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Executive Summary

Model predictions of displacements at the surface of the earth due to reservoir compaction are
subject to uncertainties due to the fact that:
• Some of the physical processes are not well understood, and multiple candidate models may
be proposed which may be similar in their ability to explain historic data but different in
their predictions of future displacements.
• For any given model, estimates of model parameters are uncertain.
• Model input, in particular spatio-temporally resolved estimates of pressure declines and rock
porosity, are subject to uncertainties.

Additionally, measurements of displacements are subject to errors and part of the displacements
may be caused by non-reservoir related processes which are not accounted for in the models.
A rational framework is required to enable quantification of uncertainties in model parameters
and predictions, and to compare the relative ability of models to explain the variability in future
measurements. For this purpose, we give an outline of a Bayesian statistical framework which is
flexible enough to accommodate the use of prior information surrounding model parameters (e.g.
prior knowledge from an understanding of physical processes or laboratory measurements), un-
certainties in model input, and errors in measurements. A key advantage of the Bayesian statisti-
cal framework is that it offers a natural framework for estimating probability distributions for key
quantities of interest such as future observations.
We make the following recommendations:

• When surface displacement measurements are used to constrain model parameters the avail-
able data should be partitioned into a training and test data set, denoted by D and D̃ respec-
tively, such that measurements in D̃ were made at later dates than the measurements in D.
The training data set should be used for estimation of posterior distributions of model pa-
rameters, whereas the predictive performance of models should be assessed using D̃.
• A quantitative measure such as Bayes factors, evaluated using the posterior predictive distri-
butions and D̃, should be used to compare the relative predictive performance of models.
• Forecasts of future surface displacements should be probabilistic and care should be taken
to communicate as accurately as possible the uncertainties surrounding these forecasts.
• We should asses if there is scope for making improvements to our predictions. This could
be done by comparing the posterior distributions of variance components of model residu-
als with independent knowledge on errors in measurements and displacements due to pro-
cesses other than reservoir compaction.

In this report, we provide an outline of the proposed Bayesian framework for model compari-
son and model validation as well as a simple illustration of the proposed methodology. To enable
modeling and forecasting of surface displacements within the proposed framework future work
it is required to implement algorithms, such as Markov Chain Monte Carlo methods, to estimate
posterior distributions of model parameters.
Amsterdam, June 2015.
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1. Introduction

The load of the sediments above a gas bearing rock formation is supported partially by the rock
matrix itself and partially by the pressurized fluid and gas within the pore space of the rock. The
decrease in fluid volume in the rock associated with gas extraction results in pore volume reduc-
tion (compaction) at the reservoir level. The compaction of the reservoir results in a measurable
amount of displacements, such as subsidence, at the surface. The Nederlandse Aardolie Maatschap-
pij (NAM) is required to forecast future surface displacements above gas fields consequent on sce-
narios for future production.
Compaction is modeled as a function of pressure depletion, the compressibility of the rock and
the thickness of the reservoir. A number of rock physics models are currently in use by NAM
(NAM [2013], Mossop et al. [2011]), whereas other models may be proposed in future. The cur-
rent NAM models are calibrated using measurements of surface displacements such as from opti-
cal levelling campaigns. Forecasts of the shape and maximum depth of the subsidence bowl dif-
fer substantially between these models. The current level of understanding of the rock physics
is insufficient to confidently identify a single subsidence model, nor to eliminate any of the cur-
rent models as possible candidates. Laboratory compaction measurements of core samples from
the reservoir are available, but these data unfortunately cannot be used to determine with con-
fidence whether strain is linearly or non-linearly related to pore pressure decline. In all current
NAM models the uni-axial compaction coefficient of a reservoir section is estimated as a func-
tion of the porosity of the rock in that section. The relationship between compaction coefficients
and porosity differs between the models, and is based on trend lines fitted to laboratory measure-
ments on cores taken from the reservoir (NAM [2013]). The laboratory data indicate that uni-axial
compaction coefficients tend to increase with increasing porosity. However, uni-axial compaction
coefficients can only be estimated with low precision on the basis of porosity measurements, and
the laboratory measurements might not be representative for overburden compressibility. Spatio-
temporally resolved estimates of pore pressure decline are uncertain, though the uncertainty sur-
rounding these estimates has not been quantified. In summary, model predictions of displace-
ments at the surface of the earth due to reservoir compaction are subject to uncertainties due to
the fact that:
• Some of the physical processes are not well understood, and multiple candidate models may
be proposed which may be similar in their ability to explain historic data but different in
their predictions of future displacements.
• For any given model, estimates of model parameters are uncertain.
• Model inputs, in particular spatio-temporally resolved estimates of pressure declines and
rock porosity, are subject to uncertainties.

