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General Introduction 

A statistical methodology is presented for estimation of reservoir compaction in the Groningen gas 

reservoir through direct inversion using subsidence measurements from optical leveling campaigns. 

With this methodology estimates of compaction can be obtained without reliance on certain 

assumptions, in particular: 

 There is no need to assume a functional form for the relationship between reservoir 

compressibility and porosity. 

 There is no need to assume a functional form for the relationship between reservoir compaction 

and pore pressure decline. 

The main disadvantage of the proposed methodology is that the independent contribution of 

compaction in different reservoir sections to the observed subsidence bowl cannot be estimated 

without imposing some form of regularisation. The minimum lateral resolution at which the 

independent contribution of neighbouring section in the reservoir can be estimated is about the burial 

depth of the reservoir, which is about 3 kilometers for the Groningen reservoir.  

Results indicate that the spatio-temporal progression of the subsidence bowl above the Groningen 

reservoir can be described well by a set of compaction estimates which vary smoothly in both time and 

space. This means that, for a given epoch, differences in compaction estimates between neighbouring 

blocks in the reservoir were restricted to be small. Estimates of compaction correlated strongly with 

pore pressure decline. 

It is concluded that direct inversion to compaction from subsidence as measured in optical leveling 

campaigns provides a useful methodology to estimate reservoir compaction above producing gas fields. 
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Executive Summary

Statistical methodology is presented that may be used to estimate reservoir compaction through
direct inversion using subsidence measurements from optical leveling campaigns. The main mo-
tivation for choosing this methodology was that models currently in use by the Nederlandse Aar-
dolie Maatschappij (NAM) produce biased estimates of the subsidence bowl as evidenced by the
existence of spatio-temporal patterns in the residuals of these models, indicating that these models
are likely misspecified and/or that model input such as rock porosity maps or pressure grids are
biased. Direct inversion to compaction provides a useful alternative view on the available infor-
mation because estimates of compaction can be obtained without reliance on certain assumptions
that are made in the current models, in particular:
• There is no need to assume a functional form for the relationship between reservoir com-
pactibility and rock porosity.
• There is no need to assume that the rock porosity per reservoir section is known.
• There is no need to assume a functional form for the relationship between reservoir com-
paction and pore pressure decline.

The main disadvantage of the proposed methodology is that the independent contribution of
compaction in different reservoir sections to the observed subsidence bowl cannot be estimated
with sufficient precision without imposing regularisation. The lateral resolution of reservoir com-
paction obtained by inversion of surface displacement data is limited to about the burial depth of
the reservoir, which is almost 3 kilometers. Regularisation is achieved by imposing spatial smooth-
ness on the compaction estimates and by restricting estimates to be non-negative (i.e. only de-
creases in volume are allowed in the reservoir). The degree of spatial smoothness is estimated by
penalising differences between compaction estimates in neighbouring reservoir sections, and the
penalty which is given to the differences in estimates is estimated through a spatial cross-validation
scheme (CV-scheme). The regularisation methodology was effective in enabling the estimation of
spatially resolved compaction estimates without over-fitting of the optical leveling measurements.
The spatio-temporal progression of the subsidence bowl could be described well by a spatio-temporally
smooth set of compaction estimates. For all reservoir resolutions and CV-schemes, estimates of
compaction correlated strongly with pore pressure decline. A basic (‘first-order’) forward simula-
tion model was defined with constant rates of compaction per unit of pore pressure decline per
aggregated reservoir section. This first-order forward model performed well in comparison with
the current models in use by NAM in its ability to explain the variation in subsidence measure-
ments. Our results indicate that direct inversion to compaction from subsidence as measured in
optical leveling campaigns provides a useful alternative methodology to estimate reservoir com-
paction because certain key assumptions that are made in the current models in use by NAM can
be relaxed. At a second modeling stage, the apparent existence (or absence) of relationships be-
tween estimates of reservoir compaction and variables such as reservoir pressures, thickness or
rock porosity can be investigated. In this report, the investigation of such relationships has been
restricted to a basic (‘first-order’) model assuming constant rates of compaction per unit pore
pressure decline per reservoir section, but a wider variety of models needs to be investigated.
Amsterdam, May 2015.
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1. Introduction

The load of the sediments above the gas bearing Rotliegend sandstone formation of the Gronin-
gen gas field is supported partially by the rock matrix itself and partially by the pressurized fluid
and gas within the pore space of the rock. The decrease in fluid volume in the rock associated
with gas extraction results in pore volume reduction (compaction) at the reservoir level. The com-
paction of the reservoir results in a measurable amount of subsidence at the surface, and likely
induces fault slip. NAM is required to forecast subsidence above the Groningen gas field on the
basis of scenarios for gas extraction. Spatially resolved estimates of compaction rates are also nec-
essary for seismic hazard models in which the seismicity is estimated as a fraction of the volumet-
ric strain due to compaction.
Reservoir compaction may in principle be measured in situ through the use of radio-active bullets.
NAM has several of these bullets in place, but the quality and spatial coverage are insufficient to
estimate spatio-temporal trends in reservoir compaction. Compaction is modelled as a function of
pressure depletion, the compressibility of the rock and the thickness of the reservoir. A number of
rock physics models are currently in use by NAM: a linear, bi-linear, time-decay and Isotach model
(NAM [2013]). These models are calibrated using subsidence measurements such as from opti-
cal leveling campaigns. Forecasts of the shape and maximum depth of the subsidence bowl differ
substantially between these models. Laboratory compaction measurements of core samples of the
Rotliegend sandstone are available, but these data unfortunately cannot be used to determine with
confidence whether strain is linearly or non-linearly related to pore pressure. Subsidence rates as
measured at a benchmark near the centre of the Groningen field in relation to rates of pore pres-
sure decline (Figure 4.9 in NAM [2013]) were better described by a bi-linear model, with a change
in the subsidence per unit of pore pressure decline when pressures are reduced to below a certain
level. Such bi-linearity has also been observed in other fields (Ameland and Roswinkel) and these
observations were at the basis of the introduction of the bi-linear compaction model which was
the preferred compaction model at NAM until 2011. More recently, for the Ameland gas field it
was observed that decreasing gas depletion rates were not followed directly by decreasing subsi-
dence rates. This observation of delayed compressibility led to the development of the time decay
model in which a time-delayed response of compaction to pore pressure decline at start-up is as-
sumed (Mossop et al. [2011]). In all current NAM models the uni-axial compaction coefficient of a
reservoir section is estimated as a function of the porosity of the rock in that section. The relation-
ship between compaction coefficients and porosity differs between the models, and is based on
trend lines fitted to laboratory measurements on cores taken from the reservoir (technical adden-
dum to the winningsplan Groningen 2013). The laboratory data indicate that uni-axial compaction
coefficients tend to increase with increasing porosity. However, uni-axial compaction coefficients
can only be estimated with low precision on the basis of porosity measurements, and the labora-
tory measurements might not be representative for overburden compressibility.
The current level of understanding of the rock physics of the Groningen field is insufficient to
confidently identify a single subsidence model, nor to eliminate any of the current models as pos-
sible candidates. The motivation for introducing the bi-linear and time-decay models was based to
a large extent on a comparison of predicted and observed subsidence rates at a few of the available
measurement locations. A more formal methodology is lacking for comparing the (relative) per-
formance of the different models in terms of how well they are able to explain the spatio-temporal
variation in measured subsidence rates at all measurement locations.
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In this report, we:
• Describe the results of an assessment of the (relative) ability of models currently in use by
NAM to explain the spatio-temporal variation in subsidence rates as measured during optical
leveling surveys. Satellite interferometric SAR (InSAR) measurements were available as well,
but we limited ourselves to optical leveling surveys because improvements to the methodol-
ogy for processing of the InSAR data were ongoing at the time of writing this report.
• Describe statistical methodology that can be used for estimating compaction based on di-
rect inversion from optical leveling. In the proposed methodology, in contrast to the existing
NAM models, it is not necessary to assume a functional form for the relationship between
pressure decline and compaction, nor to explicitly describe the spatial variation in com-
paction coefficients as a function of spatial variation in rock porosity. Direct inversion to
compaction provides a useful alternative view on the available information because estimates
of compaction can be obtained without reliance on certain assumptions that are made in the
current models, in particular:
– There is no a-priori assumed functional form for the relationship between reservoir
compactibility and rock porosity.

