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The first comprehensive styadf the precision and accuracy of GPS coordinateqd bason and

Agnew 19917 (with an acknowledgement {d. L. Davis et al.1989). They concluded that the short

term precision was on the order of 17 mm for the vertical and fortking precisionll.7mmwith a
baseline dependencé I8 parts in 18 However at that time the GPS constellation imasmplete
andmeasurements were made over a span of aro@ndorrs (at the most optimal time of day) on 4

T 5 consecutive days. The data was processed as baseline measurements and not converted to
individual site coordinates (hence the baseline dependence). The small amount of data precluded any
attempt to look at tim dependence in the data.

Using continuous measurements of near surface monuments from a laser strainmeter in Southern
California[F Wyatt 1983 and[F. K. Wyatt 1989 demonstrated that the power spetiad a power
law dependence on frequency of the form

0 Q 0 (1)

In addition,[John Landein et al, 1993 showed that other geodetic measurements such asofour
geodimeters, creepmeters and water wells also demonstratédependence in their power spectra.
This behaviour is typically known as Brownian motion or random wWalgnew 1993 showed that
the spectra of many geophysical phenoneareftenbe approximatedy a powerlaw dependence

on frequencyand introduced a more geagform of the power spect(following the work of
[Mandelbrot and Nes4.969), given by
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whereP, andfy are normalising constantss the frequency andis the spectral indexJohnson and
Agnew 1995 demonstrated the effect lomgnge time dependent correlations have on the estimates
of uncertainty, primarily that rigecting such behaviour leads to estimates of the uncertainty that are
overly optimistic (too small). They argued that if this random walk motion seen in geodetic data is
related to monument motion then it is an issue for all geotstiziments

Using Maimum Likelihood Estimation (MLE}J. Langbein and Johnsph997 estimated the

amplitudes of random walk and white noise intihee seriesrom two-colour EDM (geodimeter)
measurements. They found that the randomwatki s e | ev el averaged about
bet ween 0 aThdlfirst4gpapsario/exdamine.tinedrrelated noise in GPS data WBBE King
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et al, 1993. They found no evidence of randesalk noise in the time series but did find some
evidence of shoiterm correlation of around 25 daysiin the autocorrelation functioheamount of
white noise in the series was found to be on the order of 5 mm in the vertical. Howigvene
baseline was analysed and it wd# $earsn length. Theyconcluded that the random walk noise
might simply be undetectable at that point.

In additon to temporally correlated noise, GPS time series were also identified as containing a
spatially correlated, common mop&/dowinski et a].1997. This to some extent has divided GPS

time series analysis into two categorigiebal and regional (or unfiltered and filtered respectively).
Where there is a network of sites with sufficiently small baselines the common mode signal can be
removed by a variety of methods such as stacking of the resjdadsvinski et al. 1997, principal
component analysiSerpelloni et al.2013 or by the use of defining a regional reference frame and
fitting and applying a daily Helmert transformatigturst et al, 200Q. In general a globally

distributed set of sites are sufficiently separated that they may be considered to be uncorrelated from
each other and the common modéaaannot be reduced and the noise is typically higher than the
filtered (regional) series.

[Zhang et al. 1997 examined 19 months of continuous GPS (CGPS) data from 10 sites in southern
California.Since a common mode signal was removed the results were for a regional, filtered
network. They used MLEutocorrelation analysis and power spectra to analyse the time Beries.

the MLE analysis they chose three candidate models; white noise only, white noise plus flicker noise
[Voss and Clarkel973 (a = -1) and white plus random walk noise. They found that the flicker plus
white noise model best described the dake average amplitudes for the vertical component was 6.8
+ 0.6 mm (95% confidence) for the white noise and 6.2 + 2.7 mm [sic] (95% enoéijifor the

flicker noise (Note that in this paper they used an approximation for the flicker noise covariance and
so the amplitudes may not be comparable to later papsréijting a straight line to the power

spectra (in logog space) they obtainedmedian spectral index €.4. [Mao et al, 1999 examined

a globally distributedet of 23 sites that contained 3 years of data. They also used a combination of
power spectra and MLE with integer spectral indices and concluded that white plus flicker noise best
described the noise content of the series. In the vertical the meamuibéeand flicker noise

amplitudes were 10.3 mm and 14.7 mm respectively. The mean spectral,iadioeated from the

power spectra, ranged froi.74 to-1.02. They also found that the white noise component had a
latitude dependent bias in the vertif@bisier at the equatof)Calais 1999 confirmed the above

results (in tle horizontal only) using three permanent sites in Europe d€djbrali, 2003 who

used the twesample Alan variancqAllan, 1964 to study the noise characteristids2d sites from

the EUREF network with time spans ranging from 3 to 6 y¢@eporali, 2003 also found very little
evidence of random walk noise in tt@e series

While most of the earlier studies concentrated on the integer spectral indices as potential stochastic
models, primarily because their knowledgehamv to create covariance matrices was limited to

flicker and random walk noise, there is no reason why anteger spectral index may not be more
appropriate. Indeethe spectral indices estimated from fitting a line to the power spectra highlighted a
range of norinteger values but invariably close to,stightly lower (closer to zejp than-1.[S.D.P.
Williams, 2003 introduced the fractional differencing methoddbsking 1981 which allowed one

to produce a omriance matrix for a powdaw noise with any spectral index and therefore the ability

to estimate the spectral index in addition to the noise amplitudes using[BLCEP. Williams et al.