Additionally, measurements of displacements are subject to errors and part of the displacements
may be caused by non-reservoir related processes which are not accounted for in the models.
In this report, we outline Bayesian statistical methodology which can be used as a framework to
accommodate uncertainties in model parameters, model input and measurements. The key re-
quirements of the Bayesian statistical framework are:
• Quantification of uncertainties in model parameters and model predictions. An explicit quan-
tification of uncertainties in model predictions is essential since, given the relatively large un-
certainties, model forecasts should be probabilistic rather than deterministic.
• Quantification of the relative ability of models to explain future observations.
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• Flexibility in terms of the extent to which model predictions rely on calibration using his-
toric surface displacement data, or on ‘prior information’ such as prior knowledge from an
understanding of physical processes or laboratory measurements.

We provide an outline of the proposed Bayesian framework for model comparison and model
validation as well as a simple illustration of the proposed methodology. To enable modeling and
forecasting of surface displacements within the proposed framework future work is required to
implement algorithms, such as Markov Chain Monte Carlo methods, to estimate posterior dis-
tributions and to take into account prior (before calibrating using geodetic data) knowledge sur-
rounding model parameters.
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2. A Bayesian framework for validating and comparingmodels

In this chapter we describe the overall concepts of Bayesian modelling which we believe are ap-
plicable both to the problem of building predictive surface displacement models and of validating
existing models. We prefer a Bayesian statistical framework because of the pragmatic advantages
that this offers, in particular its flexibility and ability to cope with complex problems, and because
it offers a consistent framework for estimating probability distributions for key quantities of inter-
est such as future observations (Gelman et al. [2003]). By using a Bayesian framework we are able
to build and compare models which have either been calibrated to displacement data or built en-
tirely from knowledge of physical processes. A combination of calibration using displacement data
and the use of prior information from knowledge of physical processes is also possible. A general
introduction to Bayesian inference and data modeling is given by Gelman et al. [2003]. .
LetM be a model for the prediction of surface displacement data, D, with a vector of model pa-
rameters θ. In a Bayesian framework we treat the parameters θ as random variables. This repre-
sents the fact that there will always be at least some uncertainty surrounding the true value of these
parameters. Our aim is to use all available information, both a-priori information arising from
knowledge of physical processes and subsidence data ,to estimate the posterior distribution of each
parameter denoted by p(θ|D). The posterior distribution is defined as,

p(θ|D) ∝ p(D|θ)p(θ), (2.1)

where p(D|θ) is the likelihood function of the data and p(θ) is the prior distribution of the param-
eters. The posterior distributions can be used to calculate quantities such as the expected value of
the parameters as well as their confidence intervals (also referred to as ‘credible intervals’ within a
Bayesian framework).
The form of the likelihood function must be chosen based on assumptions about the probability
distribution of the data. The prior is an important quantity as this contains our belief about the
model parameters before we look at the data. If we do not have strong beliefs about the range of
values for the model parameters then we can use weak, or uninformative, prior probability distri-
butions for the values that we believe these parameters can take. Such uninformative prior distri-
butions will have a very small influence on the posterior distributions compared to the influence
of the data. If however we have very good prior knowledge about the parameters then we can use
a strong prior. A strong prior will have a much greater influence on the posterior distribution. If
we have a strong prior it is also possible for us not to use any data to fit the model, in this case
p(θ|D) = p(θ) and our prior beliefs are the only inputs to the model.
Having estimated the posterior distributions of the parameters we can predict future observations,
D̃. Due to the uncertainty in estimating the parameters of the model the predictions will also be
uncertain. We capture this using the posterior predictive distribution which is defined as,

p(D̃|D) =

∫
p(D̃|θ)p(θ|D)dθ. (2.2)