– A spatially resolved map with estimates of rock porosity per reservoir section is not
required as model input.

– There is no a-priori assumed functional relationship between reservoir compaction and
pore pressure decline.

– Estimates of compaction can be obtained without assuming that the spatial variation in
the thickness of the reservoir is known.

Once space-time series of estimates of reservoir compaction have been obtained, the exis-
tence of relationships and the functional form thereof between compaction estimates and
pore pressure decline, thickness of the reservoir and rock porosity can be investigated.
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2. Subsidencemeasurements fromOptical Leveling surveys

2.1. Introduction

Subsidence (vertical displacements) at the surface has been monitored using optical leveling tech-
niques since 1964 (at the onset of gas production from the Groningen field) and, more recently,
using satellite interferometric SAR (InSAR) and Global Positioning Systems (GPS). Optical level-
ing surveys provide measurements of relative height differences between benchmarks for pairs of
measurement campaigns (epochs). Leveling measurement campaigns for the Groningen field have
been held at approximately five-year intervals (ranging from 1 to 8 years), with the last campaign
in 2013. The number and spatial coverage of benchmarks differs greatly between campaigns (Fig-
ure 2.1), resulting in a wide variation in available benchmarks between epochs. A higher temporal
and spatial coverage can be achieved with InSAR compared to leveling surveys. There is thus a
clear advantage in using both leveling and InSAR data. However, as a first step this initial report
focuses on a new methodology for inverting the leveling data. At the time of writing this report a
new methodology for the processing of the InSAR data was being developed.

Figure 2.1.: Locations of benchmarks of the optical leveling campaigns.
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2.2. Double differencing

For each epoch (combination of measurement campaigns, with the epoch defined by the beginning-
and end-date of each pair of campaigns), the change between the two campaigns in the measured
height differences between benchmarks can be used as a measure of subsidence. This means that
the leveling data needs to be "double-differenced", by:

1. Spatial differencing: within each campaign express the measured height of each benchmark
as relative to the height of one of the benchmarks.

2. Temporal differencing: take the difference between two campaigns of the measured relative
height differences between benchmarks.

It is important to note that in order to be able to compare predicted and observed subsidence,
both model predictions and measurements need to be double-differenced with respect to the same
spatial and temporal reference points. The optical leveling data as provided by NAM is in the form
of height differences between benchmarks expressed relative to the same benchmark for each lev-
eling campaign (Figure 2.2). We note that in this report we have used the Rijksdriehoek (RD) ge-
ographical referencing frame to produce maps but subtracted a value of 200000 from the eastings
and a value of 240000 from the northings of the RD grid. The geographical location of the refer-
ence benchmark in RD coordinates is: Easting=249080 and Northing=554740.

Figure 2.2.: The location of the reference benchmark (indicated by x) used for spatial differenc-
ing for all epochs. Note that we have used the Rijksdriehoek (RD) geographical referenc-
ing frame but in this map (and in other maps in this report) subtracted a value of 200000
from the eastings and a value of 240000 from the northings of the RD grid. The geograph-
ical location of the reference benchmark in RD coordinates is: Easting=249080 and Nor-
thing=554740. The units of the tick labels are in kilometers.
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3. Assessment of the ability of NAMmodels to explain the variation in
optical levelingmeasurements

3.1. Introduction

Discrepancies between predicted and measured subsidence may arise from any or a combination
of:

1. Deviations due to errors in measurements and processes other than compaction:
a) Errors in measurements. Relative height differences between benchmarks are measured
with error. These measurement errors, as well as the processing of the measurements
(e.g. reference of all heights to the height of a common benchmark and data reconcil-
iation to "close" loops of benchmarks) are known to lead to spatial patterns (spatial
covariance structures) in errors.

b) Subsidence caused by processes other than reservoir compaction. For subsidence may
be caused by salt mining activities, or benchmarks located on dikes may subside due to
changes in the level of water saturation of sediments or salt mining. Ignoring the sub-
sidence caused by such other processes will lead to both spatial and temporal patterns
(spatio-temporal covariance structures) in errors (and therefore also in residuals). Sub-
sidence caused by processes other than reservoir compaction is thought to take place
on smaller spatial length scales than the smooth subsidence bowl caused by reservoir
compaction.

2. Model misspecifications. One or more processes may be missing from the NAM models,
or functional relationships in the models may have been misspecified. For example, the ge-
omechanical Green’s function or the assumed relationship between porosity and uni-axial
compaction coefficients may be misspecified.

3. Errors in model input. The input to the NAM models are subject to uncertainty and may be
biased. For example, the current NAM models assume that the pressure grids, porosity grid
and spatial extent of the reservoir are unbiased and known without error.

4. Model calibration errors.
a) Measurements from the leveling survey are not spread evenly in time and space. If this
is not taken into account in the calibration of the model (for example when ordinary
least squares fitting is used), and when there are discrepancies between the predicted
and measured changes in the subsidence bowl, the extent to which such discrepancies
play a role in the sums of squares is determined by the (arbitrary) spread of measure-
ments in time and space. Ordinary least squares methodology is currently used for cali-
brating the NAM models.

b) All data points have been assigned equal weight in the calibration of the models.
c) Inconsistent double-differencing of model output and leveling data.
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3.2. Matching predictions to observations

The predictions from the NAM models were made available on a 500 by 500 meter grid on the
first of January of each calendar year. In order to match the model predictions with measurements
from the optical leveling surveys, temporal interpolation was applied to compute model output
at the dates of the surveys, and each benchmark was assigned the predicted value in the grid cell
nearest to that benchmark (nearest neighbour assignment).
It is important to note that the height differences between benchmarks as predicted by the NAM
models have not been expressed as height differences relative to the same reference benchmark
as was used in the leveling data for spatial differencing. It was not possible to check the predicted
time-trends in the amount of subsidence at this reference benchmark because the spatial extent of
the provided grids did include the reference benchmark location. Visualisations of the subsidence
bowls as predicted by the NAM models indicate that only small amounts of subsidence are pre-
dicted at the reference benchmark, and that any bias introduced by the inconsistency in double-
differencing (see section 2.2) between the model predictions and the leveling data are likely to
be small. Nevertheless, we recommend that in future both model calibration and assessment of
model fit to the data model predictions and measurements are double-differenced in exactly the
same way.

3.3. Results

We have used the following conventions:
1. Positive numbers indicate subsidence, whereas negative numbers indicate upheave. For ex-
ample, a measured subsidence of +2cm between two leveling campaigns at benchmark A
indicates that this benchmark has been measured to be 2 cm lower relative to the reference
benchmark in the last campaign compared to the first campaign.

2. Residuals in this report are defined as the difference between the measured subsidence and
the predicted subsidence. For example, a residual of -2cm at a benchmark indicates that the
model predicted more subsidence than was measured (over-prediction). In contrast, a resid-
ual of +2cm at a benchmark indicates that the model predicted less subsidence than was
measured (under-prediction).

While all leveling survey measurements have been spatially differenced with respect to the same
reference benchmark, many different possible choices remain for temporal differencing. The abil-
ity of the models to predict long-term changes in the shape of the subsidence bowl may be in-
vestigated by differencing the leveling campaigns of 2008 and 1972, which both had a relatively
good spatial coverage of benchmarks (Figure 2.1). All models exhibit a similar ability to predict the
changes in the subsidence bowl over this time period (Figure 3.1), and exhibit a similar spatial pat-
tern in residuals with a tendency to over-predict subsidence in the northern part of the field and
under-predict in the southern part of the field (Figure 3.2).
All NAM models have epochs during which they either systematically under-predict or over-predict
subsidence in either all or part of the subsidence bowl, for example for the 1972-09-01 - 1975-09-
01 epoch (Figure A.2), the 1987-08-01 - 1993-06-08 epoch (Figure A.3) or the 2003-06-17 - 2008-
08-13 epoch (Figure A.4).

3.4. Summary and conclusions

1. All models have a similar ability to predict long-term changes in the shape of the subsidence
bowl (Figure 3.1). For long-term predictions, all models exhibit a similar spatio-temporal
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Figure 3.1.: Predicted versus measured subsidence for all NAM models for the 1972-09-01 -
2008-08-13 epoch.

pattern in residuals with a tendency to over-predict subsidence in the northern part of the
field and under-predict in the southern part of the field (Figure 3.2).

