benchmarks affected 

by one disturbance, and 1 benchmark (002C0112) is affected by two disturbances. A disturbance 

does not imply that (spatial single-difference) observations are removed. However, when combining 
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spatial single-differences to spatio-temporal double-differences, one double-difference less can be 

formed per disturbance. Thus, even though no observation is removed, one piece of information is 

lost per disturbance. Note that many disturbances have limited impact, because they occur close to 

the beginning or the end of a time series, or the time series is relatively short anyway. 

 

Figure 32. Visual overview of unused observations. Every benchmark is depicted by a circle, the area of which is 
proportional to the number of (spatial single-difference) observations to this benchmark. If one or more observations are 
not used, this is indicated by a coloured circle within, its area being proportional to the number of unused observations. 
The number of unused observations and the total number of observations are indicated next to the benchmark location. 
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For levelling observations, this indication is only given at benchmarks with minimally one unused observation to retain 
the clarity of the plot. 

 

Figure 33. Visual overview over the localisation of disturbances in space and time. Every benchmark is depicted by a 
horizontal line representing a time bar from 1986 until 2017. For every (spatial single-difference) observation, a blue dot 
is placed on the time bar at the epoch when it was taken. If the dot is red, the observation has been excluded due to a 
detected identification error or for another documented reason (see section 5.4.5). Finally, the 11 red vertical bars 
represent disturbances, depicting the epochs at which the time series have been split in two. Note that the time bars of 
benchmarks on the same spot may overlap each other. This can hamper the interpretation but does not distort the 
general picture. 

5.4.5 Individual cases 

In two cases, all observations of a benchmark have been removed from the dataset (“discarded for 

other reasons” in Figure 31). 

0009994: This benchmark has been observed twice (in 2006 and in 2007), observing an uplift of 

3.5 cm. Whereas this is an obvious outlier, it cannot be stated that either of the two observations is 

an identification error. The entire time series of two observations behaves abnormally and has 

therefore been removed completely. 

002C0117: From Figure 34 can be seen that the double-difference observations of this benchmark 

jump up and down in the order of centimetres and do not match with observations from benchmarks 

nearby. Benchmark 002C0117 is a bolt on the top of a mushroom-shaped guidepost (“paddenstoel”) 

that is standing askew. This is sufficient indication to conclude that the benchmark monumentation 

itself is highly unstable. To avoid speculations on when exactly the instability began, all 10 
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observations have been removed. This is a tolerable loss, seeing that there are sufficient 

observations on other benchmarks nearby. 

 

Figure 34. Double-difference time series of benchmark 002C0117 together with time series of other benchmarks within 
600 m distance. The temporal reference is the epoch of first observation for every individual benchmark. 
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6 Workflow confrontation of model results with measured data  
 

6.1 General, description   
A probabilistic workflow was developed with the objective to confront model results with the 

measured data. This confrontation workflow is founded on the workflow described by TNO (2017) 

with modifications to both the functional form and stochastic form as described in chapter 4 and in 

this chapter. In our study, the workflow automates the choice of compaction and influence model 

input variables and confronts the modelled double differences with the measured data for each 

model member at the location of the benchmarks. A measure of the fit to the data is obtained by 

calculating the match of the model with the data expressed by a 𝜒2 value. Next to delivering a 

probabilistic confrontation workflow, the objective of this study is also to provide an objective 

statistical description of the outcome, i.e. an expectation case based on the weighted average and a 

95% confidence interval of the posterior model ensemble. 

Nomenclature 

The confrontation workflow uses several words that deserve more explanation and definition:  

• Reservoir scenario: a scenario based on a set of reservoir simulator (MoReS) parameter 

values that describe the spatial evolution of pressures with time. 

• Compaction model: a model that translates the change of effective stress due to pressure 

depletion into reservoir strain. 

• Influence function: function which translates the reservoir compaction to surface subsidence.  

• Geomechanical model: combination of compaction model and influence function. 

• Subsidence model: combination of geomechanical model and a reservoir scenario. 

• Member: a model member represents a single run of the subsidence model with specific 

values for each of the parameters in the influence function and the compaction model and a 

specific reservoir scenario. 

• Ensemble: a collection of members that result from a Monte Carlo analysis. 

 

The confrontation workflow requires the following input:  

1. geodetic data; 
2. an ensemble of reservoir flow model simulation results (pressure scenarios); 
3. a prior ensemble of geomechanical realisations or members being built on top of the pressure 

scenarios (i.e. subsidence members), varying the values of the parameters for both the 
compaction model and influence function. 

The workflow selects randomly values in the geomechanical parameter space and calculates 

compaction and subsidence using the modified Geertsma and van Opstal (moving) rigid basement 

approach. The geodetic data are processed into double-difference data and a corresponding 

covariance matrix. The modelled ensemble is confronted with the geodetic data. A schematic 

representation of the workflow is provided in Figure 35. 
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Figure 35. Schematic representation of the NAM confrontation workflow (modified from TNO, 2017). 

The confrontation workflow contains 4 internal modules that form the core of the program. 

6.2 CUPiDO  
The module CUPiDO (Connecting Undifferenced Points in Deformation Observations; working title 

“getdata”) has been created by TU Delft as an interface between geodetic data and the confrontation 

workflow (Van Leijen et al., 2017). It selects geodetic observations for a specified area and time 

period of interest. The output is a non-redundant2 set of double-differenced displacements (see 

Figure 24) with an appropriate stochastic description in form of a fully populated covariance matrix 

(see Figure 36). Figure 37 shows the standard deviations of all double-differences as a function of 

distance and time. 

  

                                                           
2 The non-redundancy is a feature of CUPiDO version 1.1.4, which has been released after the publication of 
(Van Leijen et al., 2017).  
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Figure 36. Covariance matrix (left) of the double-difference observations used in LTS-II, including measurement noise and 
idealisation noise with both temporal and spatio-temporal component according to model ON_C (see section 5.3). The 
off-diagonal elements describe the stochastic interdependence. The correlation matrix (right) is a normalized form of the 
covariance matrix, which better visualizes the correlation structure. Note that the colour scale on the left-hand side has 
been truncated; values between 150 mm² and 281 mm² are all in the same colour. 

  

  

Figure 37. Standard deviations of the individual double-difference observations. Whereas this visualization does not 
convey the full stochastic information, it provides a good impression of the precision of the individual double-
differences. The upper row shows the contribution of the measurement noise, which is related to the uncertainty of the 
measurement itself. The lower row displays the full uncertainty budget. This also comprises both temporal and spatio-
temporal component of the idealisation noise according to model ON_C (see section 5.3). The figures on the left-hand 
cover GPS network observations (permanent stations 2006-2017 and campaigns 2006-2016), and the figures on the right-
hand side cover levelling (1986-2017) and GPS baseline observations (1993-2004). 
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6.3 The particle filter in the confrontation workflow 
 

The confrontation workflow (TNO, 2017) confronts the model members with the geodetic data 

including the covariance matrix. To do so, double-differences at the locations of the benchmarks and 

the acquisition times are computed for the model members. 

TNO (2017) describes two methods: 

1. The Red-Flag confrontational method (Nepveu et al., 2010).  

2. The Ensemble Smoother approach (Fokker et al. 2016). 

The LTS-II study results are based on the application of a particle filter, such as the Red-Flag 

approach, but with modifications as explained in this Section. The goodness of fit between the model 

results and the geodetic data in the particle filter is expressed by the value of the 𝜒2 test statistic 

that is also used for the likelihood calculation of a specific model member. 

The ensemble smoother is a methodology that mixes and conditions the output of individual model 

results to create new model results, finally iterating to a narrower distribution of possible 

realisations. The mixing of the member solutions makes a mapping to the original reservoir scenarios 

and geomechanical models less transparent. The aim of LTS-II is to demonstrate the tool and provide 

more insight in plausible scenarios and input values to the subsidence models. This is the reason why 

the particle filter method has been chosen. 

The particle filter that is used in the confrontation between geodetic data and subsidence models is a 

modified version of the Red-Flag methodology as described by TNO (2017). The modified particle 

filter that is used in this study does not exhibit the ensemble ‘collapse’ feature of particle filters (e.g. 

Snyder et al. 2008), and hence can produce a subsidence model confidence interval. 

The following modifications have been applied to the Red-Flag methodology from TNO (2017): 

1. Revision of the covariance matrix used in the 𝜒2 test statistic.  

2. The application of the particle filter to the test statistic value (sum of weighted differences 

between geodetic data and subsidence models), instead of to the vector of differences. This 

implies using the 𝜒2 probability density function instead of the multivariate normal 

distribution. 

In this Section, these modifications are explained. 

6.3.1 The covariance matrix in the 𝝌𝟐 test statistic 

The test statistic applied in the confrontation between geodetic data and subsidence models in TNO 

(2017) is defined for each model ensemble member as:  

𝜒2 = (𝑑𝑑𝑟
𝑝𝑟𝑖𝑜𝑟

− 𝑑𝑑)
𝑇
𝐶𝑑𝑑
−1(𝑑𝑑𝑟

𝑝𝑟𝑖𝑜𝑟
− 𝑑𝑑), 

where 𝑑𝑑𝑟
𝑝𝑟𝑖𝑜𝑟

 represents the vector of model double-differences of an ensemble member, 𝑑𝑑 is the 

vector of geodetic data double-differences, and 𝐶𝑑𝑑
−1 the inverse of the covariance matrix of the 

geodetic data. The subsidence model members are considered deterministic.  
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In the revision of the covariance matrix used in the 𝜒2 test statistic in the particle filter, the concept 

of potential residual geomechanical model imperfections is introduced.  

The revision is explained from the quadrant model in Figure 38. This model discriminates functional 

models (parametric relations) and stochastic models (statistical relations) in the geodetic data and 

subsidence modelling space. 

 

 

Figure 38. Quadrant model. The functional model describes the functional relationship between observations and 
parameters. The stochastic model describes the expectable misfit of the functional model due to residual uncertainties. 
Geodetic observations quantify relative displacements of surface benchmarks. Subsidence models describe the expected 
surface deformation caused by hydrocarbon extraction. (Residual) spatio-temporally correlated deviations between 
geodetic observations and subsidence models can be attributed to both quadrant II (idealisation noise) and quadrant IV 
(subsidence model imperfections). 

As explained in Section 5.3, the stochastic model of geodetic observations may contain besides 

measurement noise, also idealisation noise. Idealisation noise needs to be incorporated if the 

benchmark displacements are not entirely representative for the subsidence signal of interest 

(subsidence due to hydrocarbon extraction), for example due to water extraction or heterogeneities 

in the shallow subsurface. It comprises of a temporal component and/or a spatio-temporal 

component. The stochastic model of geodetic data double-differences including both idealisation 

noise components can be defined as (van Leijen et al., 2017): 

dddddd sttedd CCCC  , 

where C  denotes the covariance matrix (please be aware that the covariance matrix is denoted as 

Q  in the notation by van Leijen et al. (2017)). The covariance matrices of the measurement noise, 

the temporal component of idealisation noise, and the spatio-temporal component of idealisation 

noise are respectively 
ddeC , 

ddtC , and
ddstC . 
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If the spatial and temporal evolution of pressures and geomechanical processes in quadrant III (see 

Figure 38) are known and functionally modelled, and if the model solution space is completely 

sampled, there would be no need to incorporate residual model imperfections in the stochastic 

model (quadrant IV). However, the subsidence models are representations of reality to a certain 

accuracy, and therefore unmodeled subsurface processes will cause residual spatio-temporally 

correlated deviations between geodetic data and subsurface models. The uncertainty caused by 

these deviations is also known as epistemic uncertainty or structural uncertainty, i.e. a systematic 

uncertainty due to processes that are not (exactly) known thus not incorporated in the functional 

model. 

The subsidence models aim to capture the processes related to subsidence induced by hydrocarbon 

production. Many thousands of simulations are calculated for each ensemble to analyse the long-

term effects and the uncertainties. However, the complexity of the models is bounded to manage the 

calculation time of simulations. If residual model imperfections exist and are not taken into account, 

these lead to 2 test statistic values in the particle filter that systematically exceed the expectation 

value of the test statistic. To account for this, the potential residual geomechanical model 

imperfections can be accounted for in the stochastic model by a covariance matrix that represents 

the residuals that are correlated both in time and space: 

mmstC  

Incorporation of model uncertainties in the stochastic model is effectively the same as including a 

covariance matrix to represent uncertainties in the forward modelling, such as the covariance matrix 

CT in Tarantola (2005).  