2004 analysed a total of 954 continuous GPS position time series, with lengths from 16 months to 10
years, from 414 individual sites in nine different GPS solutions (both regional and global solutions) to
produce the most cqmehensive study of noise content so far.ylieed two MLE approaches to
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study the data; the traditional method of assuming white noise, white plus flicker noise and white plus
random walk and a second analysis where the spectral index and amplituglp@i/gilaw noise

were estimated simultaneously with the white ndise.the global solutions the mean spectral index
for the vertical component was found to-Be8 + 0.4 which was therefore consistent with a flicker

plus white noise model (which was tmest likely model in the integer analysis also). Both noise
components showed a latitude dependence on their amplitudes (higher at equatorial sites) together
with a bias to larger values in the Southern Hemisphere. The flicker noise amplitude 2vas30’*

and 3.1 mm/yr* (SOPAC and JPL solutions respectively) and the white noise amplitudes were 3.9
mm and 77 mm. The noise was found to be significantly lower iniththe regional filtered

solutions and the estimated spectral index was found to bevaded than the global solutions but

they were still centred around a value close to flicker noise. The average noise amplitudes in the
vertical were 7.9 mm/yffor the flicker noise and 3.2 mm for the white noise. A significant reduction
inthenoisea mpl i tudes could al so be seen since the
They also divided the GPS sites into different monument tgpdgound that the deep drilled braced
monument design offered the lowest noise levels.

The papers sindé&.D.P. Williams et al2004 all tend to confirm the same results thau#able

noise model for CGPS coordinate time series is a flicker plus white noisé. mbeaverage
parameters from the major studies are shown in the table below. We note that a) the more recent
studies tend to have loagtime spans and more sitb¥the noise amplitudes have redueed c) the
presee of random walk is still uncéirmed.

Table 1. Means and Standard Deviations of the White Noise and Flicker Noise Estimates for the
vertical Component from various studies. Also Included is the Approximate Time Span of Data Used,
the Number of Sites and any Estimate of Spectral Index.

White noise| Flicker noise Time Number Estimated
Study Global or Regional amplitude amplitude span of . ;
Va of sites spectral index
(mm) (mm/yr?) data
[Zhang et al.1997 Regional 6.8+0.6 6.2+27 1.6 10 -0.4
[Mao et al, 1999 Global 10.3 14.7 3 23 -0.72,-1.02
SOPACGIobal 39+19 20.2+55 3.6 207 -0.8+0.2
JPLGlobal 7726 23.1+78 25 268 -0.8+0.3
SOPAC SCIGN (R) 3.0+05 7.0+5.0 2.7 147 -09+0.5
JPL SCIGN (R) 3.6+0.9 7.0+3.2 2.2 58 -1.0+0.7
[S.D.P. Williams et a2004 USGS SCIGN (R) 41+10 9.2+37 25 112 -0.8+0.4
PANGA PANGA (R) 50+£19 125+49 3.9 54 -0.7+£0.3
SOPAC PANGA (R) 2407 8.6+4.0 4.4 30 -0.9+0.3
SOPAC BARGEN (R) 23+0.6 55+22 4.7 47 -0.9+0.4
REGAL REGAL (R) 42+1.1 10955 4.0 31 -0.9+x04
[Beavan 200§ Global 3.7+£0.8 85+26 4.1 15
[A R AmiriSimkooekt al, 2007 Global 54+0.6 9.3+0.7 10 5
SCIGN (R) 23+£05 46+13 3.510 210
[J. Langbein 2008
BARGEN (R) 23+0.3 3611 3.51 10 26
[Teferle et al.2009 Global 3.171 5.3 10.971 20.4* 4 6 -0.4,-1.2
[SantamariaGomez et al.201] Global 1.9+0.1 5.8+0.1 2.51 13 275 -0.88 + 0.02
Global 24+11 12.2+ 3.4 2514 >800 -0.7
[Serpelloni et a.2013 -
Regional 56+0.7 7.4+3.1 2514 >800

* These are for powdaw noise and not flicker noise but should be clé3@ese were calculated with another software which
scales the amplitudes differénthey have been converted to be the samEATS See Appendix A.
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[Calais et al, 2004 looked at sites ithe North American Plate interior and estimated the random

walk noise amplitudes using MLE andsassed them against their monument class (sites whose
monuments are suitable for tectonic studies such as braced monuments, pillars, bedrock, anchored
pillars etc.and those that are not suitable such as rooftops and fence posts). They found random walk
anplitudes on the order of a few mynfto 10 mm/yr“and found that the tectonically suitable

monuments performed slightly better. However they did not estimate the amount of flicker noise in
the time series so the random walk amplitudes will be bilaiggby neglecting this nois¢A R
Amiri-Simkooei et al.2007 used a different technique to MLE, leasjuares variance covariance
estimation (LSVCE) but came up with similar ressiito MLE.As well as increasing the number and