2. All models have periods during which they either systematically under-predict or over-predict
subsidence in either all or part of the space (Figure A.2, A.3, A.4).

3. The use of ordinary least squares methods for model calibration may lead to biased param-
eter estimates due to the uneven spread of measurements from the leveling survey in time
and space in combination with the spatio-temporal patterns in residuals.

4. Discrepancies between predicted and measured subsidence may arise for a number of rea-
sons, as listed in section 3.1. The spatio-temporal patterns in residuals are pronounced and
may indicate that the models have in some way been mis-specified. However, subsidence
may be caused by processes other than reservoir compaction, and measurement error and
the processing of measurements may induce spatio-temporal covariances in errors. In addi-
tion, model inputs such as pressure grids may be subject to errors.

5. There is no evidence that any one of the current models has better predictive capabilities
than the others.
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3.5. Recommendations

1. The height differences between benchmarks as predicted by the NAM models have not
been expressed as height differences relative to the same reference benchmark as was used
in the leveling data for spatial differencing. Although any biases that may be introduced by
this are likely to be small, we recommend that an alternative model calibration workflow is
set up in which model predictions and measurements are double-differenced in exactly the
same way. In addition, we recommend that different spatial reference benchmarks are used
for spatial differencing for each of the epochs used for model calibration.

2. Graphs which are used to visualise the ability of models to explain the time-trends in sub-
sidence at only one or a few of the measurement locations are uninformative. Instead, the
relative ability of models to explain both long-term and short-term changes in the shape of
the subsidence bowl should be assessed by plotting model predictions against all measure-
ments for a number of epochs, including spatial plots of model residuals.

3. In order to obtain a better quantitative understanding of the size and structure of errors in
model input, we recommend that reservoir engineers are asked to provide a range of pres-
sure grids which reflect the uncertainty in these grids. Predictions for all models should be
generated for each of these grids.

4. We recommend that in the model calibration workflow the patterns in model residuals are
formally accommodated by the estimation of random effects (variance components) for spa-
tial blocks, epochs and combinations of spatial blocks and epochs. This will lead to more
realistic estimates of standard errors of parameters.

5. Correlations in measurement error may play a role and this also deserves further investiga-
tion.
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Figure 3.2.: Spatial maps of residuals (predicted - measured subsidence) for the NAM models
for the 1972-09-01 - 2008-08-13 epoch.
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4. Direct inversion to reservoir compaction

4.1. Motivation

The spatio-temporal patterns in residuals of the NAM models may indicate that these models are
misspecified and/or suffer from biased model input. It was therefore decided to try to derive es-
timates of reservoir compaction through direct inversion to compaction from the optical leveling
campaigns (see e.g. Muntendam-Bos et al. [2008]). Here, we define compaction as bulk reservoir
volume change per unit area. With such a direct inversion to compaction some assumptions that
are made in the NAM models can be relaxed or more closely investigated. In particular, estimates
of compaction can be obtained without reliance on the following assumptions:
• There is no need to assume a functional form for the relationship between reservoir com-
pressibility and rock porosity.
• There is no need to assume that the rock porosity per reservoir section is known.
• There is no need to assume a functional form for the relationship between reservoir com-
paction and pore pressure decline.

The main disadvantages of the proposed methodology are:
• The independent contribution of compaction in different reservoir sections to the observed
subsidence bowl cannot be estimated with sufficient precision without imposing regulari-
sation. The lateral resolution of reservoir compaction obtained by inversion of surface dis-
placement data is limited to about the burial depth of the reservoir, which is almost 3 kilo-
meters.
• Spatial variation in measurements of vertical displacements unrelated to reservoir compaction
with a spatial (lateral) correlation lengths larger than about 3 kilometers will be attributed at
least partly if not wholly to reservoir compaction.

The inferred space-time series of compaction can be modelled at a second stage as a function of
pore pressure decline, porosity and thickness of the reservoir. A disadvantage of this approach is
that all .
Below we describe how to derive estimates of compaction through regularised direct inversion
to compaction using subsidence measurements from optical leveling campaigns. Once a spatially
resolved series of estimates of compaction has been obtained for a number of epochs, it will be
possible to evaluate whether and how these estimates relate to other relevant information such as
pore pressure decline and rock porosity.

4.2. Inversion model

Let Yt1 be the [kt1 × 1] column vector of measured relative heights of the kt1 benchmarks in the
first optical leveling campaign (1964-05-15), Yt2 the [kt2 × 1] column vector of measured relative
heights in the second campaign (1972-09-01), etc. up to Yt15 for the most recent campaign (2013-
03-03) (see figure 2.1) In this report, by convention, the last element in each column vector Yt

refers to the relative height of the reference benchmark (figure 2.2) which is zero by definition
(Ykt,t = 0). The [kt2−t1 × 1] column vector of measurements Ẏt2−t1 of subsidence which has
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occurred during the epoch t2 − t1, where kt2−t1 is the number of benchmarks which were visited
in both campaigns, is given by:

Ẏt2−t1 = Yt2 −Yt1 (4.1)
We refer to Ẏt2−t1 as a vector of double-differenced measurements of subsidence because it is
computed by both spatial (with respect to the reference benchmark) and temporal differencing of
height measurements from the optical leveling campaigns.
Let X be the [k × n] matrix of influence coefficients where Xj,i quantifies the amount of verti-
cal displacement at a leveling survey benchmark location j (j = 1, 2, ..., k) due to a given amount
of compaction in reservoir section i (i = 1, 2, ..., n). In this report, by convention, the kth row in
matrix X contains the influence coefficients of each of the n reservoir sections on the location of
the reference benchmark. The spatially differenced influence matrix Ẋ, in which influence coef-
ficients for all benchmarks are expressed as relative to the influence coefficients of the reference
benchmark, is given by:

Ẋ = HX (4.2)
where H is a [k×k] difference matrix with a value of 1 on the diagonal except for the combination
of the kth row and kth column, a value of -1 in the kth column for all rows except the kth row, and
0 elsewhere (see for example . An example of the For example, for k = 4:

Figure 4.1.: Example of the spatial differencing matrix H (equation 4.2) for k = 4 benchmarks.

H =


1 0 0 −1
0 1 0 −1
0 0 1 −1
0 0 0 0

 (4.3)

A general model for the vector of double-differenced measurements of subsidence Ẏt2−t1 is given
by:

Ẏt2−t1 = Ẋt2−t1Lt2−t1 + E (4.4)
where Lt2−t1 is a [n × 1] column vector of compaction in all reservoir blocks during the t2 − t1
epoch, and E ∼ MVN(0,W ) is a [kt2−t1 × 1] column vector of residuals (deviations between pre-
dicted and measured subsidence) whose distribution is assumed to be multivariate normal (MVN)
with mean zero and [kt2−t1 × kt2−t1 ] variance-covariance matrixW . The [kt2−t1 × n] matrix Ẋt2−t1
is obtained by selecting the rows from the [k × n] matrix Ẋ which refer to the benchmarks that
were visited in both optical leveling campaigns.
We note that the height measurements of the optical leveling campaigns may be expressed rela-
tive to the height of any one of the benchmarks, and a different reference benchmark may be cho-
sen for each campaign. Similarly, it is also possible to choose multiple reference benchmarks and
express height measurements of individual bechmarks as relative to one of each of the set of ref-
erence benchmarks. The spatial differencing matrix H needs to be adopted to match the chosen
configuration of reference benchmarks and care needs to be taken that the same spatial differenc-
ing operation is applied to both the set of measurements and the matrix of influence coefficients.
In this report, we have chosen to use a simple set-up with a single reference benchmark which is
used for all campaigns (figure 2.2).
For the inverse modeling, we use an analytical solution for displacements at the reservoir level
assuming a linear elastic homogeneous halfspace. Within Shell several such analytical solutions
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are used, most notably the Geertsma model of a disk-shaped reservoir (Geertsma and Opstal
[1973]). More recently, a general analytical solution for displacements due to cuboidal (block-
shaped) inclusions with uniform strains has become available (Kuvshinov [2008]), where each
reservoir section is a block and is characterized by the coordinates of the 8 vertices of that block
(~rib = xibmin

, xibmax
, yibmin

, yibmax
, zibmin

, zibmax
). In this report, equation 26 in Kuvshinov [2008] has

been used to calculate the amount of vertical displacement Xj,i at a leveling survey benchmark lo-
cation with coordinates ~rjs = (xjs, y

j
s, z

j
s)) for a given amount of compaction in reservoir section

i:

Xj,i =
1

4π

∑
vertices

σ
{
F (xib − xjs, yib − yjs, zib, R) + (3− 4ν)F (xib − xjs, yib − yjs, zib, R)

}
(4.5)

Where ν is a parameter representing the poisson’s ratio, σ a summation sign as given in table 4.1,
and F (x, y, z, R) and

F (x, y, z, R) = z arctan
( xy
zR

)
− x ln |R+ y| − y ln |R+ x| (4.6)

and

R =
√

(xb − xs)2 + (yb − ys)2 + z2b . (4.7)

By convention, the vertical coordinate z is directed downwards, and z = 0 for an observation
point at the surface.