Note that both residual subsidence model imperfections (quadrant IV) and the spatio-temporal 

component of idealisation precision (quadrant II) are correlated in space and time. If the residual 

spatio-temporally correlated deviations between geodetic observations and subsidence models have 

their origin in both benchmark idealisation noise and geomechanical model imperfections, their 

covariance matrix can be denoted as: 

𝐶𝑠𝑡 = 𝐶𝑠𝑡𝑑𝑑 + 𝐶𝑠𝑡𝑚𝑚  

with elements that can be attributed to both quadrant II (𝐶𝑠𝑡𝑑𝑑) and IV (𝐶𝑠𝑡𝑚𝑚). 

Incorporation of residual model imperfections leads to a reformulation of the test statistic from: 

𝜒2 = (𝑑𝑑𝑟
𝑝𝑟𝑖𝑜𝑟

− 𝑑𝑑)
𝑇
𝐶𝑑𝑑
−1(𝑑𝑑𝑟

𝑝𝑟𝑖𝑜𝑟
− 𝑑𝑑) 

to 

𝜒2 = (𝑑𝑑𝑟
𝑝𝑟𝑖𝑜𝑟

− 𝑑𝑑)
𝑇
(𝐶𝑑𝑑 + 𝐶𝑠𝑡𝑚𝑚)

−1
(𝑑𝑑𝑟

𝑝𝑟𝑖𝑜𝑟
− 𝑑𝑑)  

which equals 

𝜒2 = (𝑑𝑑𝑟
𝑝𝑟𝑖𝑜𝑟

− 𝑑𝑑)
𝑇
(𝐶𝑒𝑑𝑑 + 𝐶𝑡𝑑𝑑 + 𝐶𝑠𝑡𝑑𝑑 + 𝐶𝑠𝑡𝑚𝑚)

−1
(𝑑𝑑𝑟

𝑝𝑟𝑖𝑜𝑟
− 𝑑𝑑)  
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where 𝐶𝑒𝑑𝑑represents measurement noise, 𝐶𝑡𝑑𝑑 represents the temporal component of idealisation 

noise (‘benchmark instability’), 𝐶𝑠𝑡𝑑𝑑  represents the spatio-temporal component of idealisation 

noise, and 𝐶𝑠𝑡𝑚𝑚  residual subsidence model imperfections. Note that benchmark idealisation noise 

and residual subsidence model imperfections do not necessarily always have to be present; their 

presence can vary per area as well as its magnitude. 

Idealisation noise describes the representativeness of geodetic benchmarks for the subsidence signal 

of interest (subsidence due to hydrocarbon production). The stochastic model parameters of 

idealisation noise can be estimated from spatio-temporally correlated benchmark movements before 

the onset of gas production or in a ‘stable’ area nearby which is representative regarding benchmark 

type and shallow subsurface (see Section 5.3).  

Subsidence model imperfections are minimized by exploring the full solution space of reservoir 

scenarios and geomechanical models, and by densely sampling the parameter space. However, as 

stated above, the subsidence models are representations of reality to a certain accuracy, and 

therefore unmodeled subsurface processes can cause residual spatio-temporally correlated 

deviations between geodetic data and subsidence models. If the residual model imperfections 

cannot be obtained by forward modelling of subsurface uncertainties, they could be estimated from 

the geodetic data via geodetic spatio-temporal analysis as soon as geodetic observations from 

multiple acquisition campaigns are available. 

 

6.3.2 Application of the 2 distribution in the probability computation 

The original Red-Flag methodology uses the multivariate normal distribution to assign a probability 

to the vector of differences between a model ensemble member and the geodetic data (TNO, 2017):  

𝑃(𝑑𝑑𝑟
𝑝𝑟𝑖𝑜𝑟

|𝑑𝑑) =
𝑃(𝑑𝑑𝑟

𝑝𝑟𝑖𝑜𝑟
) .𝑃(𝑑𝑑|𝑑𝑑𝑟

𝑝𝑟𝑖𝑜𝑟
)

∑ 𝑃(𝑁𝑒
𝑖=1 𝑑𝑑𝑖

𝑝𝑟𝑖𝑜𝑟
) .𝑃(𝑑𝑑|𝑑𝑑𝑖

𝑝𝑟𝑖𝑜𝑟
)
    

𝑃(𝑑𝑑|𝑑𝑑𝑟
𝑝𝑟𝑖𝑜𝑟

) = 𝑒𝑥𝑝[−
𝜒2

2
 ]   

Please note that a factor 1/N is incorrectly present in Eq. 30 in (TNO, 2017), and has been removed 

here. If the probability of all prior ensemble members is equal (in other words, the reservoir 

scenarios and geomechanical models have equal a-priori probability), the probability of an ensemble 

member is the ratio between the probability of this specific ensemble member and the sum of the 

probabilities of the entire model ensemble. 

Application of this methodology results in a ‘collapse’ of the ensemble into a few members having a 

high probability and all other members having a probability of 0. Even in the case of 𝜒2 values being 

close to each other, the weighing as determined by this probability definition causes an extreme 

discrimination between them, which is a counter intuitive result. This feature of particle filtering 

methods like Red-Flag is observed as well in many other disciplines in cases where a large set of 

independent variables is used (e.g. Snyder et al. 2008). 
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A solution to this problem is found in using the probability of the 𝜒2 test statistic value, which has a 

𝜒2 distribution, to estimate the probability for a specific ensemble member. The 𝜒2 probability 

density function reads: 

𝑓𝜈(𝑢) =
1

2𝜈 2⁄ Γ(𝜈 2⁄ )
𝑢
𝜈
2
−1𝑒−𝑢 2⁄  

where u is the squared sum of weighted double-difference residuals (the test statistic 2), and  is 

the number of residuals. For a large , the 2 distribution can be approximated by a normal 

distribution with expectation  and variance 2: 

𝑃(𝑑𝑑|𝑑𝑑𝑟
𝑝𝑟𝑖𝑜𝑟

) ∝ exp {−
(𝜒2 − 𝜈)2

4𝜈
} 

Section 6.3.4 shows via simulations that using the 2 probability density function results in a band of 

accepted model members that comprises of all models that will be accepted when applying 

hypothesis testing of the individual models against the geodetic data, using a pre-defined level of 

significance , which determines the critical value for the test statistic.  

Before describing the simulation results, the analogy with geodetic adjustment and testing theory is 

demonstrated, and it will be shown that the 2 test statistic used in the particle filter has a 2 

probability density function with degrees of freedom that is equal to the number of double-

differences.  

 

6.3.3 Analogy with geodetic adjustment and testing theory 

The application of geodetic adjustment and testing theory [Teunissen (2000a) and Teunissen 

(2000b)] starts with the formulation of the functional model and the stochastic model. The functional 

model describes the relation between the observations and the unknown parameters, whereas the 

stochastic model describes the precision of the observations.  

Starting from the vector of observations and its corresponding covariance matrix: 




















mmst

dd

y

mm

dd

C

C
Q

dd

dd
y

0

0
 

with the vector y  comprising of the ‘observed’ double-differences from the geodetic data ( dddd ) 

and the subsidence model ( mmdd ). The precision of the double-differences is described by the 

covariance matrices ddC  and 
mmstC  for the geodetic data and the subsidence model, respectively. 

The covariance matrix of the geodetic data contains the measurement precision of the geodetic 

technique (and additionally the idealisation precision), whereas the covariance matrix of the 

subsidence model represents the residual model imperfections. The stochastic models of the 

geodetic data and the subsidence model are here considered to be independent and hence 

uncorrelated. 
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The unknown parameters are defined as the double-difference surface displacements. The functional 

model can be formulated in terms of condition equations, stating that the expectation value of the 

misclosures (𝑡) between the vectors dddd  and mmdd  is 0: 

   

mmstddy

T

t

TTT

CCBQBQ

yEByBtIIB



 0

 

where B  is the matrix containing the conditions on the observations, I is the identity matrix, and 

tQ  the covariance matrix of the differences ( t ). tQ  can be obtained by the variance propagation 

law. Since the geodetic data and subsidence model double-differences are considered uncorrelated, 

tQ  is the sum of the covariance matrices of the geodetic data and the subsidence model.  

In geodetic testing theory (hypothesis testing on the functional and stochastic model), the test 

statistic qT is defined as: 

 0,~

)()()(

2

11









 

q

ddmmstdd

T

ddmmt

T

q

T

ddddCCddddtQtT
mm

 

where  equals the redundancy in the estimation (assuming the matrix B has full rank), equal to 

the number of conditions (misclosures). The test statistic qT has a central chi-squared distribution 

with  degrees of freedom. Please note that  0,2   denotes the 𝜒2 distribution, which should 

not be confused with the 
2  test statistic variable as defined in Section 6.3.1: 

𝜒2 = (𝑑𝑑𝑟
𝑝𝑟𝑖𝑜𝑟

− 𝑑𝑑)
𝑇
(𝐶𝑑𝑑 + 𝐶𝑠𝑡𝑚𝑚)

−1
(𝑑𝑑𝑟

𝑝𝑟𝑖𝑜𝑟
− 𝑑𝑑)  

Comparing the particle filter
2  test statistic to the qT test statistic definition, it can be seen that 

they are similar, since 𝑑𝑑𝑟
𝑝𝑟𝑖𝑜𝑟

 is a specific realisation (ensemble member) of subsidence model 

double-differences mmdd , and 𝑑𝑑 is the vector of geodetic data double-differences dddd . 

Instead of the test statistic qT , the Overall Model Test is generally used in geodesy to assess both 

the functional and stochastic model considering the observations. The Overall Model Test statistic is 

defined as: 

 



 tQtT

t

T
q

1
2

ˆ



  

which has a Fisher distribution, 
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 0,,~ˆ
2

 F  

and an expectation value of 1 (if both functional and stochastic model are correct). 

Note that the Overall Model Test is equal to the particle filter test statistic χ2/N, where N is equal to 

the number of misclosures between the geodetic data and the subsidence model double-differences.  

 

6.3.4 Effect of the probability computation modification  

This Section shows via simulations the effect of the applied modification in the probability 

computation in Section 6.3.2 on the band of accepted model ensemble members (see Section 7.3.1 

for a definition of ‘accepted members’) . The model ensemble in these simulations comprises of 

hypothetical length expansion models as a function of temperature. Unknowns are the initial length 

of an object and its expansion coefficient (this implies 2 model parameters). The measurements are 

uncorrelated in this example, and have a normal distribution.  

The level of significance  has been chosen 0.05. With the level of significance, the critical value is 

determined for the 2 test statistic value, to either accept (test statistic is lower than critical value) or 

reject (test statistic is higher than the critical value) the model ensemble member.  

With the simulations, the aim is to find answers to the following main questions: 

1. Based on the 2 test statistic value, which models are accepted with a certain level of 
significance? 

2. Is the band of these accepted models equal to the band of accepted model members from 
the (modified) particle filter? 

3. What is the difference with respect to the collapse behaviour of the original particle filter 
(applying the multivariate normal distribution)?  

4. What is the effect of a different number of observations? 
 

Based on the simulations and visualisations, these questions can be answered as follows: 

• Application of the 2 probability density distribution in the particle filter leads to a band of 

accepted model members that is similar to the band of accepted members based on 

comparison of the 2 test statistic values to the critical value (Figure 39).  

• Application of the multivariate normal distribution leads to a narrower model confidence 

interval compared to that from the 2 probability density distribution. The discrepancy 

becomes larger when the number of observations increases (Figure 40, Figure 41). This effect 

is present for different numbers of model parameters. 
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Figure 39. Results for the 2 probability density function. Left: in light grey the model ensemble, in dark grey (overlapping 

with red) the accepted members based on the 2 test statistic value (below the critical value), in red the accepted members 
from the particle filter, in blue the measurements. The band of the accepted members from the particle filter is similar to 

the band of accepted members based on the 2 test statistic value compared to the critical value (the red and the dark 

grey band fully overlap). Right: in blue bars the histogram of the Overall Model Test statistics (2 test statistic value divided 
by number of differences between model and measurements (N)); the blue line is the theoretical Fisher distribution. 