In a similar way to the posterior distribution the posterior predictive distribution can be used to
calculate the expected value of future observations as well as the uncertainty surrounding the ex-
pected values. In addition, the likelihood of the test data set given the predictions can be evaluated
and may be used in statistical hypothesis testing.
In certain cases the posterior and posterior predictive distributions can be calculated analytically.
However in many cases these distributions must be approximated using numerical methods such
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as Markov Chain Monte Carlo simulation, see [Gelman et al. [2003]] for more information. This
means that while in theory this framework can be applied to a very general choice of model and
prior distributions there may be difficulties in practice.
As mentioned previously we have two sets of data, D and D̃. Where D is the data set which we
can observe now and D̃ is the set of data which we will observe in the future. In order to compare
and validate models without needing to wait for future observations we can partition our current
data set into a training and a test set. The training set is used to evaluate the posterior distribution,
p(θ|D), and both are used to calculate the posterior predictive distribution, p(D̃|D). This is impor-
tant as it enables us to evaluate and compare models based on their ability to predict future data
rather than their fit to current data. The training and test data sets should not overlap and the test
set should span a time period (epoch) after the measurements in the training set. If strong priors
are available it is also possible that the training set will be empty and in this case the test set can
contain all of the available data. In the case where uninformative or partly informative priors are
used, the information present in the training data set is used to constrain the parameters.
Displacement data at the surface may consist of a combination of optical levelling surveys, Inter-
ferometric Synthetic Aperture Radar (InSAR) images or Global Positioning Systems (GPS). At the
reservoir level, spatio-temporally resolved estimates of pressures or pressure declines are available.
Furthermore, other information may be used such as a geomechanical influence matrix which gov-
erns displacements at the surface as a fuction of displacements at the reservoir level and which
may itself be a function of parameters which are uncertain. The Bayesian framework is flexible and
can accommodate both strong and weak prior information, and may assume individual variables
to be either fixed constants or random variables. To illustrate these principles, we consider two
scenarios:
1. Weak or no prior information is available: Parameters are constrained using a set of training
data, and model predictions are evaluated against a test data set. Reservoir pressures are as-
sumed to be known without error, although several scenarios for pressure estimates can be
used. The geomechanical influence matrix is assumed to known without error.

2. Sufficiently strong prior information is available: No updating of prior information using the
subsidence data is required. In this case it is not necessary to use any training data. Reservoir
pressures are assumed to be known without error, although several scenarios for pressure
estimates can be used. The geomechanical influence matrix is assumed to be known without
error.

2.1. Illustration 1: Predictive Models With Data Calibration

We first consider a scenario where we only have weak prior information about the model parame-
ters. This is represented by the Directed Acyclic Graph, DAG, shown in Figure 2.1. In this DAG
we show the different components of the model and how they relate to each other. Variables con-
tained in square boxes are treated as known and fixed while those in circles are random variables.
In this scenario, the fixed quantities are the reservoir pressures, P , and the geomechanical influ-
ence matrix X . We could also treat P as a random variable however, in the absence of a full de-
scription of the uncertainty, we can also treat it as fixed and include uncertainty by considering a
range of models with different fixed pressure scenarios. The model parameters, θ, can describe a
wide range of models such as a linear relationship between pressure and subsidence or a time de-
cay relationship. These model parameters have a prior distribution which is described by the fixed
parameters, τθ. Another aspect of modelling of surface displacements is the covariance matrix of
the observations, ΣD. The covariances in the displacement data may have contributions from sev-
eral different spatially uncorrelated, spatially correlated and temporally correlated factors, denoted
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respectively by σs, σm and σt, which are considered separately and also have prior distributions
specified by γs, γm and γt.
The arrows on the DAG show the relationships between the variables, those with an = are deter-
ministic relationships while those with a ∼ are stochastic relationships indicating that one variable
is a random realisation from a distribution determined by the other.
Under this scenario the training data D is used to increase our knowledge of the model parameters
thus giving the posterior predictive distribution a smaller variance. This smaller variance does not
necessarily indicate a more accurate prediction and this should be established based on compari-
son with the test data.
As noted before, it is also possible to have strong prior information about some of the model pa-
rameters in which case there will be less updating of these priors by the information present in the
data.

D̃

DΣs

∼

∼σm =

σs

=

σt

=

θ

∼

=

τθ∼X

=

=

P

=

=
γs ∼

γm ∼

γt ∼

Figure 2.1.: Directed Acyclic Graph (DAG) representing a predictive model with weak prior
information.