Table 4.1.: Summation sign σ for each of the 8 vertices of a block (~rib) as used in equation 4.5

x y z σ

min min top -1
max min top 1
min max top 1
max max top -1
min min bottom 1
max min bottom -1
min max bottom -1
max max bottom 1

For the current NAM models, a grid of n = 5813 blocks of 500x500 meters in width (but with
varying thickness and depth) is used to represent the Groningen reservoir. At this resolution, the
numbers of parameters to be estimated (the [n × 1] column matrix L in equation 4.4) are large in
comparison to the number of optical leveling benchmarks. In addition, it will not be possible to
determine the independent contribution of neighbouring blocks in the reservoir to the subsidence
bowl because the influences of neighbouring blocks on the benchmark locations (columns in ma-
trix X) are very similar. It is therefore not possible to obtain estimates for the compaction for each
of the n = 5813 blocks without imposing some form of regularisation to decrease the effective
number of free parameters (Zhdanov [2002]). Regularisation has been imposed by a combination
of the following:
• Reducing the number of parameters to be estimated by creating na < n reservoir sections
as aggregates of the n 500x500 blocks. The aggregated sections are created by assigning
small blocks to larger quadrants based on whether or not the geographical center-points of
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the small blocks are contained within the larger quadrants (this is further described in sec-
tion 4.5).
• Restricting vertical displacements of reservoir blocks to be positive (i.e. allowing for com-
paction only).
• Penalising first-order spatial differences between estimates of compaction in aggregated
reservoir sections. The larger the penalty on spatial differences the more the estimates of
compaction in reservoir sections are restricted to vary smoothly over space.

Let q = 1, 2, ..., na be an indicator for the aggregated reservoir section q. The [k × na] influence
matrix Ẋa for the aggregated sections is given by:

Ẋa
q,j = Σn

i=1

{
Ẋi,jIq(i)

}
, (4.8)

where Iq(i) is an indicator function with Iq(i) = 1 if reservoir block i is part of the aggregated sec-
tion q and Iq(i) = 0 otherwise.
We note that for notational convenience from here onwards we have dropped the subscript to
identify the epoch. The [na × 1] column vector of compaction of the aggregated reservoir sections
La can then be estimated by minimising the sums of squares Q (see e.g. Eilers and Marx [2010]):

Q =
∥∥∥Ẏ − ẊaLa

∥∥∥2 + λ ‖DLa‖2 , forLaq ≥ 0, (4.9)

where D is a [na × na] first-order spatial penalty matrix with on the diagonal minus the number
of neighbours in the Queen neighbourhood of each of the aggregated reservoir sections, a value
of 1 for each of the off-diagonal elements for combinations of sections which are part of the same
rook neighbourhood and a value of 0 for all other off-diagonal elements (figure 4.3 and 4.2, see
e.g. Besag et al. [1991] or Earnest et al. [2007] for examples of spatial neighbourhoods and their
use in regularisation). The regularising coefficient parameter λ governs the penalty which is put
on differences between estimates of compaction in reservoir sections which are part of the same
neighbourhood. Note that here we have assumed that the errors E in equation 4.4 are indepen-
dent and identically distributed. The validity of this assumption will have to be assessed by graphi-
cal exploration of the model residuals.

Figure 4.2.: Illustration of a Queen’s neighbourhood, which was used for defining the first
order spatial penalty matrix D (equation 4.9). The spatial penalty matrix for this grid of 9
quadrants is illustrated in figure 4.3
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Figure 4.3.: Example of a spatial penalty matrix D (equation 4.9) for the grid of 9 quadrants as
illustrated in figure 4.2

D =



−3 1 0 1 1 0 0 0 0
1 −5 1 1 1 1 0 0 0
0 1 −2 0 0 1 0 0 0
1 1 0 −5 1 0 1 1 0
1 1 1 1 −8 1 1 1 1
0 1 1 0 1 −5 0 1 1
0 0 0 1 1 0 −3 1 0
0 0 0 1 1 1 1 −5 1
0 0 0 0 1 1 0 1 −3


(4.10)

4.3. Choice of cross-validation scheme, model complexity and the Bias-Variance
trade-off

The penalty term λ in equation 4.9 is estimated using cross-validation (CV, see e.g. G.H. Golub
[1979] or Eilers and Marx [2010]), by recursively estimating the parameter column vector L̂ using
a subset of all the available benchmark locations and evaluating a measure of fit of the subsidence
as predicted by the resulting model to the benchmark locations which had been omitted from the
data set. The following steps describe the algorithm which was used for cross-validation:

1. Partition the available set of benchmark locations into a number m of mutually exclusive
groups. In practice, we have used two types of cross-validation schemes (CV-schemes), with
m = 4 and m = 9 in which a coarse grid (with either 4 or 9 quadrants) was overlaid over
the landscape and each of the benchmarks was allocated to whichever quadrant of this grid
it fell into (figure 4.5). We refer to these two CV-schemes as the 4-fold CV-scheme and the
9-fold CV-scheme.

2. For each of the m groups of benchmark locations, and for each of a range of values for λ on
a log-linear scale, for example for λ = 100.5, 100.6, 100.7, ..., 102.5 do the following:
a) Split the data set Ẏ into a [(k− km)× 1] training data set Ẏm,training and a [km× 1] test
data set Ẏm,test.

b) Split the influence matrix Ẋa into a [(k − km) × na] training data set Ẋa
m,training and a

[km × na] test data set Ẋa
m,test.

c) Estimate the [nA × 1] parameter column vector Lam which minimises the sums of
squares Q =

∥∥∥Ẏm,training − Ẋa
m,trainingL

a
m

∥∥∥2 + λ ‖DLa
m‖

2 (Laq ≥ 0). In practice this is
done using a data augmentation approach in combination with the lsqnonneg optimiser
in matlab for non-negative least-squares optimisation.

d) Compute the sums of squares of the differences between predicted and measured sub-
sidence at the test set of benchmark locations Sm =

∥∥∥Ẋa
m,testL̂

a
m − Ẏm,test

∥∥∥2.
3. Evaluate for which value λ = λoptim the sums of squares of the differences between pre-
dicted and measured subsidence at all of the test sets of benchmark locations combined
Stot = ΣmSm is minimised.
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4. Compute the final set of estimates of reservoir compaction L̂a by minimising Q =
∥∥∥Ẏ − ẊaLa

∥∥∥2+
λoptim ‖DLa‖2 (Laq ≥ 0).

The penalty term λ governs how much differences in estimates of reservoir compaction in neigh-
bourhoods of reservoir sections contribute to the overall sum of squares Q in equation 4.9. Larger
values of λ will result in a higher degree of spatial smoothness (stiffness) in the set of compaction
estimates L̂a. Because of the addition of the penalty term in equation 4.9 estimates of reservoir
compaction will inevitably be biased. An increase in the number of reservoir sections na may re-
sult in a more complex model since the potential number of parameters increases in the [na × 1]
vector L̂a allowing for more local structure (steeper spatial gradients in compaction estimates) to
be inferred. Estimates of compaction will suffer from high variance as the number of reservoir
sections (na) in the model increases, and introducing some bias in our estimates L̂a might lead to
a substantial increase in the precision with which these estimates can be made and hence to a sub-
stantial increase in the predictive capabilities of the model. The concept of the bias-variance trade-
off is illustrated in figure 4.4 (see also e.g. Hastie et al. [2009]). The higher the chosen spatial reso-
lution at the reservoir level, the larger the dimensions of the [na × na] matrix D will become rela-
tive to the dimensions of the set of measurements Y , and therefore the larger the potential relative
contribution of the penalty term to the total sums of squares. By choosing a coarse-grained spatial
cross-validation scheme we favour models which are able to predict the overall shape of the subsi-
dence bowl reasonably well. Potential curvature in the subsidence bowl as suggested by the level-
ing measurements with a spatial signal which is local relative to the grid size of the CV-scheme will
not, or only to a small extent, lead to local curvature in the compaction estimates. Because regular-
isation is imposed by spatial smoothing, estimates of reservoir compaction for sections near and in
particular on the edge of the grid will be less well constrained than estimates further away from the
edges of the grid. Estimates of compaction in sections on or near the edge of the grid can there-
fore be expected to have higher variance relative to the estimates in the other reservoir sections.