 

Figure 40. In light grey the model ensemble, in dark grey the accepted members based on the 2 test statistic value (below 
the critical value), in red the accepted members from the particle filter, in blue the measurements. Left: particle filter based 

on 2 probability density function (evaluating 2 test statistic value). Right: particle filter based on multivariate normal 
distribution (evaluating the vector of differences between model ensemble member and measurements). It can be seen 

that the particle filter model confidence interval is similar to the interval of accepted members when applying the 2 
probability density function, while it shows the collapse behaviour when applying the multivariate normal distribution 
(red band is much narrower than the dark grey band). 
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Figure 41. Same simulation as for Figure 40, but with 75 instead of 1000 observations. In light grey the model ensemble, in 

dark grey the accepted members based on the 2 test statistic value (below the critical value), in red the accepted members 

from the particle filter, in blue the measurements. Left: particle filter based on 2 probability density function (evaluating 2 
test statistic value). Right: particle filter based on multivariate normal distribution (evaluating the vector of differences 
between model ensemble member and measurements). The collapse behaviour when applying the multivariate normal 
distribution is less for lower number of measurements, but still is present. A different number of measurements has no 

effect when applying the 2 probability density function: The Red Flag model confidence interval is still similar to the 
interval of accepted members. 
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7 The confrontation between geodetic data and subsidence models 
This chapter describes the results of the confrontation of the selected reservoir scenarios and 

geomechanical members with the geodetic data for the Ameland case. Each model member will give 

a subsidence forecast, and from the confrontation with the geodetic data one can infer the likelihood 

of that specific member depending on the match with the data, as discussed in Chapter 6. Knowing 

the likelihood, a weighted average and a 95% confidence interval can be determined. These values 

provide a statistical description of the quality of model predictions. First, Section 7.1 describes the 

generation of the model ensemble, consisting of the selection of reservoir scenarios, geomechanical 

model parameters, and the resulting subsidence members, and a selection of the benchmarks used 

to generate double-differences. The construction of the covariance matrix used in the confrontation 

is described in Section 7.2. The direct results of the confrontation in terms of member probabilities 

are presented in Section 7.3, followed by the results in terms of subsidence at the benchmark 

locations in Section 7.4 and subsidence rates in the Pinkegat area in Section 7.5. The chapter is 

concluded by a presentation of additional model insights obtained from the confrontation in Section 

7.6, and a discussion of the results of the application of the workflow over different time intervals in 

Section 7.7. 

7.1 Generation of model ensemble 
The confrontation requires an input ensemble of subsidence model members that comprises all 

properties and behaviours deemed possible with prior knowledge. The range of pressure depletion 

or reservoir scenarios that all honour the production and pressure data, yet display a wide range of 

pressure evolution in areas with no subsurface data, is described in Chapter 3. The prior knowledge 

and parameter selection for the compaction model is described in Section 4.2, and those for the 

translation of the compaction to subsidence through the overburden, i.e. the influence model are 

described in Chapter 0. The resulting pressure scenarios that are used in the workflow are 

summarised here, followed by a summary of the geomechanical parameters for the compaction and 

the influence function. 

7.1.1 Reservoir scenarios 

A wide variety of reservoir properties lead, as described in Chapter 3, to a set of 58 different 

reservoir scenarios that all honour the available gas and water production and pressure data. The set 

of scenarios covers significant diversity in terms of pressure depletion in the areas where little or no 

pressure data is available, most noticeable in the aquifers away from the well locations. Figure 42 

Figure 43, and in more detail the figures in Appendix 1, shows the pressure depletion of all the 

reservoir scenarios contained in the ensemble at several locations across the area of interest.  
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Figure 42. Depletion of the reservoir and adjacent aquifers for the year 2016 for all 58 reservoir scenarios.  
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Figure 43. The bottom figure shows the pressure vs time for all selected reservoir scenarios for the six points shown in 
the top figure. 

7.1.2 Selection of parameter values for the geomechanical model 

The parameter set for the compaction model is based on coreplug experiment results and literature 

studies (Section 4.2.3). The salt layer above the reservoir is implemented in the Geertsma and van 

Opstal influence function using a moving rigid basement that iscalibrated to Geomec simulations 

(Section 4.3.2). The full parameter set used for both compaction parameters and the influence 

function parameters in the Monte Carlo simulation is presented in Table 18. 
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Table 18. Parameter values and ranges used in the Monte Carlo simulation. 

Type Parameter Range / value 

Cm - Porosity relation: 

𝐶𝑚𝑟𝑒𝑓
(𝑃𝑜𝑟) = 𝐶4 + 𝐶210

𝐶3(𝑃𝑜𝑟−𝐶1) 

𝐶1 0.02 - 0.17 

𝐶2 0.01 - 2.5 

𝐶3/𝐶4 * 

Salt (moving rigid basement) 

𝑐 𝑘(0)⁄  0.75 - 0.85 

𝑑(𝑐 𝑘⁄ ) 0.15 - 0.25 

𝜏𝑠𝑎𝑙𝑡  [year] 0.3 - 100.0 

RTCiM parameters  

𝐶𝑚𝑑
/𝐶𝑚𝑟𝑒𝑓

 0.2 - 0.7 

𝑏 0.01 - 0.03 

Overburden Poisson’s ratio 0.2 

* Parameters 𝐶3 and 𝐶4 are derived based on the values of 𝐶1 and 𝐶2 such that the used Cm-Porosity relations 

cover the full range of observations from core plug experiments (grey area of Figure 14). 

7.1.3 Subsidence members 

The calculation of one subsidence member requires one reservoir scenario (out of 58 possible 

scenarios), together with a set of parameters for both the compaction model and influence function, 

provided by the Monte Carlo process. To arrive at the full prior ensemble of subsidence members, 

combinations are generated with reservoir pressure scenarios and geomechanical parameters. All 

the available pressure scenarios have the same (prior) likelihood. Also, the probability distribution for 

the geomechanical parameters is unknown and therefore assumed to be uniformly distributed.  

Since the solution space is high-dimensional, care must be taken to adequately sample the full space. 

One way to ensure all corners of the multidimensional space are probed is by using a Latin Hyper 

Cube (LHC) method for generating sets of parameters (McCay et al., 2000). The LHC method divides 

the ranges for all parameters into equal subdivisions, which are then populated randomly. 

It is not practical in the workflow to randomly select a pressure scenario for each case, therefore a 

set of geomechanical model parameters, selected via the LHC method, is run in combination with 

one pressure scenario. Subsequently the same is done for the next pressure scenario. The number of 

geomechanical model parameter sets to be run for each pressure scenario is difficult to define up 

front. It depends not only on the number of parameters but also on their correlation and their impact 

on the outcome. One wants to maximize the number of parameter sets such that the parameter 

space is adequately sampled, thereby increasing the likelihood that the best combination of 

parameters is obtained, whilst also generating a dense range of subsidence predictions, which aids 

the statistics in terms of subsidence from the output. On the other hand, one cannot produce an 

endless amount of subsidence members from a practical point of view, hence an optimum should be 

found. 

The current study examines the adequate number of members, by creating a large set of randomly 

generated subsidence members based on one reservoir scenario, and looking at the resulting χ2 

distribution. Figure 44 shows the lowest χ2 values for subsidence ensembles with a different number 

of members. After about 10,000-15,000 members, the lowest five χ2 seem to have converged, 

indicating that adding many more members would not result in finding significantly better members 

in the solution space. Therefore, it was decided that 20,000 sets of geomechanical models for each 
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reservoir scenario would adequately sample the solution space, giving a total of 1,160,000 members 

in the final ensemble. 

 

Figure 44. Lowest χ2 values as a function of the number of subsidence members, all based on the same reservoir 
scenario. A total of 20,000 members was generated, from which smaller subsets were randomly sampled. For all these 
subsets, the lowest five χ2 values are plotted, showing that the distribution does not change much after approximately 
10,000-15,000 members. 

7.1.4 Selection of benchmarks 

The benchmarks selected for the confrontation between modelled and measured double-differences 

is based on a polygon which covers the influence area of the Ameland subsidence bowl. In total, 1417 

double differences have been formed by the CUPiDO tool from the selected geodetic data. The same 

double differences are evaluated for all subsidence model members and used in the confrontation 

workflow. The blue dots in Figure 45 mark the benchmark locations at which these double 

differences are taken.  
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Figure 45. Selected benchmarks (blue dots) within the areal selection polygon (black outline). 

 

7.2 Covariance matrix in the particle filter  
In the particle filter test statistic for the confrontation between geodetic observations and 

subsidence model members, the spatio-temporal component of benchmark idealisation noise 

𝐶𝑠𝑡𝑑𝑑and residual subsidence model imperfections 𝐶𝑠𝑡𝑚𝑚  are stochastically modelled in the 

covariance matrix 𝐶𝑠𝑡: 

𝐶𝑠𝑡 = 𝐶𝑠𝑡𝑑𝑑 + 𝐶𝑠𝑡𝑚𝑚  

The covariance matrix 𝐶𝑠𝑡 has a direct effect on the subsidence model confidence interval resulting 

from the confrontation using the particle filter, and therefore should be well-considered. As is 

displayed in Figure 38, spatio-temporally correlated deviations between geodetic observations and 

subsidence models can have their origin both in quadrant II (spatio-temporal component of 

idealisation noise) and quadrant IV (residual subsidence model imperfections).  

For the benchmark idealisation noise, the spatio-temporal component of the idealisation noise can 

be estimated either from geodetic observations before the onset of gas production, or from the 

geodetic observations in a neighbouring area that is representative. In the gas production area on 

the Ameland island there are not enough measurements before 1986 to estimate the spatio-

temporal component of the idealisation noise from. Attempts have been carried out to estimate 

spatio-temporally correlated noise on the western part of the Ameland island via geodetic spatio-

temporal analysis (Methode Houtenbos; TCBB, 2009), but no consistent estimates could be obtained. 

This can be due to the limited spatial extent of the area or the limited number of observations. 

Hence, it has been chosen to model idealisation precision with parameters obtained in the LTS-I 
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study area in Northern Friesland. This is parameter set ON_C from Section 5.3, which includes both 

the temporal component (𝐶𝑡𝑑𝑑) and the spatio-temporal component (𝐶𝑠𝑡𝑑𝑑) of benchmark 

idealisation noise.  

To evaluate the characteristics of the idealisation noise parameters from parameter set ON_C, the 

1417 geodetic data double-differences in the LTS-II application for Ameland are grouped with respect 

to distance and time, and the residuals with respect to the best fit subsidence model member are 

compared to the standard deviation from ON_C (see Figure 47 and Figure 48). The best fit subsidence 

model member in this context is the ensemble member with the lowest 2 test statistic value, when 

considering measurement noise (𝐶𝑒𝑑𝑑)and benchmark instability noise (𝐶𝑡𝑑𝑑) only (see Figure 46). 

From Figure 46, Figure 47, and Figure 48, the following can be deduced: 

• Time correlated noise is present, but for some benchmark groups model ON_C overestimates 
time correlated noise, while for other groups it may be slightly underestimated. 

• Distance correlated noise seems not present for all benchmark groups. Especially for the 
benchmarks groups in subplots with time between campaigns larger than 20 years, model 
ON_C overestimates distance correlated noise. The majority of double differences with long 
time spans involve benchmarks on the western part of Ameland (west from Nes). 

• Besides benchmark idealisation noise, it is likely that residual model imperfections are 
present as well in the gas production areas (see for example the difference of ~3 cm between 
subsidence model and geodetic data double-differences in Figure 46 at the eastern part of 
the island). 

 

 

Figure 46. Southern profile showing benchmark displacements between 1986 and 2017 with respect to benchmark 
000A2592 (Nes). The error bars on the benchmarks consist of measurement and benchmark instability noise (Cedd+ Ctdd). 

The red line is the model ensemble member with the best fit to the geodetic data, where the goodness of fit has been 
evaluated based on the noise components Cedd+ Ctdd. 
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Summarizing, while the model ON_C seems to overestimate idealisation noise for multiple 

benchmarks on Ameland, it does account for (part of) the residual model imperfections (it covers 

both elements of the covariance matrix 𝐶𝑠𝑡). Hence model ON_C is an approximate stochastic model 

for the LTS-II application. Refining the spatio-temporal component by means of a geodetic spatio-

temporal analysis may lead to a stochastic model that is even closer to reality. However, this would 

have the disadvantage that the geodetic data is then used twice in the process and that it can only be 

done ‘a-posteriori’.  

However, the disadvantage has to be acknowledged that the stochastic modelling of spatio-

temporally correlated deviations according to ON_C does not accommodate individual benchmark 

properties and does not account for local variations in subsidence model uncertainty. In spite of 

these residual imperfections, the chosen stochastic model allows for a reasonable amount of 

acceptable subsidence model members, and hence is able to generate a weighted average from 

subsidence model members that are physically possible, including a confidence interval (see Figure 

49).  

