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Implications of Hypoplastic Compaction Laws on

Subsidence Modeling

Antony Mossop

The purpose of this note is to address the implications of a reservoir formation exhibiting

simple hypoplastic type material behaviour in the analytic and semi-analytic modeling meth-

ods that are typically applied to subsidence modeling. This was because a hypoplastic type

constitutive law had been suggested as a potentially better description of the experimentally ob-

served compaction behaviour of the Rotliegendes reservoir rock formation. Namely that the rock

seemed to exhibit a mixed proportion of both reversible and irreversible volume strain during

pore-pressure depletion rather than a distinct elastic-plastic transition at a yield envelope. The

regulator (Staatstoezicht Op De Mijnen) queried whether adoption of such a constitutive law for

the reservoir compaction would have a signi�cant impact on the subsidence modeling methods.

Hypoplastic constitutive models, strictly speaking, are all those de�ned by the stress-strain

relationship

∂σ

∂t
= h

(
σ,
∂e

∂t

)
(1)

[Kolymbas, 1999] where σ is the stress tensor, e is the strain tensor, t is time and h is a ten-

sor function. For the purposes of this note though, consideration is given to all constitutive

laws where all volume strains above some small limit (the limit is required to stop the artifact

of `ratcheting') contain a component of irreversible/plastic as well as reversible/elastic volume

strain, the proportion increasing monotonically. Small volume strains and all deviatoric strains

are assumed to be linear elastic (this latter assumption has a limited range of applicability, as

clearly at some scale, large deviatoric strains will become non-linear or irreversible).
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Most of the present (semi-)analytic methods used to model and predict surface subsidence

due to reservoir pressure depletion, are generally based on the same methodology that Geertsma

outlined in his seminal papers on the subject [Geertsma, 1973a; Geertsma, 1973b]. In these,

the subsurface is represented by a homogeneous, isotropic, linear elastic [HILE] halfspace and

the displacements are calculated using a Green's function for a `centre of compression nucleus

of strain' within such a domain. This Green's function is then convolved with a spatial function

that de�nes the varying strength of the contraction within the reservoir (typically in the form of

a pore pressure change �eld and a spatially dependent ratio that de�nes the magnitude of the

contraction per unit pore pressure change). The theory posits that a pore �uid pressure change

in the reservoir rock induces an isotropic stress free strain, (also called a transformation strain or

eigenstrain), which is the strain that would occur if the sub-volume concerned was unconstrained

by its surroundings, but with no corresponding change in stress (i.e. keeping its in-situ stress

state constant). Given as

e(u) = Cbp∆PpI (2)

where e(u) is the stress free strain; Cbp is the bulk compressibility with respect to pore pressure

[Zimmerman, 1991]; ∆Pp is the change in pore pressure; and I is the unit tensor.

The Green's function for a `centre of compression nucleus of strain' in a HILE half-space was

derived independently by Mindlin & Cheng and Sen [Mindlin & Cheng, 1950; Sen, 1951], where

the nucleus is de�ned as an isotropic set of contracting body forces acting at a single point in the

half-space domain (equivalent to three orthogonal force doubles). The magnitude of the body

forces, b for such a centre of compression are determined from the isotropic stress free volume

strain at the point scaled by the bulk modulus, K.

b = −K∇e(u) (3)

Note that this de�nition gives rise to some common subtle misconceptions, for while it follows

that an isotropic point source of contracting body forces will produce a spherically symmetric

strain �eld in a HILE full-space - that will not be the case for a HILE half space, where the

free surface introduces an asymmetry; it is by de�nition a nucleus of forces, not of in-situ strain.

[N.B. while a centre of compression in a HILE full-space will produce a spherically symmetric

strain �eld, in general the superposed strain �elds of a distribution of centres of compression
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will not be so, unless the distribution itself is spherically symmetric] Furthermore, while there

is a simple relationship between the (isotropic) stress free volume strain and the in-situ volume

strain for any distribution of centre of compression nuclei in a HILE full-space, this is not the

case for a HILE half-space. In a HILE half-space in-situ volume strain becomes dependent on

the distribution of centre of compression nuclei and on position.

The relationship between isotropic stress free volume strain, e(u) = (ε(u)/3)I (where ε(u) is a

scalar �eld) and the in-situ volume strain for any distribution of centre of compression nuclei in

a HILE full-space is given by

tr(e(f)) =
1 + ν

3(1− ν)
tr(e(u)) (4)

where e(f) is the in-situ strain tensor �eld for a full space. For a HILE material the following

identity is true

1 + ν

3(1− ν)
=
K

M
(5)

whereM is the p-wave or uniaxial strain modulus (in general any elastic modulus can be expressed

as a function of two other moduli for a HILE material). Hence if the stress free isotropic volume

strain is considered to be related to some e�ective bulk modulus then the actual resulting in-situ

volume strain is scaled to an equivalent e�ective uniaxial strain modulus. However, this scaling

relationship, of bulk to uniaxial modulus, applies to the magnitude of the volume strain, not

to it's actual form, i.e. the in-situ strain will not generally be uniaxial. Indeed, for a spherical

inclusion undergoing a uniform eigenstrain in a HILE full-space, the resulting constrained strain

in the inclusion will also be isotropic, i.e. e(f) = [tr(e(f))/3] I.