4.4. Forward model for compaction as a function of pore pressure decline

Once a spatially resolved series of estimates of compaction has been obtained for a number of
epochs, it will be possible to evaluate whether and how these estimates relate to other relevant
information such as pore pressure decline and rock porosity.
Here, we have explored a first-order model for the relationship between compaction estimates
and pore pressure decline with constant rates of compaction per unit of pore pressure decline per
aggregated reservoir section. Let L̂q be the [T × 1]column vector of estimated compaction in the
aggregated reservoir section q for each of T epochs, and Pq the [T × 1] column vector of pore
pressure declines in aggregated section q. Then, an estimate β̂q of the rate of compaction per unit
pore pressure decline is given by linear regression through the origin:

β̂q = (P′qPq)
−1P′qL̂q (4.11)

A forward simulation model for reservoir compaction and subsidence was defined based on the
first-order model with constant rates of compaction per unit of pore pressure decline per aggre-
gated reservoir section. The subsidence as predicted by this forward model was compared to ob-
servations from the optical leveling surveys.

4.5. General description of the workflow

The regularised inversion has been set up as a series of computer scripts in the matlab language. A
general outline of the workflow is as follows:
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Figure 4.4.: Illustration of the concept of the bias-variance trade-off. A bias-variance trade-off
is made in the regularised inversion by imposing spatial smoothness on the compaction
estimates, and is mediated by the parameter λ in equation 4.9 which is estimated via spatial
cross-validation to evaluate the prediction error of models with increasing complexity.

1. Importing the reservoir data
a) The geometry of the reservoir: geographical centre-points of the n = 5813 blocks of
500x500 meter in width in the reservoir; the top of each block (meters subsurface) and
the thickness of each block (meters).

b) The [n× n] grids of reservoir pressures for each of a number of dates (typically the first
of January of each year for a number of consecutive years).

2. Importing the optical leveling data. Double-differencing and interpolation of pressures to
dates of measurement campaigns.

3. Subsetting of benchmarks for use in the inversion. Only benchmarks directly above or just
beyond the boundaries of the Groningen gas field were used. The reason for ‘clipping’ the
available set of benchmarks was that subsidence at the western edge of the Groningen field
may be caused partly by reservoir compaction in a neighbouring field, whereas subsidence at
the southern edge of the field may be partly caused by salt-mining activity.

4. Compute the [k × n] matrix X of influence coefficients (equation 4.5). This is done using the
~rib = xibmin

, xibmax
, yibmin

, yibmax
, zibmin

, zibmax
for each block i, using the x and y locations of

the vertices, and setting zibmax
equal to the top of the block and zibmin

equal to the top of the
block minus 100 meters.

5. Define na aggregates of original blocks of 500x500 m in width. This was done as follows:
a) A coarse grid was overlaid over the landscape with the desired resolution, for example
a grid with quadrants of 2500x2500 meters in width.
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Figure 4.5.: The two spatial cross-validation schemes (CV-schemes) that were used ot estimate
the spatial smoothness penalty λ. The space was divided up into four or nine sections each
of which were in turn left out of the training data set used for estimation of the compaction
estimates, and subsequently used as a test data set to evaluate the predictive capabilities of
the resulting model. We refer to these two CV-schemes as the 4-fold CV-scheme and the
9-fold CV-scheme (see text for further explanation).

b) All 500x500 blocks whose geographical center-points fall into the coarse quadrants
were aggregated into one larger section.

c) In the case of a coarse grid with quadrants of 2500x2500 meters in width, most aggre-
gated sections will consist of 25 500x500 meter blocks. However, at the edges of the
reservoir, there will be quadrants with fewer original blocks. The user is required to
specify the minimum number of blocks Nmin which an aggregated reservoir section is
required to contain. In case an aggregate section consists of fewer than Nmin 500x500
meter blocks, this section is joined to the nearest section.

d) Per aggregate section, we keep track of the number of 500x500 meter blocks this con-
tains, the average pore pressure decline and the average thickness.

e) Compute the aggregated [k × na] influence matrix Xa using equation 4.8.
6. Regularised inversion Step 1: Crossvalidation to determine the optimum penalty λoptim:

a) Specify the T combinations of measurement campaigns which are to be used for tem-
poral differencing. A [na × 1] column vector of estimates of compaction L̂ is made
independently for each of the epoch combinations.

b) Specify the range of values for λ for which to do the inversion and evaluate the lack-of-
fit criterion using cross-validation.

c) Specify the cross-validation scheme: either a four-fold m = 4 or 9-fold m = 9 cross-
validation scheme in which the landscape is partitioned into respectively 4 or 9 roughly
equal-sized quadrants to allocate benchmarks to groups for use in cross-validation.

d) λoptim is chosen as the value which minimises the specified lack-of-fit criterion ΣmSm
summed across all combinations of epochs. When more than one epoch is selected for
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Figure 4.6.: Visualisations of the Groningen reservoir grid at a 500x500 meter resolution
(n = 5813), and the two spatial resolutions (5kmx5km with na = 58, and 2.5kmx2.5km
with na = 227) at which compaction estimates were obtained and reported in this report.
Note that the colors are only included for ease of visual interpretation, and that the num-
bers in the reservoir sections are used as labels in this report to identify individual reser-
voir sections. A larger version of the map of the 2.5km reservoir resolution is given in fig-
ure D.1

use in the inversion, only one value of λoptim is chosen. The penalty on spatial rough-
ness is therefore assumed equal for all epochs.

7. Regularised inversion Step 2:
a) Use λoptim to estimate a final set of of estimates L̂ for each of the epochs.
b) Plot predicted versus observed subsidence and plot maps of model residuals. Deter-
mine whether there is a need to redo the inversion with the exclusion of obvious out-
liers.

c) Plot spatial maps of estimated compaction, and store the results.
8. Interpretation of results

a) Evaluate the relationship between pore pressure decline and estimated compaction per
aggregated reservoir section. This is done both graphically and formally by estimating
a first-order model with a constant rate of compaction per unit of pore pressure de-
cline per aggregated reservoir section. In case several combinations of measurement
campaigns are used for the inversion there will be more than one estimate of com-
paction for each aggregated reservoir section. Let L̂q be the [T × 1]column vector of
estimated compaction in the aggregated reservoir section q for each of T epochs, and
Pq the [T × 1] column vector of pore pressure declines in aggregated section q. Esti-
mate the average rate of compaction per unit pore pressure decline using equation 4.11.
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b) Establish a forward simulation model for reservoir compaction and subsidence based
on the first-order model with constant rates of compaction per unit of pore pressure
decline per aggregated reservoir section. Compare the predicted subsidence with obser-
vations from the optical leveling surveys.
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5. Results of direct inversion to reservoir compaction

5.1. Introduction

Here we present results for the regularised inversion to reservoir compaction for:
• Aggregated reservoir sections at a 2.5km x 2.5km spatial resolution. Sections were restricted
to have a minimum of at least 15 500mx500m blocks; sections with fewer than 15 500mx500m
blocks were joined to a neighbouring section (see figure 4.6 and table 5.1).
• Aggregated reservoir sections at a 5km x 5km spatial resolution. Sections were restricted to
have a minimum of at least 50 500mx500m blocks; sections with fewer than 50 500mx500m
blocks were joined to a neighbouring section (see figure 4.6 and table 5.1).
• For combinations of measurement campaigns (epochs) as depicted in table 5.1.
• Inversions were done for both reservoir resolutions (2.5km and 5km) with a 4-fold and 9-
fold CV-schemes (see figure 4.5) for estimation of the optimum penalty λoptim.
• We have used a value of ν = 0.25 for the poisson’s ratio to compute the influence matrix X.