Since the test statistic values in the confrontation workflow are close to the expectation value (2/N 

values 1.23 and higher, see Section 7.3), model ON_C has been used in its original form to reflect 

spatio-temporally correlated deviations in the covariance matrix. For the application of the particle 

filter in other areas, the stochastic modelling of spatio-temporal deviations should always be 

carefully evaluated.  
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Figure 47. In grey the double-difference residuals between the geodetic data and best fit subsidence model based on 
measurement and benchmark instability noise only (Cedd+ Ctdd). In light blue the two time the standard deviation (2-

sigma) from the full covariance matrix based on model ON_C (Cedd
+ Ctdd

+ Cstdd
). The double-differences are grouped 

based on distance between benchmarks, and the double-difference residuals and standard deviations are shown as a 
function of time. 
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Figure 48. In grey the double-difference residuals between the geodetic data and best fit subsidence model based on 
measurement and benchmark instability noise only (Cedd+ Ctdd). In light blue two times the standard deviation (2-sigma) 

from the full covariance matrix based on model ON_C (Cedd+ Ctdd+ Cstdd). The double-differences are grouped based on 

time between measurement campaigns, and the double-difference residuals and standard deviations are shown as a 
function of distance. 
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Figure 49. Southern profile showing benchmark displacements between 1986 and 2017 with respect to benchmark 
000A2592 (Nes). In red: the model weighted average from the particle filter with 95% confidence interval. In blue the 
geodetic data double-differences with 95% confidence interval, with (light blue) and without (dark blue) stochastically 
modelled spatio-temporally correlated deviations (Cst) according to ON_C. 

 

To perform a crosscheck on the results of the particle filter, it is validated if the fit between geodetic 

data and subsidence model weighted averages matches the confidence intervals. While the 

validation takes into account the covariance structure of both the geodetic data and the subsidence 

models, the correlations between them are neglected. This is a simplification, because these 

correlations are not zero. They are dependent, since the weights for computing the weighted 

averages of the subsidence models are determined based on the fit of the subsidence model 

members to the geodetic data.  

The one-dimensional w-test statistics (Teunissen, 2000b) are used for the evaluation of the 

misclosures between the geodetic data double-differences dddd  and the weighted average 

subsidence model double-differences mmdd : 

mmdd ddddt  , 

with covariance matrix of the misclosures tQ : 

mmtet CCCQ
dddd
  
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where the covariance matrix of geodetic data double-differences contains measurement (
ddeC ) and 

benchmark instability noise (
ddtC ), and 𝐶𝑚𝑚 is the a-posteriori subsidence model covariance matrix 

from the particle filter as defined in Eq. 35 in TNO, 2017. Figure 50 shows the structure of the 

geodetic data and model covariance matrices that are used in the crosscheck. The covariance matrix 

𝐶𝑠𝑡, which models spatio-temporally correlated deviations between geodetic data and subsidence 

model members has deliberately not been included, to avoid that residual model imperfections are 

addressed twice in the crosscheck.  

 

Figure 50. Structure of the covariance matrices Cedd+ Ctdd (left figure: geodetic data, measurement and benchmark 

instability noise), and Cmm (right figure: a-posteriori model covariance matrix) for the 1417 double-differences used in the 
confrontation. (Co)variances are in mm2. 

The one-dimensional w-test statistics provide a test statistic per misclosure between geodetic data 

and model weighted average double-differences, taking the full covariance structure into account: 

tt
T
t

t
T
t

cQc

tQc
w

1

1





 , 

where 𝑐𝑡 is a vector with 1 at the double-difference to be tested and zeros elsewhere. 

Figure 51 shows the histogram of the w-test statistics for the 1417 double-differences used in the 

particle filter for Ameland. With 6.3% of the double-differences exceeding the critical values for the 

95% confidence interval, it can be concluded that the particle filter has been able to generate a 

model weighted average with a confidence interval that captures the geodetic data double-

differences. A complementary (simplified) validation using w-test statistics has been carried out by 

replacing the a-posteriori subsidence model covariance matrix (𝐶𝑚𝑚) with the a-priori covariance 

matrix for spatio-temporal deviations (𝐶𝑠𝑡). In this situation, 5.2% of the double-difference 

misclosures where rejected based on the w-test statistics. 

It can be noted that for some double-differences between benchmarks (see Appendix 2), the time 

series lies on the upper or lower bound of the model confidence interval. Note that the subsequent 

double-differences are correlated, and that the correlation structure is taken into account in the  

w-test statistics. Subsequent double-differences are therefore not ‘independently’ accepted or 

rejected. For more background on the effect of correlation on confidence intervals, see Appendix 3. 
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Figure 51. W-test statistics for the 1417 double-differences between geodetic data and weighted averages from the 
particle filter. The red lines show the critical values for the 95% error bound. 6.3% of the double-difference misclosures 
exceed the critical values. 

 

7.3 Confrontation between geodetic data and model ensemble members 
The results of the confrontation between the complete set of geodetic data from the selection of 

benchmarks with the full model ensemble is presented in this section. First, the definition of the 

terms ‘confidence interval’ and ‘accepted members’ as used in the remainder of this chapter is given, 

followed by a presentation and discussion of the results from the confrontation.  

7.3.1 Use of terms ‘confidence interval’ and ‘accepted members’ 

As the use of terms like ‘confidence interval’ and ‘number of accepted members’ can be rather 

ambiguous, the definition of the terms as used in the current study is provided here. 

A confidence interval is mentioned or depicted for parameters such as the subsidence, subsidence 

rate, and posterior model parameter values. Only two-sided, 95% confidence intervals are used, 

which are determined from the cumulative member probability as illustrated in Figure 52. After the 

confrontation, each member has been assigned a probability. First, the values of the particular 

variable, for which the confidence interval is to be determined, from all the members are sorted 

from low to high values. These variable values can be, for example, the resulting subsidence at a 

specific location, as determined by all the members, or the compressibility values used by all the 

members. The member probability is then summed to obtain a cumulative probability curve as a 

function of the particular variable. The bounds of the two-sided 95% confidence interval are 

determined by finding the variable value at a cumulative probability of 2.5% (lower bound) and at 

97.5% (upper bound). Using this definition means that there is a 2.5% probability to find a variable 

value below the lower bound, and a 2.5% probability to find it above the upper bound. 



84 
 

 

Figure 52. Illustration of the definition of a confidence interval as used in this report. 

Although not part of the confrontation workflow, a member acceptance test is performed for 

illustrative purposes of the results in some figures and discussion. In an acceptance test, one 

determines how many members would be accepted based on a certain cumulative probability cut-

off. The number of accepted members itself is not used, but can be viewed as a metric or indication 

of how many members give a considerable contribution to a weighted average. It gives insight 

especially when comparing these numbers, to get a sense of the contribution of different reservoir 

scenarios, or when comparing the results from different data sets (for example, the results from 

confrontations performed over different time intervals). Figure 53 illustrates how the number of 

accepted members is determined. Instead of first sorting a variable value from low to high, the 

members are sorted from highest to lowest assigned probability. The member probability is then 

summed to obtain a cumulative probability curve as a function of the number of members, starting 

with the most likely member. The number of accepted members is determined by finding the 

number of members required to get a cumulative probability of 95% (only a 95% acceptance interval 

is used in the report). Using this definition means that the best n members fall within the acceptance 

level, and their combined probability adds up to 95%. The members outside the accepted interval are 

the members with the lowest probabilities assigned to them, which add up to 5%. 

Note that acceptance tests are only performed in this study for illustrative purposes. Actual 

member selection and rejection is not performed at any stage; all members in the ensemble 

contribute to the weighted average and are taken into account when determining confidence 

intervals. 
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Figure 53. Illustration of the determination of the number of accepted members as used in this report. 

 

7.3.2 Results of the confrontation 

Each member of the full ensemble is confronted with the geodetic data, which, in combination with 

the covariance matrix to incorporate the uncertainties and correlations, assigns a χ2 value (or χ2/N, 

where N is the number of double-differences) to each member. The lower the value of χ2/N, the 

better the fit of the particular member to the data. Figure 54 below shows the resulting χ2/N values 

(where in this case N = 1417 for the confrontation with the geodetic data in the time interval 1986 - 

2017) for all the 1,160,000 members that make up the full ensemble. The ensemble is generated 

based on 58 different reservoir scenarios. For each reservoir scenario, 20,000 subsidence members 

were generated. The first 20,000 members in the left plot of Figure 54 therefore all used the same 

reservoir scenario while varying the geomechanical parameters; the second set of 20,000 uses the 

next reservoir scenario, etc.  
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Figure 54. Left: Assigned χ2/N values for all members, from the confrontation of the members with the geodetic data 
available for the time period 1986 - 2017. For the case here N is 1417 (= number of double differences). Right: histogram 
of the χ2/N values. The red line marks χ2/N=1. 

Figure 55 shows the result of converting the χ2 values assigned to each member to a weight or 

normalized probability, using the method described in Section 6.3 . The members with the highest χ2 

values get the lowest probability, and only those with a very good match to the geodetic data obtain 

a probability that is significant and visible on these scales. The figure demonstrates the significant 

reduction in members with an appreciable probability after confronting the members with the data, 

reducing the ensemble of almost 1.2M members to only a few thousand with a significant 

probability.  

The plot on the right-hand side of Figure 55 shows the cumulative probability, after sorting the 

members from highest to lowest probability. Note that the x-axis is limited here to only show the 

contribution of the 10,000 most likely members to the cumulative probability. If one applies a 95% 

acceptance level to the set of members, a total 1,870 out of 1,160,000 would pass, as indicated by 

the red dashed lines. 
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Figure 55. Left: Weight or normalised probability for each member in the ensemble, using the assigned χ2 values from the 
confrontation with the geodetic data. Right: cumulative probability, after sorting the members from highest to lowest 
probability. When applying a 95% acceptance level, 1870 members will be accepted (indicated by the red dashed lines). 

 

7.4 Subsidence 
After the confrontation with the geodetic data, a weight or relative probability has been assigned to 

each of the members, discussed in the previous sections, which is used to determine an expectation 

case of the subsidence (defined as the weighted average of the subsidence models from all the 

ensemble members), together with 95% confidence intervals. Profiles and time series visualisations 

of this weighted average and its 95% confidence interval including the measured subsidence can be 

found in Appendix 2. The model weighted average and the confidence intervals are shown up to 

2040 for the levelling double-differences. 

The confrontation between geodetic data and subsidence models has been performed at double-

difference level, with various references in space and time. In the LTS-II study, the application of the 

CUPiDO tool (Section 6.2) has resulted in 1417 non-redundant geodetic data double-differences with 

6 difference references in space, and multiple references in time. For visualisation purposes (time 

series and profiles), they have been transformed to a common reference in time and space.  

The common reference in space is: 

• The underground benchmark 000A2592 in Nes for levelling campaigns. 

• The GPS reference network for the GPS campaigns. 
 

The common reference in time is: 

• For the levelling time series and profile visualisations: 1986. 

• For the GPS campaigns (time series only): earliest campaign per GPS benchmark. 
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To obtain the confidence interval of the transformed double-differences, the covariance matrix is 

transformed as well by application of the propagation law: 

Tpt
dd

pt
dd SCSC

2,21,1
 , 

where S is the transformation matrix (and 
TS its transposed), which specifies the linear 

combinations to perform the transformation to another reference in time and space (here from 

double-differences with respect to time t2 and benchmark p2 to double-differences with respect to 

time t1 and benchmark p1). 

Appendix 2 contains time series and profile visualisations that provide insight in the match between 

geodetic data and the subsidence models, including the confidence intervals: 

1. Levelling profile plots along a northern and a southern trajectory on the island.  
2. The full time series for all levelling benchmarks that have been measured in both 1986 and 

2017. 
3. Time series for the GPS benchmarks with respect to the earliest measurement campaign of 

the benchmark. 
 

All time series and profile visualisations contain the following information – see the example in Figure 

56: 

• Blue: geodetic data double-differences with 95% confidence interval derived from the 
covariance matrix considering measurement noise and the temporal component of 

idealisation noise (‘benchmark instability’): 
ddeC + 

ddtC . 

• Red dots: model weighted average computed using the probabilities determined from the 
particle filter (see Section 6.3). 

• Dashed red lines: model 95% confidence interval based on the probability profiles per 
double-difference in space and time. The confidence interval is evaluated for benchmark 
locations or observation epochs, respectively, and linearly interpolated in between.  

 

The covariance matrix stC , which represents spatio-temporally correlated deviations between 

geodetic data and subsidence model double-differences, has been used in the confrontation 

workflow. The workflow results in the subsidence model weighted average including the confidence 

interval, and is described in Section 7.2. In the LTS-II study, stC is modelled with parameters 

obtained in an area in Friesland that is assumed not to be affected by subsidence due to gas 

extraction. It is shown in Section 7.2 that the application of stC on Ameland overestimates the 

spatio-temporal component of idealisation noise for multiple benchmarks, and that it likely also 

accounts for localized residual model imperfections. Since the contribution of stC  cannot be 

differentiated, the confidence intervals in the visualisations contain the only the components that 

can certainly be attributed to the geodetic data (i. e., measurement and benchmark instability noise; 

ddeC + 
ddtC ).  
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In the visualisations, detected outliers (Section 5.4) have been excluded. An exception has been 

made for benchmark 002D0079, where the full, consecutive time series is displayed, even though a 

disturbance was detected in 1992. In the confrontation, however, no temporal differences are 

formed across the disturbance.  