time span of seriegxamined, different stochastic models have been introduced as candates.
Langbein 2004 200§ introduced FirsOrder Gauss Markov noise (equivalent to an autoregressive
noise of order 1), a Generalised Gauss Markov nB&edpass nois@ue to spectral leakage around

a certain frequencsuch as the annual) and multiple combinations of these and the more usual power
law models. No model has stood out as being more suitable for GPS coordinate time series. Generally
we find that series are distributed amongst the various model combinatishikely indicating that

the data is not sufficiently long enough to allow such increases in the degrees of freedom of the model
to choosea preferred mode]SantamariaGémez et a).201] following on from[Simon Williams

and Willis 2004, who were examining DORIS datasted two alternative white noise models, time
variable white noise (where thehite noise amplitude is allowed to reduce with time) and variable

white noise (where the daily formal errors are used and you solve for a variance scale parameter). In
all they tested 27 different stochastic models (mainly different combinations of 7anddedy found

that any combination of coloured noise with variable white noise was significantly superior to the
simple white noise model and the tiwariable white noise.

[J. Langbein 2008 examinedhe time series from 236 sites in Southern California and Southern
Nevada He found that the sites with the smallest errors were those in Nevada (dry desert) with deeply
braced monuments. Sites that were installed within regions of active pumping ofl lawith o
groundwater had the largest errors. More recent papers tend to focus on regional networks (either
filtered or unfiltered) and have confirmed the previous findings (for exaggepelloni et al.2013,
[Khan et al, 201Q). Most of these papelsave used MLE (and the related-M&E) as the estimation
method. Howevemthershave tried more heuristic methods to analyse the time spigskl et al,

2011, [Caporali, 2003 and[Niu et al, 2014 have used the Allan variance whergBsttiglieri et al,
201Q used Independent Component Analysis fithn et al, 201( in addition to usingVLE also
looked at the series autocorrelatip@livares and Teferle2013 used Bayesian Monte Carlodvkov
chains to study the time series wheri@dsentillet et al, 2013 used Negentropy and Empiriddbde
DecompositionHowever, none of the results differ from what was found using the traditional MLE
method.

Recently[Dmitrieva et al, 2019 used a combination of MLE and a Kalman filter to estimate a
networkwide estimate of noise in GPS time series. Only one estimate of the amplitudes of the noise
was estimated. Using 15 sites frormtzal eastern USA they found random walk of 0.82 ymh/
alongsiddlicker white noise(with amplitudes 4.0 mm/Yrand 1.1 mm respectively) in the horizontal

but no random walk in the vertical component (the flicker noise and white noise amplitudes were 7.9
mm/yr”and 2.3 mm respectively). The random walk amplitisde the low end of that found from

other geodetic data but at the high end of results found from short baseline studies (see below).
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Short Baseline Studies

In order to better isolate sigpedfic effects several authors haaealysed long running, short GPS
baselines (< 1km) to take advantage that certain errors such as satellite orbit, residual troposphere and
ionosphere are differenced to negligible levels. Using a dense network of ditdsagied

monuments at Yucca Mountain, Nevdé#ll et al., 2009 found root mean square residuals of 6.20
0.72 mm for the vertical coponent (no attempt was made to look at temporal correlations) and found
a correlation in the seasonal cycle that lagged local temperature measurementg byradith.

They suggested this could be related to bedrock thermal expafsigh King and Williams2009,

using 10 short baselines, found white noise on the order of 0.18 mm in the vertical and flicker noise
with an amplitude of 1.85 mm/§irThey also placed a loose consitain the order of any random

walk noise due to monument instability at around 0.5 mfdyra baselineThey also found annual
variations that correlated well with temperature data but a simple model of linear thermal expansion
could only explain the siwal at one baseline. Further they also found spurious trends over 0.5 mm/yr
that may be explainabbs a combination of near field multipath and changing satellite geometry.

Periodic Signals

GPS site coordinatese naturally subject to periodic signaisrh a variety of sourcefMao et al,

1999 noted that peaks in the power specteeatlearly visible at annual and seamnual periods for

some sites A large component of signals at annual and samual periods are known to be true

physical motior{Blewitt and Lavallee2002 Van Dam et a].200] and are due to surface loading

due to hydrology, atmospheric and ocean bottom preg&lesvitt and Lavallee2007 found typical
amplitudes of 4 mm for the vertical in the annual and 1.5 mm for theasemial. HowevefDong et

al., 2009 found that less than haif the power observed at the annual period can be explained by
seasonal surface mass redistributiand concluded that the remainder must be due to unmodeled wet
tropospheric effects, bedrock thermal expansion, satellite orbits and phase centre vaoidéisn

Spurious long period signals can also occur due to aliasing of tidal sigri#eres and Stewart

2003 Penna et al.2007. A prominent 13.6 day peak in the power spectrum of the common mode

noise was seen [.D.P. Williams et al2004 and attributed to tidadliasing. Using 167 sites from

the International GNSS Service (IGS) netwdfay et al. 200§ found anomalous harmonics in the

spectra at 1.040 + 0.008 cycles per year (up to around'tharéonic) which is close to the repeat
periordof t he GPS constellation of 351.2 days. These
also been found byA R AmiriSimkooei et al.2007 SantamariaGémez et aJ.201] amongst others.