Table 5.1.: Epochs (pairs of optical leveling campaigns) used for the regularised inversions to
compaction.

epoch start-date (t1) epoch end-date (t2) number of benchmarks (kt2−t1)
1972-09-01 1975-09-01 381
1972-09-01 1978-07-15 348
1972-09-01 1981-07-01 335
1972-09-01 1987-08-01 310
1972-09-01 1993-06-28 292
1972-09-01 2003-06-17 252
1972-09-01 2008-08-13 240

5.2. Optimum penalties on spatial roughness and inversion results

The variance of the prediction error Stot for a range of increasing values for penalties λ are de-
picted in figure 5.1 for both reservoir resolutions (2.5km and 5km) and cross-validation schemes
(4-fold and 9-fold). The optimal penalties λoptim are given in table 5.2. The optimum penalties are
higher for the 2.5km reservoir resolution compared to the 5km reservoir resolution, and higher
for the 4-fold CV-scheme compared to the 9-fold CV-scheme. The fit of the models using the
optimal penalty to the data is very similar between the four combinations of reservoir resolutions
and cross-validation schemes: the root-mean-square error (RMSE) of the fitted model RMSE =
√
S where Sλoptim =

∥∥∥XaL̂a
λoptim

−Y
∥∥∥2 for the 1972-09-01 - 2008-08-13 epoch (RMSE1 in

table 5.2) vary between 0.009 m and 0.012 m. The RMSE of the predictions of the first-order
forward model based on constant rates of compaction per unit of pore pressure decline (equa-
tion 4.11) are also highly similar between the four models, for example for the 1972-09-01 - 2008-
08-13 epoch (RMSE2 in table 5.2) and the 1972-09-01 - 2013-03-03 epoch (RMSE3 in table 5.2)
the RMSE values vary between 0.012 m - 0.017 m.



SR.15.11194 – 21 – Restricted

Figure 5.1.: Estimated optimum penalties for each combination of spatial resolution at the
reservoir level and for each cross-validation scheme. The optimum penalties λoptim are
indicated by a red circle on each graph.

The fit of the models using the optimal penalty to the optical leveling measurements for various
combinations of epochs are given in figures 5.2 and 5.3 for the 2.5km reservoir and 4-fold cross-
validation scheme. The fit to the data for the other reservoir resolution and CV-schemes are given
in figures C.1 through to C.6. Overall, the fit is very similar between the various model-resolutions
and CV-schemes, with no obvious outliers in the residuals and some spatial structure in the resid-
uals which appears to be restricted to spatial scales well below the resolution of the 9-fold CV-
scheme.
A comparison of estimated compaction per aggregated reservoir section for the 1972-09-01 -
2008-08-13 epoch for both reservoir resolutions and cross-validation schemes is given in figure 5.4.
The estimates for the 9-fold CV schemes are more variable than those of the 4-fold CV-schemes
because of the lower estimated optimum penalties for the 9-fold CV-schemes. Overall, the 4-fold
CV-schemes have therefore resulted in the most spatially smooth set of parameter estimates. Al-
though the differences between the four models are relatively small, the results for the 2.5km
reservoir resolution and 4-fold CV-scheme have the largest RMSE for the inversion fit (RMSE1
in table 5.2) indicating that this combination of reservoir resolution and CV-scheme resulted in
the spatially smoothest representation of the subsidence bowl. This is illustrated in a number of
prediction profiles of the subsidence bowl which have been generated for a number of cross-
sections through the landscape (figures 5.5, 5.6 and 5.7). Predicted subsidence profiles for the dif-
ferent models are similar, but the 2.5km reservoir resolution and 4-fold CV-scheme resulted in the
smoothest prediction profiles which can be best seen in the illustrated cross-section which runs
from the south-west to the north-east of the subsidence bowl (figures 5.5c, 5.6c and 5.7c). Be-
cause the 2.5km reservoir resolution and 4-fold CV-scheme resulted in spatially smoothest set of
estimates while allowing for a more precise geographical location of the deepest part of the subsi-
dence bowl compared to the 5km resolution, we have chosen to discuss the results of the 2.5km
resolution 4-fold CV-scheme in the main text as our preferred estimates. A map of compaction es-
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Table 5.2.: An overview of estimated optimum penalties λoptim, the number of aggregated
reservoir sections na and root-mean-square errors (RMSE) of the fitted model, for each
combination of reservoir resolution and cross-validation (CV) scheme. RMSE1: RMSE
of the compaction model using the optimal penalty RMSE =

√
S where Sλoptim

=∥∥∥XaL̂a
λoptim

−Y
∥∥∥2 for the 1972-09-01 - 2008-08-13 epoch. RMSE2: RMSE of the pre-

dictions of the first-order forward model based on constant rates of compaction per unit
of pore pressure decline (equation 4.11) for the 1972-09-01 - 2008-08-13 epoch. RMSE2:
RMSE of the predictions of the first-order forward model based on constant rates of com-
paction per unit of pore pressure decline for the 1972-09-01 - 2013-03-03 epoch.

Resolution na CV-scheme λoptim RMSE1 (m) RMSE2 (m) RMSE3 (m)
2.5km 227 4-fold 151 0.012 0.017 0.014
2.5km 227 9-fold 56 0.009 0.015 0.012
5km 58 4-fold 52 0.010 0.015 0.012
5km 58 9-fold 37 0.010 0.015 0.012

timates for the various epoch combinations is given in figure 5.8 (2.5km 4-fold CV; maps for the
other models are given in figures B.1,B.2 and B.3).

5.3. Forward model for compaction as a function of pore pressure decline

To first order, the assumption that rates of compaction are constant with pressure decline appears
reasonable for most aggregated reservoir sections. The fit of the estimated rates β̂q (equation 4.11)
to the compaction estimates is visualised in figures D.2 through to D.8 for all aggregated reser-
voir sections. An overview of the relationship between estimated compaction L̂a and depletion
for all epochs (table 5.1) is given in figure 5.9. Maps of estimated rates β̂q for the 2.5km reservoir
resolution and 4-fold CV-scheme and 9-fold CV-scheme are given in figure 5.10. A comparison of
estimated rates β̂q for the four different combinations of reservoir resolution and cross-validation
scheme is given in figure 5.11.
Estimates of compaction in sections on or near the edge of the grid can be expected to have higher
variance than estimates in the other reservoir sections because the regularising effect due to the
spatial smoothing is less in these reservoir sections (see section 4.3). In addition, sections near the
edges of the grid, in particular the western side of the Groningen reservoir have experienced less
pore pressure decline than other parts of the reservoir, and the relative uncertainty in estimated
pressure decline in these sections is likely to be high. At the time of writing this report, adequate
statistical methodology for estimation of the uncertainty surrounding estimates of reservoir com-
paction has not yet been implemented. Differences between the estimates of rates of compaction
per unit pressure decline obtained under the two CV-schemes tend to be largest in aggregated
reservoir sections on or near the edge of the reservoir grid (figure 5.10).
The first-order forward models based on constant rates of compaction per unit pore pressure de-
cline per aggregated reservoir section are able to explain the variation in measured subsidence for
the various epochs reasonably well (table 5.3 and Appendix E). There is little difference between
the forward models based on the four different inversion methods in terms of how well they are
able to explain the subsidence measurements (see also table 5.2). The first-order forward mod-
els perform at least as well if not better than the NAM models with prediction errors (RMSE)
of 0.014 m (2.5km reservoir resolution and 4-fold CV-scheme) for the 1972-09-01 - 2013-03-03
epoch compared to 0.022 m - 0.023 m for the NAM models. The predictions of the first-order
forward models are however somewhat biased with over- or under-estimation in various epochs
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Figure 5.2.: Model fit and map of model residuals for the inversion to compaction using 9-fold
spatial cross-validation for a 5km reservoir resolution for epochs up to 1987-08-01.

and a spatial pattern in the residuals albeit less pronounced than the current NAM models (fig-
ure E.1 through to figure E.8).
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Figure 5.3.: Model fit and map of model residuals for the inversion to compaction using 9-fold
spatial cross-validation for a 5km reservoir resolution for epochs up to 2008-08-13.