For the end member case though, of a high aspect ratio, oblate spheroid iclusion, undergoing

a uniform eigenstrain (or any thin, laminar type body), in a HILE full-space, the in-situ strain

closely approximates to uniaxial strain, normal to the plane (aspect ratios & 10) [Eshelby, 1957;

Segall & Fitzgerald, 1998]. This is a reasonable approximation for many subsurface reservoirs

where formation thicknesses are of order 100 m or so, while lateral extents are on the order of

kilometers. Hence, on this initial analysis it seems that the appropriate measure to calibrate the

subsidence models would be the volume strain due to pore pressure change under uniaxial strain

conditions, (working under the maxim that the calibration should be as close to actual conditions
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as possible to reduce errors and biases). However, there is a minor falacy in this reasoning, in

that it con�ates the constrained strain in a HILE full-space with that in a HILE half-space.

The Green's function that is at the heart of these models simply relates an isotropic stress

free strain to a surface displacement function for a HILE half-space. The only elastic parameter

that governs this mapping is Poisson's ratio, the material sti�ness, bulk or shear (or variations

thereof) is unimportant and cancels out. Similarly, the relationship between the stress free

volume strain and the `e�ective constrained volume strain if the domain were a HILE full-space'

(the measure prefered by Geertsma and used to calibrate models), is also only dependent on

Poisson's ratio. The relationship between stress free volume strain and the in-situ constrained

strain for a HILE half-space is somewhat more complex and depends on the Poisson's ratio,

position and the distribution of the strain. The validity of these relationships though, relies on

the material having HILE constitutive properties.

However, the material behaviour governing the magnitude of the stress free strain is com-

pletely independent of the constitutive properties of the domain, it is simply imposed a-priori.

Hence the process that generates the transformation strain can be anything at all and does

not have to obey any particular constitutive law. This is made somewhat more apparent by

noting the relative equivalences of Eshelby's models, where a compressive/dilatational nucleus

of strain is superposed over an ellipsoid inclusion in a full space domain [Eshelby, 1957], and

Geertsma's models where the nucleus of strain is superposed over an inclusion in a half space

domain [Geertsma, 1973a; Geertsma, 1973b]. A detailed analysis of the equivalence between

these two modeling approaches has been given by Rudnicki [2002; 2011].

It is possible therefore, to consider a scenario where the transformation strain of the reservoir

formation occurs hypoplastically and all further strains occur elastically. For reasonable values

of Poisson's ratio (0.1 - 0.3) though, this seems implausible, as the strains imposed between the

stress free state and the constrained strain state are of the same order as the transformation

strain. We can equally consider an alternative scenario where hypoplastic deformation of the

reservoir occurs that precisely matches the constrained strain that would occur for the half-space

being considered. Again though this is implausible as the constrained strain state for a half space

is a complex, spatially varying function, dependent on the shape of the reservoir itself. However,

an approximate hybrid approach suggests itself, where the reservoir is deformed hypoplastically

to a true or permitted constrained strain state that is close to that which would occur in-situ,

and that further perturbations to match the constraint and boundary conditions incur only

4



elastic deformations. While this can only approximate the true strain state it can be reasonably

accurate.

To analyse e�cacy of this hybrid approximate method, we consider the Green's function of

the in-situ volume strain for a centre of compression at the point y = (y1, y2, y3)

tr(e∗(x = y;y) =
1 + ν

3(1− ν)
ε̄

[
δ(x− y) +

1− 2ν

4π‖x− y′‖3

]
(6)

It is apparent from this that for reservoir bodies that are approximately as deep as they are

laterally extensive, or deeper, that the in situ volume strain approaches that for a HILE full-

space within < 5 stated, for a reservoir inclusion with a lateral extent to thickness ratio of 10 or

more, that the uniaxial strain state is a true constrained strain state for a HILE full-space.

The conclusion is that for thin, laterally extensive reservoir formations (extent to thickness

ratio & 10), that are about as deep as they extend laterally, that an accurate solution for

the surface subsidence can be found by applying the standard methodology, as corrections for

hypoplastic behaviour will be small. This is because the uniaxial strain measurement is essentially

the true constrained state that such a reservoir would experience in-situ. The reservoir types

described are a reasonably close match to the gas �eld reservoirs of the Waddenzee area. For

reservoirs that diverge from these types, i.e. thick reservoir sections or lying at proportionately

shallow depth, then elastic correction terms will need to be applied and accuracy will deteriorate.
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