The effect an annual signal (or any long period signal) has on estimated trends if they are unaccounted
for was studied byBlewitt and Lavallee2002 M S Bos et a).201Q and they recommended that 2.5

years be adopted as a standard minimum span for estimating Betwis 2.5 yearsthe velocity can

be biased to annacceptable level. This however is only true in the case when no annual signal is
estimated[James L. Davis et al2013 explored he implications that seasonal signals may not be

pure sinusoids with a constant amplitude and phase and suggested that some of the noise in GPS time
series might be due to neglecting the variability of the seasonal signal. However their seasonally
derivedstochastic model (similar to the annual barads noise explored Ipy. Langbein 2004

2008) would always lad to a flat spectrum at frequencies lower than the annual; something that has
not been seen in GPS time series so far (see FigurgRawptt al. 2009 for example). It is likely
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that it forms some part of the noise characteristics @ @Re series but not at a sufficiently large
level to be the main cause of the ti@related noise.

Offsets

It is well known that GPS coordinates time series are disrupted by d&bkate change of the mean)

that can be broadly categorized into attuastal movements, mainly earthquakes, or artificial events
such as environmental, equipment malfunction and change or human error that either occur at known
(such as documented equipment changes) or unknown times with sizes that are, at best, known very
imprecisely. A thorough investigation of offsets in GPS time series was performi§dDyP.

Williams, 2003. He showed that on average one offset occurs on a component by compsisent ba
every 9 years (but this could be as frequent as one in every 2 years) and that undetected offsets in the
time series can mimic random walk behaviour. Following on fron]@ézeaux et al2013 reported

on the results of the Desttion ofOffsets in GPS Experiment (DOGEX) which was used to test the
effectiveness of various methods used by different groups to detect and remove offsets. They found
that currentlymanual methods were superior to any automatic solution. They alsbfrate

analysing the SOPAC archive (the Scripps Orbit and Permanent Array Center) that out of all noted
offsets 33% were unknown, 34% due to a seismic event and 29% attributed to equipment change.
Finally [F.K. Wyatt and Agney200] studied the baselineebween two continuous GPS sites at

Pinon Flat Observatory in southern California, PIN1 and PIN2, which are some of the oldest
continuous sites having begun measuring in the e
meticulously maintained and maexperiments were performed there to test the equipment. As
mentioned above the baseline analysis of these two sites reduces the noise by up to an order of
magnitude allowing offsets of the order of 1 mm or less to be detected and attributed to suet chang
assimple removing and replacing the same antenna. Such offsets would not be visible in a normal
individual coordinate time series.

Campaign Measurements

Very little work has been done on the noise uncertainties of campaign GPS and there is no real
defining paper on the subject. In general the noise at a campaign site should be no different than at a
continuous GPS site apart framo obvious differences. First, campaign measurements may use
ordinary tripods during the measurement campaign (which managmot consist of a full 24 hour
dataset) and therefore no permanent anchorage to the solid bedrock. It would therefore be difficult to
assess monument motion in the same manner as for the permanent sites. Secondly, the antenna and
tripod (where used) Wibe installed over a benchmark during every campaign. Theoretically this
should | ead tapdnnaddietitbbmal wdsaétd only mani fest
start of the measurements and when there was a change in the antenna/mdouorattitatsite. We

have no knowledge of the size of this set up noise and it would likely be operator dependent. We
know from[F.K. Wyatt and Agnem2009 that removing and replacing the antenna can produce

offsets on the order of a few mm. Factoring imcertainties in measuring the height of the antenna

above the benchmark which is also likely to be on the order of a fewAwignna Pesci et al.2009

A. Pesci et a).201Q Teza et al.201Q have produced the most comprehensive work on this so far.

They use simulated data with noise equivalent to continuous Gl&a(alata from sites close to the
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campaign site) and add an adydi tOHvbahsselhitemasegee t 0 ac
individual campaign) and rudonte Carlosimulations to estimate the trend uncertainties. The only

unknowni s t he size of this fAiset upd noise. An exper
removed over a number of weeks with a very close permanent site(s) in order to produce baseline

solutions is the likely way to go forward.

Conclusions

There is an extesive body of literature examining the stochastic noise in GPS coordinate time series
and other major effects expected to have an effect when attempting to measure trends, changes in
trends and their associated uncertainties. The predominant findinty@RBacoordinates are

correlated both spatially and temporally and that an appropriate model is a combination of flicker
noise and white noise (or potentially white noise and pdéswemoise with a spectral index close- 10

or slightly lower). The origirof this noise is still unknown but we do know that over time both the
amplitude of the white noise and the tiemrrelated noise has reduced in size pointing at least partly

to something that is not purely physical (e.g. tropospheric or ionospheric)diatir® the

improvements in the processing algorithms, the satellite geometry and the numb&86(E

available. Random walk, which is attributed to motion of the monument, has not been categorically
proven so far. If it does indeed exist that itdde lower than 1 mmf” atwell-designedbites. A
conservative value to use may by the 0.82 mffyund by[Dmitrieva et al, 2015. Another good

review on some of the issues for GPS coordinates is giveM Ibying et al, 201Q. The size of the

noise is dependent on thge of network you have from global, through to filtered regional and short
baseline solutions, the noise decreases respectively. The noise amplitudes have also steadily reduced
in time. When estimating the trends of the continuous and campaign GR$sthamplitudes and

models should be derived from the long continuous sites to provide the best, most realistic stochastic
model for the project. In terms of the campaign measurements we should use the models derived from
the continuous results and fachoran additional set up noise with a best guess estimate of the
amplitude.