The geodetic data double-differences set in the confrontation with subsidence model members 

contains various references in space and time. To ease the visualisation, the levelling time series and 

profiles have been converted to the spatial reference benchmark 000A2592 and the temporal 

reference 1986. This conversion involves a linear recombination of double-differences along with a 

rigorous propagation of the full covariance matrix. Figure 57 shows a time series example for 

benchmark 002D0069 with spatial reference 002D0070. The geodetic data time series shows relative 

uplift, which is in agreement with the subsidence model confidence interval.  

 

 

Figure 56. Example of a profile visualisation: geodetic levelling double-differences along the southern profile on Ameland 
for the time interval 1986-2007, with respect to benchmark 000A2592 (Nes). In red the model weighted average from the 
particle filter, including the 95% confidence interval. In blue the geodetic data double-differences including 95% 
confidence interval, representing measurement noise (Ce) and benchmark instability noise (the temporal component of 
idealisation noise: Ct). 
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Figure 57. Double-differences of benchmark 002D0069 with respect to benchmark 002D0070 and 1986. In red the model 
weighted average from the particle filter, including the 95% confidence interval. In blue the geodetic data double-
differences including 95% confidence interval, representing measurement noise (Ce) and benchmark instability noise (the 
temporal component of idealisation noise: Ct). 

The 95% subsidence model confidence interval is determined according to the procedure explained 

in Section 7.3: 

• the model ensemble member displacements for a specific double-difference in space and 
time are sorted from low to high, 

• the cumulative probability is computed for the sorted displacements, using the probabilities 

that have been computed from the 2 test statistic values in the confrontation workflow,  

• the lower and upper bound are determined two sided, at respectively 2.5% and 97.5% 
cumulative probability. 

 

This procedure is carried out individually for every double-difference. For each double-difference, the 

probabilities of the model ensemble members stay the same, but they may appear in a different 

order in the cumulative probability profile. Figure 58 shows an example of the determination of the 

confidence interval for one double-difference. Similar confidence intervals can be obtained using the 

a-posteriori model covariance matrix (Eq. 35 in TNO, 2017), but the procedure from Section 7.3 has 

the advantage that it can account for potential non-symmetry in the probability distribution. 
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Figure 58. Cumulative probability of all model ensemble members for the double-difference displacement between 1986 
and 2002, between benchmark 000A2592 (Nes) and 002D0074. The grey dots represent the cumulative probability 
profile. The red lines are the 2.5% and 97.5% lower and upper bound. The black lines show the interval of displacements 
that is in the 95% confidence interval. 

 

7.5 Subsidence rates 
For each member, the subsidence volume in the Pinkegat area (see Figure 59 for the Pinkegat 

boundaries) has been calculated over time, which is converted to an average subsidence rate, which 

in turn is averaged over 6 years, to obtain subsidence rates for each member in the ensemble in line 

with those reported in the M&R framework (NAM, 2012). The 6-year-average of the rate in year Y, 

rate(Y), is calculated from the subsidence rates, S, three years before and two years after that 

specific year: 

rate (Y) = [S(Y-3) + S(Y-2) + S(Y-1) + S(Y) + S(Y+1) + S(Y+2)] / 6. 

After the confrontation with the geodetic data, a weight or relative probability has been assigned to 

each of the members, as discussed in the previous sections, which is used to determine an 

expectation case of the subsidence rate (defined as the weighted average of the subsidence rates 

from all the ensemble members), together with 95% confidence intervals. Note that the members in 

the ensemble only use reservoir scenarios from the Ameland field, hence all reported subsidence 

rates do not include the effect from other fields in the area. 
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Figure 59. Location and boundaries of the different sand sharing areas in the Waddenzee in pink, including the Pinkegat 
area. Also shown are the gas fields in the North of the Netherlands (green), the locations of the benchmarks (dots) and 
permanent GPS stations (red triangles). 

Figure 60 shows the resulting cumulative probability as a function of increasing subsidence rates in 

two different years (1991 and 2015). Here, the subsidence rate is first sorted in each year from 

lowest subsidence rate to highest, and the probability cumulated accordingly. In both cases, a well-

defined distribution of the subsidence rate probability can be observed, being localised with 

boundaries that can be described in terms of confidence levels. The localised nature of the obtained 

probability distribution becomes especially pronounced when considering that some members in the 

ensemble produce subsidence rates are far beyond the limits of the plots here, but the weights 

assigned through the confrontation method to these members are so insignificant that their 

contribution to the cumulative probability is negligible.  

Since these probability curves are smooth and densely sampled, their boundaries can be 

parameterized in terms of confidence levels, to facilitate the visualization of its development over 

time. A two-sided 95% confidence interval is applied, i.e. there is a 2.5% probability that the 

subsidence rates are below the lower bound and a 2.5% probability that the subsidence rates are 

higher than the upper bound in the figures of subsidence rate versus time. The location for these two 

bounds are indicated for the years 1991 and 2015 in Figure 60. Figure 61 shows the development of 

the confidence bounds over time, together with the weighted average or expectation rate, for the 

Pinkegat area. At the bottom of the figure, probability distributions of the subsidence rates are 

shown at three different times, all showing a localised distribution. 
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Figure 60. Cumulative probability as a function of subsidence rate in the year 1991 (left) and 2015 (right). Red lines 
indicate lower bound (2.5%) and upper bound (97.5%) of the 95% confidence interval. 

 

Figure 61. Contribution of the Ameland field to the subsidence rates for the Pinkegat area, starting in 1986 (start of 
production) and forecast up to 2040. Bottom plots show the probability distributions of the subsidence rate at three 
different times (1990, 2005 and 2015). The thick red line in the histograms marks the weighted average subsidence rate 
in that year, and the pink area marks the 95% confidence interval. 

Figure 62 shows the same expectation subsidence rate together with the 95% confidence interval as 

in Figure 61, but now on top of the expected sea level rise rate as given by Ministerie van 

Economische Zaken (2016). To the right the same figure, showing only the Ameland contribution to 

the M&R 2016 (NAM, 2016a) results. 
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Figure 62. Left: Subsidence rate (weighted average) with 95% confidence interval on top of the predicted sea-level rise 
rates for the Pinkegat area. Right: subsidence rates in Pinkegat for the M&R 2016 result. 

The M&R 2016 result shows higher values for the subsidence rates when compared to the LTS-II 

expectation case but a direct comparison with the LTS-II results is difficult because the M&R model is 

based on a different reservoir scenario and on a different geomechanical model.  

In more detail, the two observations listed below largely explain why the LTS-II expectation case 

shows a lower rate than the M&R 2016 result.  

1. The M&R 2016 base case clearly overpredicts the subsidence above the southwestern 

aquifer, indicated by three benchmarks that are located within the yellow circle in Figure 63. 

The likely cause is a too high depletion of this aquifer. The choice in the M&R approach to 

align all parameter values in the reservoir model for both the southwestern and 

southeastern aquifers led to an overprediction of the subsidence in the southwestern 

aquifer, while the modelled subsidence above the southeastern aquifer is matched to the 

data. 

2. The LTS-II expectation case shows an underprediction of the subsidence above the 

southeastern aquifer (Figure 64). This is a result of the applied LTS-II method that selects the 

best member based on all measurements. In trying to match the modelled results to the 

steeper flank of the subsidence bowl, the workflow selects a reservoir scenario with less 

depletion in the eastern part of both the reservoir and aquifer. Combined with the stiff 

response of the linear branch this leads to an underprediction of the subsidence above the 

southeastern aquifer. Also, in the LTS-II study, the parameter values of the two aquifers were 

varied independently. 

Note that the M005 benchmark could be influenced by a few mm by the subsidence caused 

by the gas production from the Nes field, situated south of this benchmark.  

Based on these observations it is concluded that the M&R 2016 base case represents a 

conservative scenario, overpredicting the subsidence above the southwestern aquifer. This is 

caused by parameter choices in the M&R 2016 reservoir scenario. The LTS-II expectation case 
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slightly underpredicts the subsidence above the southeastern aquifer. This is mainly caused by 

the LTS-II confrontation workflow that obtains a best fit to all the data. This best fit may show 

small local variations as a result of this general assumption. Please note that there are only very 

few measurements above the southeastern aquifer to compare with the subsidence model 

members. 

It is recommended in the next M&R cycle to use the best of both worlds and, more precisely, 

alter the southwestern aquifer property values independent from the southeastern aquifer 

property values. This will likely lead to a reduction of the subsidence rate in Pinkegat in the next 

M&R cylcle. 

 

 

Figure 63. Results for the M&R cycle (NAM 2016a) with in the yellow circle the three benchmarks indicating an 
overprediction of the subsidence by the model. The green circle indicates the position of benchmark M005. The 
subsidence is shown in cm for the period 2006 – 2015. 
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Figure 64. Data versus model for benchmark M005M (within the green circle Figure 63) above the eastern aquifer 
indicating that the LTS-II expectation case under predicts the measured subsidence. The model confidence interval is 
computed from the model ensemble that reflects subsidence due to the Ameland gas fields only.  

7.5.1 Effect of emergency stop on subsidence rates 

The “hand-on-the-tap” procedure that it is in place for the Waddenzee fields (the gas fields Nes, 

Moddergat, Lauwersoog Oost, Lauwersoog West and Vierhuizen), defines control measures in the 

form of production reduction if subsidence rates might reach the maximum allowed levels. These 

control measures are highlighted in a so-called “remweg scenario” or emergency stop scenario, i.e. a 

scenario that demonstrates the effect of a production stop in these fields on the subsidence rates in 

the sand sharing areas like Pinkegat. 

The member probabilities obtained from the confrontation of the full data set with geodetic data can 

also be used to determine the expected subsidence in case the production would be stopped at a 

given moment. Figure 61 shows the result of the potential implementation of a production stop and 

clearly demonstrates the effectiveness of implementing the production reduction control measure. 

Figure 65 shows the effects of a production stop of the Ameland field in 1996 and one in 2016 on the 

expected subsidence rate in Pinkegat. The subsidence ensembles were generated by altering the 

pressure scenarios of the full production forecast to now reflect the pressure development as a 

result of a production stop. The exact same geomechanical a posteriori model parameters were 

subsequently applied to arrive at the same set of members with the same member probability, only 

now having a different pressure depletion after the stop dates. The expected subsidence rate is again 

the weighted average of all the members in the ensemble. The resulting expected subsidence rates 

for the emergency stop scenarios are plotted in Figure 65, together with that from the full 

production. The bottom graph in Figure 65 plots the cumulative production for Ameland over time, 

where the solid lines are actual production and dashed are forecast for the full production and 

hypothetical production for the two stop scenarios. 
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Especially the emergency stop in 1996 has a significant impact on the subsidence rate, since a large 

part of the production is still to come after 1996. Even though the majority of the field’s production 

has already occurred by 2016, an emergency stop at such a late time in the field’s development is still 

expected to have a significant effect based on these results, as the stop in 2016 reduces the expected 

subsidence rate by about a factor of two.  

The current production lifetime of the Waddenzee fields is around 11 years and the relative effect of 

a hypothetical production stop in those fields would be more alike the 1996 production stop in 

Ameland that is described in the section above. By making this comparison, it is concluded that a 

production stop in the Waddenzee fields is an effective measure to reduce the subsidence rate in the 

sand sharing areas.

 

Figure 65. Top graph shows the subsidence rate for full production scenarios (green), emergency stop in 1996 (blue) and 
emergency stop in 2016 (red). Subsidence rate plotted here is the weighted average, i.e. expectation case, after 
confrontation with the full set of geodetic data. Bottom graph shows the cumulative production. Actual production is 
plotted by the solid line (up to October 2017). The green dashed line shows the production forecast for the full 
production scenario. The red and blue dashed lines mark the total cumulative production for a hypothetical stop in 2016 
and 1996, respectively.  
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7.6 Additional insights from the confrontation 
The outcomes of the confrontation of the full subsidence ensemble with the geodetic data are 

presented in this section. First, the resulting probability distributions as a function of the pressure 

scenario are shown in Section 7.6.1, to give an impression of the more likely depletion scenarios and 

reservoir parameter sets. Section 7.6.2 and 7.6.3 present additional insights into the parameter 

sensitivity of the geomechanical model. 