Figure 5.4.: Comparison of estimated compaction L̂a at aggregated reservoir sections for both
reservoir resolutions and cross-validation schemes, for the 1972-09-01 - 2008-08-13 epoch.
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Figure 5.5.: Maps of cross-sections for which prediction profiles of the subsidence bowl have
been generated for the 1972-09-01 - 2008-08-13 epoch (figures 5.6 and 5.7).

Table 5.3.: Root-mean-square-error (RMSE) of the current NAM forward models and the first-
order forward models with constant rates of compaction per unit pore pressure decline per
aggregated reservoir section (2.5km and 5km resolution and 4-fold CV-scheme).

epoch start epoch end TimeDecay Bilinear Isotach Inversion (2.5km) Inversion (5km)
RMSE (m) RMSE (m) RMSE (m) RMSE (m) RMSE (m)

1972-09-01 1975-09-01 0.004 0.004 0.004 0.005 0.005
1972-09-01 1978-07-15 0.009 0.009 0.007 0.006 0.006
1972-09-01 1981-07-01 0.011 0.011 0.010 0.008 0.008
1972-09-01 1985-09-01 0.012 0.014 0.014 0.009 0.008
1972-09-01 1987-08-01 0.013 0.014 0.015 0.009 0.009
1972-09-01 1990-05-15 0.015 0.015 0.016 0.010 0.009
1972-09-01 1991-05-14 0.016 0.016 0.017 0.010 0.009
1972-09-01 1993-06-28 0.016 0.015 0.017 0.010 0.009
1972-09-01 1997-06-13 0.018 0.020 0.019 0.013 0.012
1972-09-01 1998-06-05 0.021 0.019 0.021 0.012 0.011
1972-09-01 2003-06-17 0.023 0.022 0.023 0.014 0.013
1972-09-01 2008-08-13 0.027 0.024 0.026 0.017 0.015
1972-09-01 2013-03-03 0.023 0.022 0.022 0.014 0.012
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Figure 5.6.: Predicted profiles along cross-sections of the subsidence bowl for the 1972-09-01 -
2008-08-13 epoch. The cross-sections are indicated in figure 5.5. Predictions were made us-
ing the models with a 2.5km reservoir resolution and 4-fold CV (black lines) and 9-fold CV
(grey dashed lines). Measurements of subsidence (red dots) are from benchmarks whose
distance perpendicular to the cross-section (in the horizontal plane) was less than 1000
meters.

Figure 5.7.: Predicted profiles of the subsidence bowl along cross-sections for the 1972-09-01
- 2008-08-13 epoch. The cross-sections are indicated in figure 5.5. Predictions were made
using the models with a 5km reservoir resolution and 4-fold CV (black lines) and 9-fold CV
(grey dashed lines). Measurements of subsidence (red dots) are from benchmarks whose
distance perpendicular to the cross-section (in the horizontal plane) was less than 1000
meters.
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Figure 5.8.: Estimated compaction for 4-fold spatial cross-validation and a 2.5km reservoir
resolution.

Figure 5.9.: Estimated compaction L̂a per unit pore pressure decline for all epochs (table 5.1)
and all aggregated reservoir sections (estimates of L̂a per reservoir section for epochs with
consecutive end dates are connected by lines) for the inversion to compaction using 4-fold
spatial cross-validation and a 2.5km reservoir resolution.
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Figure 5.10.: Estimated rates of compaction per unit pore pressure decline β̂q for the inversion
to compaction for a 2.5km reservoir resolution and 4-fold (a) and 9-fold (b) CV-scheme,
and the absolute differences in estimates obtained using both CV-schemes (c).

Figure 5.11.: Comparison of estimated rates of compaction per unit pore pressure decline per
aggregated reservoir section (β̂q : equation 4.11).
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6. Discussion

Statistical methodology is presented that may be used to estimate reservoir compaction through
direct inversion using subsidence measurements from optical leveling campaigns. The main mo-
tivation for choosing this methodology was that models currently in use by NAM produce biased
estimates of the subsidence bowl as evidenced by the existence of spatio-temporal patterns in the
residuals of these models, indicating that these models are likely misspecified and/or that model
input such as rock porosity maps or pressure grids are biased. Direct inversion to compaction pro-
vides a useful alternative view on the available information because estimates of compaction can
be obtained without reliance on certain assumptions that are made in the current models, in partic-
ular:
• There is no need to assume a functional form for the relationship between reservoir com-
pactibility and rock porosity.
• There is no need to assume that the rock porosity per reservoir section is known.
• There is no need to assume a functional form for the relationship between reservoir com-
paction and pore pressure decline.

The main disadvantage and technical challenge of the proposed methodology is that the inde-
pendent contribution of compaction in different reservoir sections to the observed subsidence
bowl cannot be estimated with sufficient precision without imposing regularisation in the inver-
sion methodology. Here, we have attempted to find spatially smooth solutions which were able to
explain the overall progression of the shape of the subsidence bowl, as apparent through mea-
surements from optical leveling campaigns, well. Regularisation will inevitably result in biased
estimates of parameters, and estimates will vary with the choice of cross-validation scheme and
penalty matrix. The choice of epochs used for the inversion is important too. If little subsidence
has taken place during an epoch, the signal (progression of the subsidence bowl) will be weak in
comparison to the noise (due to errors in measurements or subsidence caused by processes other
than reservoir compaction). In practice, more spatial smoothness will be imposed in cases where
the signal to noise ratio is weak, and this means that the amount of bias of estimates due to spatial
smoothing will tend to be higher if the realised pressure decline during an epoch gets smaller. The
effect of this needs to be better investigated by applying the regularisation to different combina-
tions of epochs and by allowing the penalty λoptim to vary between epochs.
The regularisation methodology was effective in enabling the estimation of spatially resolved com-
paction estimates without over-fitting of the optical leveling measurements: spatially smooth es-
timates of compaction and the subsidence bowl were obtained for both reservoir resolutions and
CV-schemes. The spatio-temporal progression of the subsidence bowl could be described well by
a spatio-temporally smooth set of compaction estimates. The 4-fold CV-scheme resulted in the
smoothest set of compaction estimates. This was as expected because the smaller quadrants used
in the 9-fold CV-scheme allowed for more local curvature, as apparent in the subsidence mea-
surements, to be picked up. The spatially smoothest set of compaction estimates was obtained
at the 2.5km reservoir resolution in combination with a 4-fold CV-scheme and we present these
results in the main text as our preferred estimates. For all reservoir resolutions and CV-schemes,
estimates of compaction correlated strongly with pore pressure decline. A first-order forward sim-
ulation model was defined with constant rates of compaction per unit of pore pressure decline per
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reservoir section. This first-order forward model performed well in comparison with the current
models in use by NAM in its ability to explain the variation in subsidence measurements.
Our results indicate that direct inversion to compaction provides a useful alternative methodol-
ogy to estimate reservoir compaction because certain key assumptions that are made in the cur-
rent models in use by NAM can be relaxed. At a second modeling stage, the apparent existence
(or absence) of relationships, and the functional form thereof, between reservoir compaction and
variables such as reservoir pressures, thickness or porosity can be investigated. In this report, the
investigation of such relationships has been restricted to a basic (first-order) model assuming con-
stant rates of compaction per unit pore pressure decline per reservoir section, but a wider variety
of models needs to be investigated.
The impact of the choice of influence matrix on the compaction estimates needs to be investi-
gated.
We have identified the following topics for future work:
1. Direct inversion to compaction based on InSAR data. The variation of compaction esti-
mates based on InSAR data and optical leveling data will indicate how robust these estimates
are with respect to assumptions regarding measurement noise or the spatial and temporal
coverage of surveys. InSAR data provide information on horizontal displacements which
may be used to constrain the choice of influence matrix, especially at the edges of the subsi-
dence bowl.

2. Develop methodology to estimate the uncertainty surrounding the compaction estimates
obtained through regularised direct inversion.

3. Further investigate the relationship between compaction and depletion estimates, including
non-linear relationships.

4. The results as presented in this report indicate that a forward model based on constant rates
of compaction per unit pressure decline per aggregated reservoir section is able to describe
the variation in the optical leveling measurements well. An alternative model for direct inver-
sion to compaction with fewer parameters to be estimated can be based on the assumption
of constant rates of compaction per unit pressure decline. In such a model, spatial smooth-
ness can be imposed on the rates. Such spatial smoothness is not imposed in the current
forward model.
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Appendix A.