N Ve
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Methods

There are many different methods in the scientific literature for estimating and qualifying temporal
correlations in time series. Mg of these methods are heuristic in nature such as Allan variance,
detrended fluctuation analysis, power spectral analysis, variog@ihess such as Maximum

Likelihood EstimationMLE) and VarianceCovariance Estimation are more paramdtBieran

1994. Often the objecte of the statistical analysis is not to show that there are time correlations in
the data but to characterize it in order to understand its behaviour regarding other parameters and their
uncertainties estimated from the time seriieshis work we useme heuristic method, Power Spectral
analysisand one parametric method, MLi& produce a realistic stochastic model for the permanent
monitoring stations based on the analysis of the vertical time series provided, inference from
comparison withitme series from stations in Netherlands processed by other groups using established
scientific processing software and comparison with past analysis of GPS time series (see literature
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review above)Power spectra are well known methods for examining teriesin the frequency

domain. They measure the amount of a signal s po
the redefined periodograf8cargle 1983 ( and i ts equi valent for contini
evaluate the power spectrum of the time series. Power spectra are useful visualization tools because

many stochastic models have a simple functional relationship tcefneg(ior example, equations 1

and 2 above)significant periodic signals are easy to identify and the overall scale of the process can
beevaluated.

We will use Maximum Likelihood Estimation as described hyLangbein and Johnspth997 Mao

et al, 1999 S.D.P. Williams et al2004 Zhang et al. 1997 to evaluate the amplitudes and type of
stochastic model present in the GPS time series. Importantly, for reasons explained further below, we
employ the methods, algorithms and stochastic models introdufldBos et al. 2008 M S Bos et

al.,, 2013 M S Bos et al.2014. First, wewill give a very brief introduction to MLE to facilitate the
interpretation of the results.

Givena Gaussian data vectat,the joint distribution function for a given covariance matrix, C, is
equal to

p
¢ T AAOT

a Q)

P... .
AGD-m6

c 3
wheren is the number of data and det is the matrix determinant. THe&é&ifnood function is given

by

I T Qe 1 TARO w6 o &1 Ig 4
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where In is the natural logarithm. The covariance matrix is adjusted until the likelihood estimate is
maximised. In addition, since the data veatds the residual from a linear model typically including

an intercept, secular rate (@tes), offsets and periodic signals, these parameters need to be evaluated
alongside the estimated covariance matrix. The data residyalg, related to the design matey,

the original datx6and the estimated model parametarfy

W © o0d (5)
using the weighted least squares formula

4 00 0 006 am (6)

The data covariance matrix, in GPS time series andlysisangein and Johnsqrli997 Mao et al,
1999 Zhang et al. 1997 typically takes the form

6 ” "O ” 6 ” 6 (7)
or

5 , O, & ©
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where | is the n x n identity matrix representing the unit covariance matrix for white noise (no cross
correlation),C.,, Cy andC, are the unit covariance matrices for ranewalk, flicker or any other
temporally correlated noise (often pow®r | aw noi
representing the variance of the various stochastic models.

The likelihood function is typically maximised using a function such as the uphill simpEnexir
algorithms. If we wish to test between competing models of the covariance matrix or different linear
models A, then we can compare the ML valuel®wever this does not take into account the
complexities of the different models (number of estimatednpeters both in the linear and the
stochastic model). A better test is to use the Bayesian Information Criteria (BIC) which is defined as

606 ¢b0O0OTQ I (9)

whereMLE is the maximum likelihood estimatiejs the number of estimated parameters (both linear
and stochastic). If the number of parameters between different models remains equal then the BIC is
equal to the ME.

There are three main, computationally intensive, parts to this problem: the computation of the
determinant of the covariance matrix, the weighted least squares and the inverse of the covariance
matrix. If the MLE is performed in a higlevel, numerical compation language such as matlab then
the three prts can be compedl as shown in the equations. However there are different methods for
obtaining the individuals parts which are computationally fastetdO (n logn) instead oD (n°))

and often have gréaxr numerical stability. Theeoftendepend on théorm of the covariance matrix

and are discussed to some exteriMrBos et al. 2008 M S Bos et a].2013 M S Bos et a).2014.