7.6.1 Probability distributions of reservoir scenarios and reservoir parameters 

If all input parameters were truly randomly distributed amongst the subsidence members, one 

should expect to obtain a randomly distributed set of χ2 values and corresponding member 

probabilities as a function of member number in Figure 54 and Figure 55, respectively. Although the 

geomechanical parameters are randomly distributed among the members here, the pressure 

scenarios are not, as each group of 20,000 members is based on the same reservoir scenario (i.e. first 

20,000 are based on the first scenario, second 20,000 on the second scenario, etc). The apparent 

structure that is especially pronounced in the member probability plot in Figure 55 suggests some 

reservoir scenarios can produce more probable subsidence members in combination with the 

geomechanical parameters, whereas other scenarios seem to be incapable of producing a likely 

subsidence member with any parameter set.  

The summed probability of all 20,000 members per reservoir member is plotted in Figure 66, to 

better assess the likelihood of each reservoir scenario the results are tabulated in Table 19. These 

summed member probability values represent the total contribution of each reservoir scenario to 

the weighted averages, and can thus be viewed as a likelihood of the reservoir scenarios, and is 

referred to as ‘scenario probability’ in this study. Remarkably, some reservoir scenarios have a 

contribution of virtually zero while at the same time there are reservoir scenarios with a scenario 

probability of 10% and higher.  

Besides the scenario probability, Figure 76 also shows the number of members from each reservoir 

scenario that would be accepted when a 95% acceptance level is applied (see Section 7.3.1). In 

general, it can be observed that more individual members would be accepted from scenarios with a 

higher probability. A total of 1,870 members out of 1,160,000 fall within the 95% acceptance level. 

The scenario probability and the number of accepted members are listed in Table 19 for all reservoir 

scenarios. Like the scenario probability, the number of accepted members gives an indication of the 

relative contribution of each scenario to the final results. Some interesting observations can be 

made, for example models M91 and M9203 have almost the same scenario probability, however 

almost three times as many members from M9203 fall inside the 95% acceptance level. This means 

that individual members from M91 are able to produce, on average, a better match to the data. 

The probability per reservoir scenario can help in investigating which aspects of the pressure 

depletion improve the match of modelled to measured subsidence. In Figure 67, the lateral depletion 

in 2016 for all reservoir scenarios are plotted in order of descending scenario probability. Figure 68 

shows the depletion over time for all the models, where the thickness of the line indicates the 

scenario probability. The figures show that the reservoir models with the highest probability have 

moderate depletion in the western aquifer and a moderate depletion in the northern part of the 

eastern aquifer, and no or limited depletion in the central and southern part of the eastern aquifer. 
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Figure 66. Assessment of the probability per reservoir scenario. The blue bars show the sum of the member probability 
per reservoir pressure scenario (58 scenarios in total) The distribution shows that clearly some scenarios result in a 
better match to the geodetic data than others. The number of members from each reservoir scenario that would be 
accepted in a 95% acceptance level is indicated by the red dots. 
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Table 19. Copy of Table 6, now including the scenario probability and the number of accepted members in a 95% 
acceptance level. 

Model Name Sgr Fault_13 E21_Kaqf E11_15_Kaqf 
E11_15_GIIP 

multiplier 

Scenario 
probability 

% 

Number of 
accepted 
members 

90 1 0 1 1 0.88 0.23 10 

91 1 0 0.1 1 0.88 2.83 28 

92 1 0 0.01 1 0.88 0.09 4 

93 1 1 1 1 0.88 0.06 5 

94 1 1 0.1 1 0.88 1.1 19 

95 0.5 0 1 1 0.88 0.03 1 

96 0.5 0 0.1 1 0.88 0.28 13 

97 0.5 0 0.01 1 0.88 0.02 0 

98 0.5 1 1 1 0.88 0.02 0 

100 0 0 5 1 0.88 0 0 

101 0 0 1 1 0.88 0 0 

102 0 0 0.1 1 0.88 0 0 

103 0 0 0.01 1 0.88 0 0 

104 0 1 1 1 0.88 0 0 

902 1 0 1 0.05 0.9 0.4 15 

903 1 0 1 0.025 0.9 1.24 37 

981 0.5 1 1 0.1 0.88 0.05 2 

982 0.5 1 1 0.05 0.91 0.08 4 

983 0.5 1 1 0.025 0.9 0.33 22 

1001 0 0 5 0.5 0.88 0 0 

1002 0 0 5 0.25 0.88 0 0 

1003 0 0 5 0.1 0.88 0 0 

1011 0 0 1 0.5 0.88 0 0 

1012 0 0 1 0.25 0.88 0 0 

1013 0 0 1 0.1 0.88 0 0 

9001 1 0 1 0.001 0.9 3.06 69 

9002 1 0 1 0.005 0.9 5.83 82 

9003 1 0 1 0.01 0.9 3.87 63 

9101 1 0 0.1 0.001 0.9 10.6 135 

9102 1 0 0.1 0.005 0.9 17.14 152 

9103 1 0 0.1 0.01 0.9 9.11 124 

9201 1 0 0.01 0.001 0.9 2.04 69 

9202 1 0 0.01 0.005 0.9 3.69 80 

9203 1 0 0.01 0.01 0.9 2.91 82 

9301 1 1 1 0.001 0.9 3.22 76 

9302 1 1 1 0.005 0.9 2.89 73 

9303 1 1 1 0.01 0.9 3.66 60 

9501 0.5 0 1 0.001 0.9 2.53 56 

9502 0.5 0 1 0.005 0.9 3.36 67 

9503 0.5 0 1 0.01 0.9 1.16 40 

9601 0.5 0 0.1 0.001 0.9 4.82 94 

9602 0.5 0 0.1 0.005 0.9 4.62 103 

9603 0.5 0 0.1 0.01 0.9 3.52 63 

9701 0.5 0 0.01 0.001 0.9 0.78 48 

9702 0.5 0 0.01 0.005 0.9 1.37 57 

9703 0.5 0 0.01 0.01 0.9 0.67 38 

9801 0.5 1 1 0.001 0.9 1.78 51 

9803 0.5 1 1 0.01 0.9 0.57 28 

10001 0 0 5 0.01 0.9 0 0 

10002 0 0 5 0.05 0.9 0 0 

10101 0 0 1 0.01 0.9 0 0 

10102 0 0 1 0.05 0.9 0 0 

10201 0 0 0.1 0.01 0.9 0.02 0 

10202 0 0 0.1 0.05 0.9 0 0 

10301 0 0 0.01 0.01 0.9 0.01 0 

10302 0 0 0.01 0.05 0.9 0 0 

10401 0 1 1 0.01 0.9 0 0 

10402 0 1 1 0.05 0.9 0 0 
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Figure 67. Lateral depletion for the year 2016 for all pressure scenarios, sorted on probability (between brackets) For 
comparison, the last scenario is the pressure scenario used for the Ameland field in the M&R 2016 (not used explicitly in 
the LTS-II study). 
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Figure 68. The bottom figure shows the pressure vs time for the four points shown in the top figure. The thicker lines 
represent more probable reservoir scenario’s. The colours represent also the probability: green lines higher than 5%, 
cyan higher than 0.5%, grey lines the lower probabilities.  

The probability per pressure scenario can also be related to some key reservoir parameters used in 

the pressure depletion modelling. Examples are displayed in Figure 69, Figure 70 Figure 71 and Figure 

72 (please refer to Section 3.2.3, Table 1-Table 5 for detailed parameters’ description). 

Figure 69 shows the scenario probability together with the residual gas saturation multipliers used in 

each of the scenarios. Most often, a good match with the subsidence data is reached with an Sgr 

multiplier of 1 (resulting in 10% of residual gas in the aquifer) or 0.5 (equal to 5% Sgr). At the same 

time, all the scenarios with Sgr multiplier of 0 (i.e. no residual gas in the aquifer) are at the bottom of 

the list with very low probabilities, meaning that it is very hard (up to impossible) to achieve a good 

subsidence match with no residual gas in the model, even though these scenarios give a good match 

to production and pressure data. 
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Figure 69. Scenario probability and residual gas saturation multiplier in the aquifers. For Sgr = 1, there is a 10% residual 
gas saturation in the aquifer; Sgr = 0.5 means 5% residual gas saturation; Sgr = 0 means no residual gas saturation. 

Figure 70 shows the scenario probability together with the aquifer permeability multiplier, applied in 

the southeastern aquifer of the Ameland-Oost field. This southeastern aquifer shows a good 

correlation between the permeability multiplier and the probability of the reservoir scenario. Lower 

values of this multiplier seem to be more likely than higher values, implying that it is more likely from 

the confrontation result that a southeastern with a low permeability is more likely. Figure 71 

compares the scenario probabilities against permeability multipliers, but now applied in the 

southwestern aquifer of the Ameland-Oost field (block E21). Conclusions which may be drawn from 

analysis of both plots are as follows: the three reservoir models with the highest average probability 

all use an aquifer permeability multiplier of 0.1, while a good subsidence match is also achievable for 

aquifer permeability multipliers of 0.01 and 1, but almost no scenarios were accepted with aquifer 

permeability multiplier of 5.  

Additional to the aquifer permeability in the southwestern aquifer, the transmissibility of Fault 13, 

which separates the aquifer in a northern and southern compartment (see Figure 4), appears to have 

a strong impact on the scenario probability, as depicted by Figure 72. The scenarios with the highest 

probability all have a transmissibility of Fault 13 of zero, suggesting that the depletion of the 

southwestern aquifer is most likely constrained to its northern section. 

This loop between reservoir engineering and geomechanic domains was not foreseen as a direct 

objective on beforehand, but now is considered to be essential in improving of understanding of the 

dynamic response of the Ameland field. Purely from a reservoir engineering point of view, all 58 

selected scenarios may be treated as equally likely, but this finding clearly indicates what subsurface 

0

0.2

0.4

0.6

0.8

1

1.2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

R
e

si
d

u
al

 g
as

 s
at

u
ra

ti
o

n
 (

Sg
r)

 m
u

lt
ip

lie
r

Sc
e

n
ar

io
n

 P
ro

b
ab

ili
ty

Scenario Probability Sgr multiplier



104 
 

scenarios are more likely from a geomechanics point of view, significantly reducing the uncertainty of 

a number of subsurface parameters. 

 

Figure 70. Scenario probability and permeability multiplier in the south-eastern south-eastern aquifer. 
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Figure 71. Scenario probability and permeability multiplier in the southwestern aquifer. 

 

Figure 72. Scenario probability and transmissibility of Fault 13, which divides the Southwestern aquifer (see Figure 4 for 
location of the fault). 
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7.6.2 Probability distributions of geomechanical model parameters 

Next to an assessment of the probability of the reservoir scenarios, the probability of the resulting 

geomechanical parameters used in the Monte Carlo simulation is studied. First, the Cm-Porosity 

relations are shown in Figure 73, where the darker green lines have a higher probability than the 

lighter green lines. First of all, it can be observed that all lines are positioned in the upper half of the 

possible range. This means that the Cm values are high and therefore that the compaction volume per 

bar depletion is also high when compared to a field like Groningen where inversion demonstrates 

that the inverted Cm values are situated in the bottom part of the same plot (van der Wal en van Eijs, 

2016). Secondly, the relationship with the porosity is for quite some members weak. It means that 

even with a homogeneous subsurface distribution of the porosity, a good fit can be achieved.  

 

Figure 73. Cm-Porosity relation for the accepted members. Darker green lines indicate a higher probability. The dots 
represent the core plug experiments results for Ameland cores (green) and other Rotliegendes cores (cyan). 

The five graphs shown in Figure 74 present the cumulative probability distribution of the 5 most 

relevant geomechanical parameters. A steep curve for a particular parameter implies that the 

workflow converged towards a narrow possible range of values, like e.g. the values for the 𝐶𝑚𝑑/

 𝐶𝑟𝑒𝑓. Vice versa, a shallow slope indicates a wide range of possible values. Salt behaviour and time-

dependent compaction are two competing mechanisms, as described earlier, with the influence of 

salt on the bowl shape being volume neutral. The results show that it is likely that the salt flow, at 

present, still influences the bowl shape above the gas field.  However, the dominant mechanism at 

present for the subsidence is reservoir compaction. 
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Figure 74. Probability distribution of the geomechanical parameters, the bottom part shows the different parameters 
with its range (x-axis) and cumulative probability (y-axis). The green lines indicate the 95% confidence interval 

 

7.6.3 Parameter sensitivity 

A possible other way to investigate the influence of the individual parameters on the results is the 

calculation and visualisation of tornado charts. These plots show the difference in subsidence, for 

2040 with respect to the subsidence as forecasted by the member with having the highest probability 

value, at four different locations. The geomechanical parameters were varied individually within the 

value range that results from the a posteriori 95% confidence interval shown in Figure 74, while 

keeping the other parameters fixed at the values used for the most likely member. The Cm-Porosity 

range is defined by the green lines in Figure 74. The impact of the reservoir scenarios in the tornado 

charts is governed by selecting the member with the highest probability per reservoir scenario. 