Additional graphs of the fit of current NAMmodels to leveling data

This appendix contains a number of additional graphs which visualise the ability of current NAM
models to explain the variation in subsidence as measured in various optical leveling campaign
epochs (see chapter 3). All NAM models have epochs during which they either systematically
under-predict or over-predict subsidence in either all or part of the subsidence bowl, for example
for the 1964-04-15 - 1972-09-01 epoch (A.1), the 1972-09-01 - 1975-09-01 epoch (Figure A.2), the
1987-08-01 - 1993-06-08 epoch (Figure A.3) or the 2003-06-17 - 2008-08-13 epoch (Figure A.4).

Figure A.1.: Predicted versus measured subsidence for all NAM models (1964-04-15 - 1972-09-
01 epoch).
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Figure A.2.: Predicted versus measured subsidence for all NAM models (1972-09-01 - 1975-09-
01 epoch).
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Figure A.3.: Predicted versus measured subsidence for all NAM models (1987-08-01 - 1993-06-
08 epoch).
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Figure A.4.: Predicted versus measured subsidence for all NAM models (2003-06-17 - 2008-08-
13 epoch).
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Appendix B.

Additional graphs on estimated compaction

This appendix contains maps which depict the estimates of compaction of aggregated reservoir
section L̂a for all combinations of reservoir resolutions and cross-validation schemes (table 5.2),
except the 2.5km reservoir resolution with a 4-fold CV-scheme which is included in the main text
(see chapter 5.2 and figure 5.8).

Figure B.1.: Estimated compaction for 9-fold spatial cross-validation and a 2.5km reservoir
resolution.
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Figure B.2.: Estimated compaction for 4-fold spatial cross-validation and a 5km reservoir
resolution.

Figure B.3.: Estimated compaction for 9-fold spatial cross-validation and a 5km reservoir
resolution.
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Appendix C.

Additional graphs on residuals of inversion to compactionmodels

This appendix contains maps and graphs which depict the fit of the regularised inversion mod-
els to the optical leveling data for all combinations of reservoir resolutions and cross-validation
schemes (table 5.2), except the 2.5km reservoir resolution with a 4-fold CV-scheme which is in-
cluded in the main text (see chapter 5.2, figure 5.2 and figure 5.3).

Figure C.1.: Model fit and map of model residuals for the inversion to compaction using 9-fold
spatial cross-validation for a 2.5km reservoir resolution for epochs up to 1987-08-01.
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Figure C.2.: Model fit and map of model residuals for the inversion to compaction using 9-fold
spatial cross-validation for a 2.5km reservoir resolution for epochs up to 2008-08-13.
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Figure C.3.: Model fit and map of model residuals for the inversion to compaction using 4-fold
spatial cross-validation for a 5km reservoir resolution for epochs up to 1987-08-01.
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Figure C.4.: Model fit and map of model residuals for the inversion to compaction using 4-fold
spatial cross-validation for a 5km reservoir resolution for epochs up to 2008-08-13.
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Figure C.5.: Model fit and map of model residuals for the inversion to compaction using 9-fold
spatial cross-validation for a 5km reservoir resolution for epochs up to 1987-08-01.
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Figure C.6.: Model fit and map of model residuals for the inversion to compaction using 9-fold
spatial cross-validation for a 5km reservoir resolution for epochs up to 2008-08-13.
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Appendix D.

Additional graphs on estimated compaction per unit pore pressure
decline

This appendix contains additional graphs which depict the relationship between estimated com-
paction L̂a and pore pressure decline per aggregated reservoir section for the 2.5km 4-fold CV-
scheme as discussed in section 5.3. To first order, the assumption that rates of compaction are
constant with pressure decline appears reasonable for most reservoir sections. The fit of the esti-
mated values β̂q to the compaction estimates is visualised in figures D.2 through to D.8 for all ag-
gregated reservoir sections. A spatial map of the estimated rates β̂q is given in figure ??. A compar-
ison of estimated rates (β̂q for the four different combinations of reservoir resolution and cross-
validation scheme is given in figure 5.11.

Figure D.1.: Labels q of aggregated reservoir sections, to be used for reference in figures D.2
through to D.8.
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Figure D.2.: Relationship between the estimated compaction in reservoir section q, L̂a and
the pore pressure decline in that reservoir section Pq for aggregated reservoir sections
q = 1, 2, ..., 32. The spatial location of reservoir section q can be found on the map in fig-
ure D.1.

Figure D.3.: Relationship between the estimated compaction in reservoir section q, L̂a and
the pore pressure decline in that reservoir section Pq for aggregated reservoir sections
q = 33, 34, ..., 64.The spatial location of reservoir section q can be found on the map in
figure D.1.
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Figure D.4.: Relationship between the estimated compaction in reservoir section q, L̂a and
the pore pressure decline in that reservoir section Pq for aggregated reservoir sections
q = 65, 66, ..., 96.The spatial location of reservoir section q can be found on the map in
figure D.1.

Figure D.5.: Relationship between the estimated compaction in reservoir section q, L̂a and
the pore pressure decline in that reservoir section Pq for aggregated reservoir sections
q = 97, 98, ..., 128.The spatial location of reservoir section q can be found on the map in
figure D.1.
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Figure D.6.: Relationship between the estimated compaction in reservoir section q, L̂a and
the pore pressure decline in that reservoir section Pq for aggregated reservoir sections
q = 129, 130, ..., 160.The spatial location of reservoir section q can be found on the map
in figure D.1.

Figure D.7.: Relationship between the estimated compaction in reservoir section q, L̂a and
the pore pressure decline in that reservoir section Pq for aggregated reservoir sections
q = 161, 162, ..., 192.The spatial location of reservoir section q can be found on the map
in figure D.1.
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Figure D.8.: Relationship between the estimated compaction in reservoir section q, L̂a and
the pore pressure decline in that reservoir section Pq for aggregated reservoir sections
q = 193, 194, ..., 224.The spatial location of reservoir section q can be found on the map
in figure D.1.
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Appendix E.

Additional graphs on the fit of the first-order forward predictionmodel

This appendix contains additional graphs which depict the fit of the first-order forward model
based on constant rates of compaction per unit pore pressure decline per aggregated reservoir sec-
tion β̂q (figure E.1 through to figure E.8). Predicted subsidence is plotted against measurements
from the optical leveling surveys for a number of epochs. The estimates of β̂q are based on the
model with a 2.5km reservoir resolution and 4-fold CV-scheme. The model fit for a number of the
NAM models for each epoch is also given for reference.

Figure E.1.: Predicted versus measured subsidence for NAM models and a model based on
regularised direct inversion to compaction (ConstantRates: see text) for the 1972-09-01 -
1975-09-01 epoch.
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Figure E.2.: Predicted versus measured subsidence for NAM models and a model based on
regularised direct inversion to compaction (ConstantRates: see text) for the 1972-09-01 -
1981-07-01 epoch.

Figure E.3.: Predicted versus measured subsidence for NAM models and a model based on
regularised direct inversion to compaction (ConstantRates: see text) for the 1972-09-01 -
1987-08-01 epoch.
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Figure E.4.: Predicted versus measured subsidence for NAM models and a model based on
regularised direct inversion to compaction (ConstantRates: see text) for the 1972-09-01 -
1991-05-14 epoch.

Figure E.5.: Predicted versus measured subsidence for NAM models and a model based on
regularised direct inversion to compaction (ConstantRates: see text) for the 1972-09-01 -
1997-06-13 epoch.
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Figure E.6.: Predicted versus measured subsidence for NAM models and a model based on
regularised direct inversion to compaction (ConstantRates: see text) for the 1972-09-01 -
2003-06-17 epoch.

Figure E.7.: Predicted versus measured subsidence for NAM models and a model based on
regularised direct inversion to compaction (ConstantRates: see text) for the 1972-09-01 -
2008-08-17 epoch.
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Figure E.8.: Predicted versus measured subsidence for NAM models and a model based on
regularised direct inversion to compaction (ConstantRates: see text) for the 1972-09-01 -
2013-03-03 epoch.
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