Stochastic Models

As can be seen from above, MLE relies on the choice of stochastic models available (of which there is
a huge variety) that ocabe formulated to create a covariance matrix. BIC can then be used to test
between competing models and between combinations of models. Perhaps the most common
stochastic model in geophysics is the pola@r model as described by equation 2. It is esldd

fractals and fretional Brownian motion. Power law models where the spectral index is an integer
have been given names2)s ucfh iacsk-Brraamdmdoite moiseo@0pk =( o =
Another common model, particular in statistics, is the autoregressived nmwiearily the

autoregressive one parameter model (AR(1) or sometimes known a@teiestGauss Markov noise)

due to its ease of implementation. In terms of power spectrum an AR{E] hes a slope 6P at

high frequencies and a slope of 0 at lovgtrencies. The cross/er frequency depends on the single

par ameM 8 Bos et al.2014 (re) introduced some other useful models. The first, an

autoregressive fractionally integrated (ARFI ) mo
where the difference between thepae on either side of the cremger frequency is always 2 but the
whol e spectra is tilted by a.-1 t8anthe Highfrequency ow f r e qt

spectral index would by8. A Generalised Gauss Markov, first introducedhyLangbein 2004, is
similar to an AR(1) except the spectral index above the -@essfrequency can take any spat

i ndex, g thespectral inder lselow the cresser frequency is always 0. We introduce here
a new model, the Fractionally Integrated Generalised Gauss Markov (FIG®BMM), combines the
GGM model and fractional integration (which forms polhax noise: comes from the fact that
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integrating
and o2,; a
right) of the cros® v e r
frequency |

spectr al
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frequency
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and

produces

a

useful in that all of the above models are subsets of this model.

Permanent GPSData

The primary dataset supplied by NAM are the time series from 20 permanent stations in northern

randomygvwasl

i n doeex freduencypanspettitalondex &beve (toghe t )
par amet e-over 2
-dver freguency deaeadesin frlequeénbyeThecHG& M snodel is

Netherlands (Figure 1 below). The processing was carried out-@P3using the GNSMART
software by Geo++ GmbH. The description of the methodologyé&ndn the project reporGeo++
Anjum continue GPS test NAM447_4.pdith addendumContinuous Object Monitoring withh

Gps.pdj.
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Figure 1. Map of the GPS sites used in this study. Triangles indicate the permanent sites provided by NAM and processed
by 06GPS. Squares indicate permanent sites that have been processed by the I3@rPraporatory and Nevada
Geodetic Laboratory. Circles indicate the position of some of the campaign sites.

The main feature of this processing to note is that the approach uses a Kalman fikker2nstation
(not consistent throughout the time pejiadtwork of reference sitésh a t
fixed stations are processed annually (with six weeks of data) in a separate processing stream where
thier positions are relaxed to allow changes in their coordinates. If the coordinates chamgkabeyo
pre-defined threshold then the reference coordinates are updated and used in future processing
updates. The coordinates are sampled to hourly intervals which is unusual with respect to the
scientific community which typically uses intervals of dayd aometimes weeks. Of the 20
permanent stations only thre®ME1, MODD andANJM) date back to 2006 and have a long time
series that is preferable for a thorough time series analysis.

are hel d
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Reference time series for comparison

In order to aid the interpretatiari a suitable stochastic model we have supplemented tive ab

dataset with other useful reference time seriesddition to the 20 permanent sites;®BS has also
provided a reference time series for the ITRF station Westerbork which is 450 dayghemevada
Geodetic LaboratorgNGL) atthe University of Nevada, Renthe geodetic group at the Jet

Propulsion Laborator{dPL) and the Scripps Orbit and Permanent Array Centre (SOPAC) all produce
time series for continuous sites around the global. Us#és in the region from JPL and NGL are

also plotted in Figure 1. JPL and NGL both use the GIPSY/OASIS software whereas SOPAC uses
the GAMIT/GLOBK software. Figure 2 shows four time series for the Westerbork site. It is plainly
clear that the 0&PS sie coordinates are more precise than the daily GPS solutions from the research
groups (however that does not imply they are more accurate) and is clearly a result of the constraints
imposedby the Kalman filter and théixing of the reference stations. @lsame conclusions was seen
when the 0685PS solutions foAME1, ANJM andMODD were compared to the Leica CrossCheck
results which uses the Bernese softwaret(shkee d o €nogsahacking fhe GPS Leica

CrossCheck serviedor more details).Another thingto note is the similarity between the JPL and

NGL solutions that both use GIPSY whereas the SOPAC solution which uses GAMIT/GLOBK is less
similar and appears to have a larger annual sighal compared to the others.

Westerbork
100 T T T T T T T T T

80 - i S ol o & o S 2 -
60 —
40

20

Height (mm)

0 ’ . : iy, -
-20 — -

-40 +  06-GPS
- JPL

-60 + NGL -
SOPAC

| 1 | | ] | | 1 |
-80
1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

Time (Years)

Figure 2. The vertical coordinate tirseries for the ITRF site Westerbork from different GPS solutions.

For the remainder of the stochastic modelling we will comaémbn the three longest sitédE1,
ANJM andMODD in the Waddenzee but supplement and compare those with results fro@lthe N
solutions.