The difference between the, for the year 2040, forecasted subsidence, resulting from the parameter 

variation, and the forecast that results from the most probable member is indicated on the x-axis of 

the charts.  

The bar right to the parameter name indicates the impact of the parameter value variation on the 

subsidence forecast at the specific location, with a wider bar indicating a larger influence on the 

result.  

Note that for the tornado chart all parameters were fixed to those of the most probable member and 

only one parameter at the time is varied. The tornado chart therefore only indicates the sensitivity 

per parameter on the subsidence and is not a measure of a confidence interval. This latter remark is 

related to the fact that some of the parameters show a dependency with other parameters, which is 

not honoured by the workflow underlying the tornado chart. In other words, this workflow creates 

members that would be not accepted by the confrontation workflow. Figure 75 shows that the 
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influence of the reservoir scenario is more prominent in the aquifer area, while the uncertainty of the 

Cm-Porosity relation dominates the results on the island. This can be explained by the fact that the 

variation in possible pressure depletion is small in the gas part while it is large in the aquifer part. 

Also, it is observed that the influence of the b-value of the RTCiM is smaller in the aquifer areas, 

which can be explained by the fact that most of the reservoir scenarios show reservoir pressures that 

are still above the hydrostatic pressure. At those locations, only the added linear branch is valid, 

excluding a possible effect of the remaining RTCiM parameters. 

Finally, it is observed that the salt viscosity has a small influence on the forecasted result. Within the 
range, governed by the a-posteriori results, it is forecasted that the salt viscosity does not influence 
the subsidence anymore in 2040. 

 

 

Figure 75. Tornado charts that result from the variation of geomechanical parameters and reservoir scenarios, where 
value ranges are based on the a posteriori results. The x-axis shows the impact of this variation on the subsidence 
forecast in 2040 compared to the subsidence forecast by the most probable member. 
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7.7 Results of the confrontation for different time intervals 
One of the main aspects of the workflow is to make predictions of the subsidence rates in the future. 

It is important to demonstrate that the workflow can reliably forecast future subsidence. This is 

investigated by observing the effect of including more geodetic data (i.e. longer time series) on the 

posterior result. The confrontation is first performed between models and a limited time series of 

geodetic data (the first 6 years of the geodetic data). Next, the confrontation is performed on a more 

complete data set and finally it is performed on the full dataset. It is expected that the use of more 

data will improve the confidence of the predictions (i.e. more narrow intervals), but the prediction 

resulting from these two confrontations should not wildly differ, the confidence intervals should just 

get narrower. To compare the outcomes, the resulting χ2/N and probability distributions, and the 

resulting effect on the expected subsidence as well as the changes in the band of accepted 

membersis presented. 

As a first data set, all geodetic data between 1986 and up to the end of 1993 is used, which, using 

CUPiDO, gives a set of 318 double differences. For a second partial set, the confrontation is 

performed with all geodetic data between 1986 and the end of 2001, which consists of a set of 654 

double differences. The exact same ensemble of members as in Figure 54 was used. The two partial 

confrontations result in the χ2/N distributions plotted in Figure 76, together with those from the 

confrontation with the full set of geodetic data between 1986 and 2017. Note that the value of N 

differs between the sets, since the number of double differences changes as data is added. 

The lowest χ2/N in the 1986-1993, 1986-2001 and 1986-2017 sets are 1.51, 1.38 and 1.23, 

respectively. Looking at the scale of the vertical axes in the left plots, it is observed that the χ2/N 

values decrease when more data is added. After converting these χ2/N values to probabilities and 

member weights, one can plot the subsidence predictions for the three different confrontations, 

which is shown in Figure 77 for one of the benchmarks (002D0075). The subsidence time-series 

plotted here demonstrate that the band of accepted ensemble members based on the geodetic data 

in the period 1986-1993 only, is wider compared to the confrontation based on the longer periods 

1986-2001 and 1986-2017. The band of accepted members determined from the data in the period 

1986-2017 is slightly larger than in the 1986-2001 results. A possible reason could be the idealisation 

noise (see paragraph 5.3), which increases in time.  
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Figure 76. Left: Resulting χ2/n values. Right: histogram of the χ2/N values. The red line marks χ2/N=1. Top: data up to end 
1993; middle: data up to end 2001; bottom: full dataset. 
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Figure 77. Band of accepted model ensemble members based on confrontation with the geodetic data in the periods 
1986-1993, 1986-2001 and 1986-2017 respectively, for the double-differences between benchmarks 000A2592 and 
002D0075. 

Figure 78 compares the probability of each reservoir scenario; similar to Figure 66, but now for the 

confrontation in the three different time periods. Although the relative probabilities between 

reservoir scenarios do change after adding more data to the confrontation, the group of scenarios 

receiving the highest probabilities remains more or less the same. The general behaviour of the 

subsidence predictions is, judging from the similarities in probability distributions, not expected to 

show significant changes over time, as was also observed in Figure 77. The scenario probabilities 

seem more evenly spread after the confrontation with the least amount of data (1986 – 1993) 

compared to the confrontation with most data (1986 – 2017), where in the latter case certain 

scenarios become relatively more probable than others (most notably M9101, M9102 and M9103). 

In other words, the probability is distributed among fewer, more distinct members as more data is 

added over time. This quantitatively describes the improvement of the confidence in the predictions 

with time, as observed in Figure 77. 
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Figure 78: Average reservoir scenario probability after confronting the same ensemble of members with geodetic data in 
three different time periods (1986 to 1993 in green; 1986 to 2001 in purple; 1986 to 2017 in blue). 

From the χ2/N distributions themselves, one can also observe that the group of most likely ensemble 

members remains the same for the time periods tested here. A comparison of the χ2/N values for 

each member in the full ensemble resulting from the different confrontations is made in Figure 79. In 

the left figure, a comparison is made between the dataset up to end 1993 to the full dataset and 
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right a comparison between the dataset up to end of 2001 with the full dataset. Both plots suggest a 

strong correlation, where poorly-fitting members in one confrontation are also the worst fitting in 

the other confrontation, and the group of members with lowest χ2/N values remains the same in all 

three confrontations. In other words, members that gave a relatively good match to the data in the 

past, still give a relatively good match after new data has been added. 

 

Figure 79. Left: comparison of member χ2/N values from the confrontation up to the end of 1993 (x-axis) and from the 
confrontation including the most recent geodetic data from 2017 (y-axis). Right, same result but now for a confrontation 
up to end 2001. 

 

7.7.1 Application to new fields 

A verification of the effect of more geodetic data on the accepted model ensemble members when 

bringing in longer time series has been described in the previous section. Figure 77 shows  a 

narrowing band specifically in the early monitoring period, i.e. early measurement campaigns quickly 

narrow the uncertainty.  

For a new field, initially, the uncertainty in the longer-term future subsidence can be large, because 

of the unavailability of constraining subsurface data. This workflow shows that with early 

measurement campaigns the uncertainty is quickly constrained and therefore the confidence in the 

prediction of future subsidence improves. Regular geodetic measurement campaigns ensure that 

subsidence can be maintained within regulatory limits. 
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8 Conclusions 
Results of the LTS-II study demonstrate that a successful workflow was created that confronts 

subsidence model results with measurements in an objective way. The workflow incorporates the 

findings of the LTS-I study and as demonstrated here is able to identify the most likely model factors, 

like reservoir and aquifer depletion scenarios and parameter values for the subsidence model. 

Moreover, posterior (after confrontation with the geodetic data) probability distributions for the 

input model data show redefined distributions for the prior input values of the model data. The 

workflow consists of 5 main components as visualised in Figure 80 and summarised below. 

 

 

Figure 80. Main components of the confrontation workflow as adopted in this study. 

Pressure scenarios 

To describe the possible variation in the pressure scenarios for Ameland, 58 reservoir scenarios were 

created that were all history matched to the available pressure and production data. The scenarios 

are characterized by different levels of depletion in time of both the western and eastern aquifers. 

Because of the long production history of the field (since 1986) combined with the regular 

measurements of the pressures in the producing wells, the development of the pressure in the gas 

bearing part of the structure is narrowly constrained and therefore shows little variation between 

the 58 models. 

Subsidence members 

For every pressure scenario, the parameter values of the compaction model and influence function 

were varied in a Monte Carlo simulation. In the current study, one generic compaction model is used, 

the RTCiM model (Pruiksma et al, 2015), with the addition of a linear elastic branch. For the influence 

function, a modified Geertsma and van Opstal (1973) model is used with the addition of a time 

dependent shape factor that is calibrated to the viscous behaviour of a salt layer embedded in an 

elastic overburden, modelled by a finite element model. The two time-dependent processes (one in 

the compaction and one in the influence function) have a distinctly different effect on the subsidence 

rate. Subsidence as a result of reservoir compaction always leads to a change of the subsidence bowl 

volume. In contrast to this, the viscous behaviour of the salt only impacts the shape of the 

pressure 
scenarios and 

geomechanical 
models

subsidence 
members confrontation

geodetic data

likely members 
that best match to 

the data 
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subsidence bowl and not the volume. 

Each parameter picked by the Monte Carlo procedure results in a subsidence model member, with a 

group of members defining the ensemble.  

Geodetic data 

Several significant innovations were applied in the use of geodetic data. Observations from levelling 

and GPS techniques have been used in the format of spatio-temporal (i.e. in space and time) double-

differences. Uncertainties are described by a fully populated covariance matrix, that also takes 

shallow movements into account (idealisation noise). Outlier removal has been implemented in a 

formal way.  

Confrontation 

Each member is confronted to the geodetic data. The resulting test statistic defines the probability 

and weight of the specific member. The used theory to calculate the test statistic is based on Nepveu 

et al. (2010) with modifications, explained in this report. 

Output and results 

The modelled results versus the geodetic data are presented for two E-W profiles over the island and 

for many individual double-differences. The overall fit to the data is good, matching better to the 

location of the deepest point of the bowl and matching better to the benchmarks on the eastern part 

of the island as compared to results from earlier models. The weighted average was also used to 

calculate the subsidence rates in the Pinkegat area along with their confidence intervals. It is 

observed that the confidence interval is narrow and is, at present, far below the defined boundary 

for the rates (called the “meegroeivermogen”). 

The same workflow has been applied to two “emergency stop scenarios”. The results show a clear 

reduction in the subsidence rates after a hypothetical stop in 1996, but also smaller but clear 

reduction following a hypothetical stop in 2016. The latter being smaller can be explained by the 

reduced effect of a later stop on the pressures in the gas field, knowing that most of the gas has been 

produced by 2016. For a hypothetical stop in 1996, the production stop is ten years after the start of 

production, which is comparable to the current field life of the Waddenzee fields like Nes and 

Moddergat. Based on this analogue it can therefore be concluded that an emergency stop scenario in 

the Waddenzee for fields like Nes and Moddergat would result in a significant decrease of the 

subsidence rate in the Waddenzee. 

A verification of the effect of more geodetic data on the accepted model ensemble members when 

bringing in longer time series has also been performed as part of this study. The results show a 

narrowing band specifically in the early monitoring period, i.e. early measurement campaigns quickly 

narrow the uncertainty.  

More specific to the 6 points that are addressed in the letter by SodM (2017), the actions taken in 

this LTS-II study and the results related to these are listed in Table 20. 
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Table 20 List of requested improvements by SodM (2017) and actions taken including pointers to the relevant sections 

 Issue addressed by SodM Actions and results More information 

1 Improve the fit of the 
subsidence models to the 
measured data  

• 58 new reservoir scenarios. All 
history matched against the 
pressure data. 

• Improved geomechanical 
model resulting in better fit. 

• Improved procedure for 
geodetic data outlier removal. 

Section 3.2, 
Chapter 4,  
Section 5.4 

2 Include the effect of the 
large observed overpressure 
in the subsurface model  

• A linear elastic branch has been 
added to the RTCiM. Elastic 
compaction will take place as 
long the reservoir or aquifers 
are overpressured. 

Section 4.2.2 

3 Use a single generic 
compaction model instead 
of 4 specific compaction 
models  

• Only the versatile RTCiM is 
used in this study, modified by 
the addition of a linear elastic 
branch. 

Section 4.2.1 

4 Use a realistic range of salt 
parameter values  

• A range for salt viscosity values 
is based on laboratory 
measurements and model 
results described in the 
literature. 

Section 4.3.1 

5 Take into account the 
covariances and its effect on 
the uncertainty band of 
forecasted subsidence 

• The covariance matrix has been 
extended with a component 
that describes the spatio-
temporal correlations. 

• The role of the spatio-temporal 
component in the covariance 
matrix has been investigated. 

• The effects are visualised in 
multiple figures comparing 
subsidence model results with 
geodetic data.  