2.2. Illustration 2: Predictive Models With No Data Calibration

The second scenario which we consider is one where sufficiently strong prior information is avail-
able regarding all model parameters such that there is no requirement to constrain any of the pa-
rameters using the displacement data. This is represented by the DAG in Figure 2.2, which is sim-
ilar to the DAG in Figure 2.1 with the exception that there is no relationship between model pa-
rameters and the training data. In this scenario the only inputs to the model are is the prior infor-
mation and so the quality of the model relies entirely on the accuracy of that prior information.
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D̃Σs =σm =

σs

=

σt

=

θ

=

τθ∼X

=

P

=
γs ∼

γm ∼

γt ∼

Figure 2.2.: Directed Acyclic Graph (DAG) representing a predictive model with strong prior
information and no updating of model parameters using a training data set (see text).
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3. Model Comparison

As stated previously, the validity of a model should be assessed based on how well it is able to pre-
dict the measured variation in displacements in the test data set. An important advantage of the
proposed Bayesian modeling scheme is that this explicitly takes into account the amount of infor-
mation that is present in the displacement data to support model complexity. Where little informa-
tion is present in the training data to constrain model parameters, the uncertainty in model predic-
tions will increase and therefore the likelihood of the test data set given the model predictions will
decrease.
Models should be compared in terms of their ability to describe the observed variation in all of
the available displacement data, using a formal statistical test. The criterium for statistical testing
we propose is the Bayes factor. Given two candidate models,Mi andMj the comparison criteria is
given by,

c (Mi,Mj) =
p(D̃|Mi)

p(D̃|Mj)
(3.1)

where p(D̃|Mi) is the likelihood of the test data under the posterior predictive distribution found
by fitting modelMi. If the comparison criteria has a value greater than 1 this indicates that model
i is stronger, whereas a value of less than 1 indicates that model j is stronger. We recommend
comparing each candidate model to a simple null model, such as a one parameter model for the
average observed displacement. It is also possible to estimate the probability distributions of the
Bayes factors, and these distributions can form the basis for statistical testing.
This comparison framework is flexible and can accommodate situations with strong or weak prior
information about some or all of the parameters. Also, it is possible to test fully probabilistic pre-
dictions of models without knowledge of the model form or how it was calibrated (‘black-box
models’). The only requirement for such black-box models is that predictions are probabilistic and
that the model was not calibrated using data in the test set.
We note that, using the proposed statistical testing method alone, it is not possible to confidently
asses if we have the correct model as it is always possible that another equally good or better model
exists which we have not yet considered.
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4. Assessing the fit of the model

It is important to evaluate the ability of models to explain the measured variation in the test data
set (the ‘fit’ of the model to the data). There are many different aspects of model fit which we can
consider and these cannot be adequately captured in one measure. We recommend the following
for the assessment of model fit:

1. Assess whether the distribution of the test data agrees with the posterior predictive distri-
bution. We recommend to use the posterior predictive p-values as defined by Gelman et al.
[2003] pages 145-146:

The Bayesian p-value is defined as the probability that the replicated data could
be more extreme than the observed data, as measured by the test quantity.

2. Compute standardised residuals, r. If the expected value of the prediction for test data point
D̃i is µi and its standard deviation is σi, then the standardised residuals are defined as,

ri =
D̃i − µi
σi

. (4.1)

For example, when the posterior predictive distribution is normally distributed, ri ∼ N(0, 1).
The standardised residuals can then be used to identify outliers and can also compared to
the expected distribution using a quantile-quantile (‘qq’) plot.

3. Compare posterior distributions of variance components with independent knowledge on
errors in measurements and displacements due to processes other than reservoir compaction.
If the estimated variances are larger than the deviations as expected through measurement
errors and non-reservoir related displacements, this would indicate that there is room for im-
provement and that other models may be able to give a better explanation of the test data
set.

4. Assess whether model residuals have a spatial or temporal signature. Using the posterior
predictive distributions it is possible to test whether there is evidence that certain aspects
of ’model misfit’, such as a correlation between residuals and a position on a geographical
cross-section of the area of interest, could have arisen by chance under the candidate model
and estimated variance components (a Bayesian posterior p-value may be defined on an ap-
propriate posterior predictive distribution of a quantity of interest).
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5. Illustrative Example

In order to illustrate our proposed model comparison and validation method we present an illus-
trative hypothetical example for a model with N + 1 parameters θn (n = 1, 2, ..., N + 1) which
predicts surface displacements Yi at a set of k locations (i = 1, 2, ..., k) using an [k × m] influ-
ence matrix X where element Xi,j describes the influence of reservoir section j (j = 1, 2, ...m)
on surface location i (for a given set of epochs). Let zi = Σm

j=1Xi,j be the sum of the influences
of reservoir sections j on surface location i, and z be the [k × 1] column vector of influence mea-
sures. Furthermore, let Z be a [k ×N + 1] design matrix with a value of 1 for all elements in in the
first column (to model the intercept), z for the second column, z2 for the third, etc. until zN for
the (N + 1)th column. We consider a model of the form,