Power Spectral Analysis

The power spectra from tliereelongest siteareplotted in Figure 3Also shown is the stacked
(averaged) power spectrum from all 20 continuous sites. Note that this plot idag kmgm so that

any powetlaw process will show as a straight line in the figure. White noise for instance would show
as a flat spectrum (slope of 0) whereas rangl@ik noise would show increasing power at low
frequencies with a slope 2. We see that the spectra frédE1, ANJM andMODD and the

averaged power spectrum all shpawerlaw dependence amkaks relating to various tidal
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frequencies. Also shown is the poveggrectrum for powelaw noise with an index 6fL.88. This is a

good fit to the observations at high frequencies ppears to overestimate the powepatiods lower
thanaround 1620 days (~ 6éHz). At lower frequencies the spectra appear to badiferent Jower,
powerlaw dependenctihatlooks to be a good candidate BoFIGGMmodel Also evidenis the lack

of a white noise floor at the highest frequencies (there is a little flattening of the spectra close to the
Nyquistfrequency but that is related to the discretization of the data).

104 ey : vy ey ey T

=}
o
T
M2 and S2 tide
M3 and S3 tide

K1 tide

106 | , =}
power law noise, k = -1.88
stacked power spectra of all sites
*&= =4 stacked power spectra of ame?1, anjm, modd
10-8 = il JJ‘JI" - JI‘ il Alr il il .
10°° 108 107 106 10 1074 10°°

Frequency (Hz)
Figure 3. Power Spectra of the hourly time seiddge dots represent the combined spectra from the longestAes:,
ANJM andMODD. Orange curve is the averaged spectrum from all 20 sites. Light blue curve is a synthetic power si
for powerlaw noise with a spectral index df.88. Light greyihes are some representative positions of tidal peaks.

The power spectra for the three longest sites are also shown with more detail in Figure 4. Included on
the figures are some representative spectra so that4B&88ime series can be placed inteah

with previous studies. The red line on each plot is the spectra derived from the ML fit to the hourly
data (see MLE section below) and the yellow line is the spectra from a-fawbtL fit to the data.

The blue line is the average from the ML fitlth NGL sites in the regiofunfiltered) and the green

line is the ML fit to the same sites after an average common mode signal has been removed (filtered
data) and a representative curve for the filtered noise model from Table 1. The purple line
charactares the spectra from short baseline stuflii et al., 2009 M A King and Williams2009

and the grey lines aspectra for randorwalk noise at levels suspected to be due to monument

mot i on; (QMAKingand &ijfiams2009a nd 2 [@.rhéngbgnrand Johnsonl997.
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Figure 4a. Power Spectrum feite AME1 (blue dots). Also included on the plot is the spectrum derived from the ML
analysis (below) and some representative spectra from the literature review and the NGL time series in.the rec

We note the following observations:

T

The power of the hourly data is significantly lower at all frequencies than the unfiltered
results from the geodetic research groups (as also witnessed visually in Figure 2).

The power is lower than the filtered (fegal networks) and does not show a similar white
noise limit at high frequencies.

The power at low frequencies (below-20 days) is similar in amplitude to the short baseline
studies.

The powedaw slope at low frequencies is similar to the baseliner&tl and unfiltered

results.

At high frequencies the powdaw slope is close te2 which could be interpreted as
monument motion. However if it was it would be much greater than previously encountered
and would likely be visible in baseline and filterstddies.

The slope and power MODD at low frequencies are larger thahlJM andAMEL1.
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Figure 4. Power Spectrum faite ANJM (blue dots). Also included on the plot is the spectrum derived from the ML
analysis (below) and some representative spewtna the literature review and the NGL time series in the region.

The close to randofwalk behaviour at high frequencies is therefore unlikely to be due to monument
motion but is likely due to the Kalman filtering which will constrain the coordinatebastcally as

a random walk. How much this constraint affects the series drémuencies, where subsidence and
time-varying subsidence effects are to be seen, is unkn@wan the good agreement found between
the Leica CrossCheck and theB€S resultfor AME1, ANJM andMODD (particularly the

differenced results tMODD i similar to but not exactly equivalent to the baseline and filtered

results) we will proceed to produce a realistic stochastic model from these three sites that can then be

applied tathe rest of the continuous sites ars itto produce a model for the campaign sites.
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Figure £. Power Spectrum faite MODD (blue dots). Also included on the plot is the spectrum derived from the ML
analysis (below) and some representativetspéiom the literature review and the NGL time series in the region.

Maximum Likelihood Analysis

As mentioned above there is a serious computational burdelved inMLE primarily centred on
the covariance matrix, computing its inverse and its detamhand is one of the reasons for the

development of heuristic methods. Even using daily observations (as opposed to hourly) a simple ML
algorithm can take many hours per site depending on the length and complexity of the covariance

model choserfor sies such adME1, ANJM andMODD with over 2800 days (68000+ hours)
forming a covariance matrix alone would require around 35Gb of memory without attempting to
invert it etc. Therefore attention must be placed on exactly how to process the data to get a
satsfactory result within a reasonable amount of computational burden (in both time and size).
Depending on the stochastic model chosen and whether the series is free from gaps and outliers
certain methods allow various kinds of computational speed ups eathithy to forgo the creation
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of a full covariance matrix. If we choose a stochastic model where the covariance matrix, or its
cholesky decomposition, is Toeplitz then there are several methods that can be employed that can be
of the O(1f) or even in som circumstances O(n log n) instead of the usuaf)@frihe number of
computations required.