Chapter 6,  
Section 7.2, 
Section 7.4, 
Appendix 3 

6 Resolve geomechanical 
modelling issues that were 
introduced by the TNO 
program AEsubs  

• The program AEsubs has been 
replaced by a modified version 
of the Geertsma & van Opstal 
solution. 

Section 4.3 
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Appendix 1 Overview of the pressure scenarios 
Following plots show the depletion of all reservoir models. The top part shows the areal depletion in 

2016, the bottom part show the depletion in time for these reservoir models at different locations. 
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Appendix 2. Subsidence time series and profile visualisations 
 

This appendix contains time series and profile visualisations that provide detailed insight in the 

match between geodetic data and subsidence models, including the confidence intervals: 

1. Levelling profile plots along a northern and a southern trajectory on the island.  
➢ For the visualisations, the geodetic data and subsidence model double-differences 

have been transformed to a common reference in time (1986) and space (benchmark 
000A2592 in Nes). See Section 7.4 for more information and an explanation of the 
transformation of double-differences and the corresponding covariance matrix.  

2. The full time series for all levelling benchmarks that have been measured in both 1986 and 
2017.  

➢ As for the profile plots, double-differences have been transformed to a common 
reference in time (1986) and space (benchmark 000A2592 in Nes). 

➢ The time series visualisations for all 1417 double-differences used in the 
confrontation workflow have been complied in a separate document (NAM, 2017c), 
which is available on request. 

3. Time series for the GPS benchmarks with respect to the earliest measurement campaign of 
the benchmark. 

➢ In the interpretation of the time series of the Waddenzee benchmarks, it has to be 
noted that the weighted average and the confidence interval of the subsidence 
models contain subsidence due the Ameland gas fields only. Hence, the Waddenzee 
benchmarks that are close to the Nes and Moddergat gas fields can be affected by an 
additional subsidence component that is visible in the geodetic data time series, but 
not in the subsidence model time series. 

 

All time series and profile visualisations contain the following information (see for a further 

explanation Section 7.4) : 

• Blue: geodetic data double-differences with 95% confidence interval derived from the 
covariance matrix considering measurement noise and the temporal component of 

idealisation noise (‘benchmark instability’): 
ddeC + 

ddtC . 

• Red dots: model weighted average computed using the probabilities determined from the 
particle filter (see Section 6.3). 

• Dashed red lines: model 95% confidence interval based on the probability profiles per 
double-difference in space and time. The confidence interval is evaluated for benchmark 
locations or observation epochs, respectively, and linearly interpolated in between.  
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Appendix 3. On the visual interpretation of confidence intervals 
For individual parameters, visualisation of their expectable variation is straightforward and can be 

supported by tools like error bars, box plots or histograms. However, when multiple, eventually 

correlated parameters are considered at the same time, visualisation involves some pitfalls to be 

aware of. This applies in particular to some LTS-II results shown in this report, where variance-

covariance matrices are used to characterise the expectable variation of double-difference 

observations. These matrices are generally fully populated, which implies that covariances and thus 

correlations are nonzero. 

Higher-dimensional confidence regions 
An issue that arises for the interpretation of any multi-dimensional parameter set can be 

demonstrated with a simple example. Suppose that X and Y are two random variables with standard 

deviations X = Y = 1 and a correlation coefficient of  = 0.8. This implies a covariance of XY = XY 

= 0.8, and the corresponding covariance matrix is: 

D {(
𝑋
𝑌
)} = (

𝜎𝑋
2 𝜎𝑋𝑌

𝜎𝑋𝑌 𝜎𝑌
2 ) = (

1 0.8
0.8 1

), 

where D{∙} denotes the dispersion operator. If both parameters follow a normal distribution, the 

two-dimensional probability density function is shown in Figure 81. 

 

Figure 81. Probability density function of x and y with the 95 % confidence region indicated in red. 

A confidence region is any area in in the XY-plane, in which the tuple (X,Y) is located with a certain 

likelihood. By additionally minimising that area, the shape of confidence region becomes a horizontal 

cross-section of the probability density function, which is an ellipse in case of normally distributed 

parameters. 

Two-dimensional confidence regions or ellipses, respectively, are an adequate way to visualise the 

expectable variation of correlated parameters. However, the consideration of only two parameters 

at a time is often not sufficiently insightful. But if multiple parameters are visualised in one graph, 

like LTS-II double-differences in time series or profiles, their expectable variation can only be 

visualised in isolation. 
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Figure 82 shows a simulation of 50 000 realisations of X and Y represented by blue dots. 95 % of 

these dots lie within the red confidence ellipse. However, when projecting the ellipse on the x-axis 

and defining a one-dimensional confidence interval by the extent of the projected ellipse (dashed 

vertical lines), then 98.6 % of all dots fall into that interval. On the other hand, when defining a one-

dimensional confidence interval that contains 95 % of all dots (continuous vertical lines), these are 

not the same 95 % that fall within the two-dimensional confidence region. 

 

Figure 82. Simulation with 50 000 realisations of X and Y. 

Note that this is a specific simulation for two dimensions (i. e., two random variables/parameters). 

For three parameters, the confidence region would have the shape of an ellipsoid. For more 

parameters, this would become a hyper-ellipsoid, which cannot be visualised anymore. When 

increasing the number of parameters, the following two questions arise: 

A. What percentage of realisations would contain an n-dimensional hyper-ellipsoid that fits into 

the one-dimensional 95 % confidence intervals of all the n dimensions? 

B. What percentage of realisations would contain a one-dimensional confidence interval that is 

defined as a projection of the n-dimensional 95 % hyper-ellipsoid onto that one dimension 

(delimited by the dashed lines in Figure 82)? 

In answer to these questions, Figure 83 shows that the percentages quickly approach 0 (question A) 

and 100 (question B), respectively, if the number of parameters increases. 
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Figure 83. Size of confidence intervals/regions as a function of the number of parameters for the two scenarios described 
in the text. 

Considering this simple example can help with the interpretation of visual comparison of models 

results with geodetic data. In LTS-II, the number of double-differences, which equals the dimension 

of the covariance matrix, is 1417. This means that 

(A) not all models that fall within the confidence interval of an individual double-difference need 

to be accepted models. 

(B) Likewise, a model that is accepted based on the n-dimensional test statistic does not 

necessarily have to fall within the one-dimensional confidence interval of an individual 

double-difference. 

Adjusting the confidence intervals in a way that all accepted models fall within would increase their 

size dramatically and the informative value would be nullified. 

Note that this effect is independent of the degree of correlation; it also applies to uncorrelated 

parameters. 

Conditional probabilities for correlated parameters 
Interpreting graphs based on correlated data involves another pitfall. Suppose that X and Y in the 

example above represent two double-difference variables from the LTS-II study visualised in a profile 

plot. Let IX and IY be the 95% confidence intervals for X and Y, represented by error bars. An intuitive 

(but false) reasoning would be: If X is outside the 95 % confidence interval, then the probability that Y 

is also outside is still 0.05. Hence, the probability that both X and Y are outside the 95% confidence 

interval is 0.05∙0.05 = 0.0025: 

 𝑝{𝑌 ∉ 𝐼𝑌/𝑋 ∉ 𝐼𝑋} = 0.05 𝑝{𝑋 ∉ 𝐼𝑋 ∧ 𝑌 ∉ 𝐼𝑌} = 0.0025. 

However, this is only true for uncorrelated variables. If X and Y are correlated, these probabilities 

evolve differently. This is displayed in Figure 84. 
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Figure 84. Conditional probability 𝒑{𝒀 ∉ 𝑰𝒀/𝑿 ∉ 𝑰𝑿} and joint probability 𝒑{𝑿 ∉ 𝑰𝑿 ∧ 𝒀 ∉ 𝑰𝒀 } for two random variables X 
and Y and their corresponding 95 % confidence intervals IX and IY, respectively, depending on the correlation coefficient 

XY. The blue line indicates the probability that Y is outside its confidence interval IY under the precondition that X is 
outside its confidence interval IX. The red line shows the probability for both X and Y being outside their respective 
confidence intervals. 

From the graph, it can be observed that if the correlation coefficient between X and Y increases from 

zero to one and given that X is outside the 95 % confidence interval, then the likelihood of Y also 

being outside the 95% confidence interval increases quickly. 

To investigate the implications of this effect for LTS-II, normally distributed measurement and 

idealisation noise is assumed. The idealisation noise is computed with the parameters ON_C (see 

section 5.3), which includes both a temporal and a spatio-temporal component. 

The degree of correlation of levelling double-differences in LTS-II primarily depends on separation in 

space and separation in time. This can be seen in Figure 85, where pairings of double-differences 

with common reference benchmarks and epochs are considered. 

 

Figure 85. Correlation of all pairings of levelling double-differences used in LTS-II, for which reference benchmark and 
reference epoch are identical. Consider for instance two double-differences (Pref,PA,tref,t1) and (Pref,PB,tref,t2). For these, 
“distance” is the spatial distance between PA and PB, and “time difference” is the time interval between t1 and t2. 

Especially when time difference or spatial distance are zero, the correlation can be very high. As a 

matter of fact, this is the case for most visualisation plots. In time series plots for a single benchmark, 

the spatial distance between double-differences is per definition zero. Profile plots visualise a single 

epoch, for which the time difference of all double-differences is likewise zero. 
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Consider for instance the profile plot in Figure 86, for which also the correlation with a selected 

double-difference (DD11) is shown. All double-differences are significantly correlated, whereas the 

degree of correlation decreases with distance. Suppose now that DD11 as obtained from subsidence 

modelling would be outside its 95 % confidence interval I11: 

𝑝{𝐷𝐷11 ∉ 𝐼11} = 0.05. 

Then, the conditional probability that DD10 and DD12 are outside their confidence intervals as well is: 

𝑝{𝐷𝐷𝑘 ∉ 𝐼𝑘, 𝑘 ∈ {10,12}/𝐷𝐷11 ∉ 𝐼11} = 0.40. 

Based on the same precondition (DD11 being outside its confidence interval), the probability that DD9, 

DD10, DD12 and DD13 are outside is: 

𝑝{𝐷𝐷𝑘 ∉ 𝐼𝑘, 𝑘 ∈ {9,10,12,13}/𝐷𝐷11 ∉ 𝐼11} = 0.11. 

The probability that all other double-differences (DD1-DD13) are outside their confidence intervals is 

still: 

𝑝{𝐷𝐷𝑘 ∉ 𝐼𝑘, 𝑘 ∈ {1…10,12,13}/𝐷𝐷11 ∉ 𝐼11} = 0.0006. 

and thus small but a lot larger than it would be for uncorrelated parameters: 

𝑝{𝐷𝐷𝑘 ∉ 𝐼𝑘, 𝑘 ∈ {1…10,12,13}/𝐷𝐷11 ∉ 𝐼11,all DD uncorrelated} = 0.05
12 = 2.4 ⋅ 10−16. 

 

Figure 86. Profile of double-differences with respect to benchmark 000A2592 and the time interval 1986-2017. Some of 
these double-differences are already contained by the original set obtained from CUPiDO, some other may have been 
transformed to match the common reference benchmark and epoch. Upper plot: relative displacement with 95 % 
confidence intervals. Lower plot: correlation with double-difference no. 11 (000A2592-002C0083, 1986-2017), which has 
a correlation of 1.0 with itself. 
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The lesson from these considerations for the interpretation of LTS-II results is that a common 

assumption does not hold for correlated data. All 95 % confidence intervals shown in one plot do not 

necessarily need to cover 95 % of the subsidence predictions. This applies to both profile plots 

(where all double-differences are correlated due to temporal congruence) and time series plots 

(where all double-differences are correlated due to spatial congruence). 

Looking at the general picture 
An inherent limitation of visualising the confrontation results in two-dimensional plots is that a single 

plot can never convey all information. The goodness-of-fit of the ensemble members is assessed 

globally, meaning that there are usually many regions where the fit is excellent or reasonable but 

also some regions where the fit is poor. A single time series plot or profile plot with a poor fit does 

not allow for the conclusion that the overall fit is poor. A global assessment is done by considering all 

double-differences at the same time. This requirement is satisfied by the 2 test statistic. 

Conclusions 
Care must be taken with the interpretation of confidence intervals for multi-parametric models. It 

can be somewhat unintuitive. Global acceptance of the whole model is not properly reflected in the 

confidence interval of a single parameter. If parameters are correlated, the likelihood that multiple 

parameters fall outside their error bars simultaneously is almost certain to be underestimated from 

looking at a two-dimensional plot only. In the confrontation between the subsidence model and the 

geodetic data and the computation of the test-statistic, all these correlations are properly 

considered. This needs to be kept in mind when interpreting plots showing the results from LTS-II. 