Y = Zθ + ε, (5.1)

where θ is the vector of N + 1 parameters to be estimated, and ε ∼ N(0, σ2Ik) an vector of model
residuals with zero mean and variance of σ2 (Ik denotes the [k × k] identity matrix).
The true underlying model from which we simulate our data is of order N = 2, thus using the first
three columns of X (intercept, linear in z and quadratic in z). The values used in the simulation
are: k = 200 measurements, θn=1 = 0 (intercept) θn=2 = 0.8 (linear term), θn=3 = 1 (quadratic
term), and σ2 = 25 (variance of model residuals). We partition the simulated data in two parts
such that the first half contains the lowest values for z. The first half of this partition is used as the
training set and the second half as the test set. We place flat priors on all parameters. In this ex-
ample, the posterior predictive distributions can be calculated analytically. We fit a range of poly-
nomial models of different orders N = 0, 1, . . . , 5 and assess the predictive capabilities of each
model. We use the model of order N = 0 as our null model (intercept only) to which each other
model is compared. Bayes factors and posterior distributions and posterior predictive distributions
are estimated. Results are shown in Figures 5.1 and 5.2. The model with the highest Bayes fac-
tor is of order N = 2 in accordance with the true underlying model (top left panel in Figure 5.1).
Bayes Factors for more complex models with higher orders of N are however similar so we may
need to consider the variance of the Bayes factor to judge if this is significant. The variance of the
Bayes Factor is a function of the variance in the estimated likelihoods of the models under consid-
eration. For example, the posterior variance of the model of order N = 2 is given in Figure 5.2.
The model of order N = 1 is clearly not able to explain the measurements in the test data set
as most of the measurements fall outside of the 95% confidence bounds of the posterior predic-
tive distributions (top right panel in Figure 5.1). The fit of the model of order N = 2 appears to
be adequate since the 95% bounds on the posterior predictive distributions of the model contain
most of the measurements, and the residuals closely follow the expected normal distribution. In
practice, other aspects of the fit of this model will have to be assessed, in particular evidence of
the existence of spatial and/or temporal patterns in residuals. In the Bayesian framework, it may
be possible to quantitatively assess the statistical significance of such patterns using the posterior
predictive distributions.
The posterior distributions of the parameters of the model of order N = 2 are given in Figure 5.2.
Additional statistical significance tests are possible using these posterior distributions. For exam-
ple, it is straightforward to compute the posterior probability that parameters are significantly dif-
ferent from zero. In this case, there is sufficient information in the data to constrain the quadratic
term (parameter θ3) such that there is strong evidence that it is larger than zero. The posterior dis-
tribution for the estimated variance can be compared with independent knowledge on errors in
measurements and signals in displacement data due to non-reservoir related processes to assess if
there is potential to improve the model.
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Figure 5.1.: Results of our analysis for an illustrative hypothetical example. Bayes factors for
a range of models of increasing complexity N = 0, 1, . . . , 5 are given in the top left
panel. The fit of the posterior predictive distributions of measurements in the test data set
P (D̃|D) given the model of order N = 1 (calibrated using the training data set D) are given
in the top right panel. The fit of the posterior predictive distributions of measurements in
the test data set P (D̃|D) given the model of order N = 2 is given in the bottom left panel.
The plot in the bottom right panel shows a quantile-quantile plot comparing the standard-
ised residuals to a standard normal distribution.

As noted earlier in this report, it will be necessary to take spatial and/or temporal covariances in
errors in measurements into account in the application of the Bayesian framework to a genuine
model for reservoir compaction and displacement measurements. This will be important in par-
ticular to be able to estimate realistic posterior predictive distributions. To enable modeling and
forecasting of surface displacements within the proposed framework, future work is required to
implement algorithms which allow the estimation of posterior distributions such as Markov Chain
Monte Carlo methods (see e.g. Gamerman and Lopes [2006] for a general reference and Yan et al.
[2007] for an example of an algorithm for drawing values from the posterior distributions in the
presence of spatio-temporal covariances in the model residuals).
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Figure 5.2.: Posterior distributions of the parameters and the negative log likelihood for the
model of order N = 2 for our illustrative example. True values for the parameters, used to
generate the data, are indicated using red asterisks.
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