The first obvious choice is to convert the hourly data to daily data by simple averaging and then use
conventional methods to calculate the stochastic noisenpsees We chose to use a power law plus
white noise model and estimate a piagee linear trend with break points at the end of each year.

The results are shown in Table 2.

Table 2.ML estimated parameters from daily averaged results assuming apt
law plus white noise modselith a linear model that estimates a pisdgse linear
trend with break points at the end of each year. The satuhot differ
significantly when a single trend is usedtead * these amplitudelsave been
multiplied byp? / tb compare with the amplitudes in TakileSee Appendix A.

Power Law White Noise
Spectral Index Amplitude* Amplitude
Site name ) (mm/yr®H* (mm)
0647 -1.95+0.13 7.00+£0.31 0.00+0.0010
AME1 -1.85+ 0.04 4.71+0.06 0.00+ 0.0000
ANJIM -1.87+0.04 5.21+0.07 0.00+ 0.0001
dwl6 -2.15+0.11 9.56+0.35 0.00+ 0.0007
dw26 -2.03+0.11 7.94+0.29 0.00+ 0.0000
dzyl -2.08+0.15 8.65+0.41 0.00+ 0.0000
eems -1.65+0.14 4.29+0.19 0.00£0.0011
froo -1.95+0.14 6.10+0.28 0.00+ 0.0007
grij -1.71+0.14 5.07+0.22 0.00+ 0.0000
MODD -1.86+ 0.04 4.76+ 0.06 0.00+ 0.0001
norg -1.94+0.13 6.49+0.29 0.00+ 0.0009
over -2.01+£0.14 6.80+ 0.30 0.00+ 0.0013
sted -1.83+0.17 5.88+0.28 0.00+ 0.0000
tenp -1.89+0.09 6.10+0.18 0.00+ 0.0000
tjuc -1.80+0.12 5.29+ 0.24 0.00+ 0.0015
usqu -1.99+£0.15 7.35+0.36 0.00+ 0.0000
veen -1.97+0.09 7.32+0.21 0.00+ 0.0003
wsra -2.21+0.11 9.05 +0.30 0.00 + 0.0000
zand -2.00+£0.14 7.91+0.35 0.00+ 0.0019
zdvn -2.03+0.13 7.50+0.34 0.00+ 0.0010
zeer -1.68+0.15 4.41+0.21 0.00+ 0.0000
weighted | 3 99 1 0.02 5.27+0.22 0+0
mean

We find very consistent results for all the sites with the spectral index clesk®@a 0.02,amplitude

of 5.3 + 0.2 mm/yf  &nd no white noise. This is inconsistent with previous studies for daily GPS and
appears to reflect the noise at high frequéndie hourly dataFor the three longest sites we can also
analyse the time series averagethtee days and one wegkalle 3). The main finding from this is

a reduction of the spectral index as we average over longer time scales. This is consistent with the
change in the slope in the power spectrum seen in Figures 3 and 4.

As mentioned above the computational burden ttyaedhe hourly data with a powkw plus white

or a FIGGMplus white noise model would be too great. However two factors do allow us to perform
an MLE on the data. First, Figures 3 and 4 and the white noise amplitudes in Tables 2 and 3, lead us
to assumehat we do not have a white noise component in the data (at least not at the level
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measurable) and secondly the time series are very nearly completely continuoughthat &se very

few gaps in the data.

Table 3. ML estimated parameters for daitidaily and weekly averaged time series from the three longest sites.
Results from a powdaw plus white noise and an iGGM plus white noise model are shown. Cells where an unce
is not given are either because the uncertainty is smaller thardimeadl places given or because no uncertainty was

estimated
Site | Sampling| Model a9 a 2 G COwh trend
Daily pl | -1.85+0.04 0.308 + 0.004 0.0 6.97 +1.22
figgm | -1.98 + 0.01| -0.07 0.00| 0.926  0.004| 0.318 + 0.0003) 0.003 + 0.0000] -6.59 « 0.Gh
- pl -1.40 0.426 0.010 | 0.000 + 0.0000| -6.85 % 0.25
AMEL | Tri-dally =g 500+ 0.25] 10.85 0.12| 0,572 0.110] 0.421£0.010| 0.000 £ 0.0196] -6.70 = 0.10
weekly P 1.26 0.464 + 0.0162 0.0 6.81+0.16
figgm | -1.31 +0.12| -0.003  1.17| 0.975 + 0028 | 0.463 + 0.0162] 0.000 * 0.056 | -6.70 + 0.12
Dally | Pl_| 187004 0.332 +0.0044] 0.000+0.00 | -3.79 + 1.39
figgm | -2.00£001]  -0.007 0.008 | 0.325+0.0040] 0.000 + 0.000 | -3.69 + 0.03
- pl 1.23 0.447 +0.0102] 0.000 £ 0.000 | -3.78 * 016
ANIM 1 Tri-dally =00 5 00+ 0.27] ©0.71 0.10| 0.516 = 0.096| 0438 £ 0.0101] 0.000 = 0.000] -3.71 = 0.06
Weekly |2 -0.99 0.472 £ 0.0165 0.000 + 0.001 | -3.76 + 0.08
figgm | -1.00 + 0.09] -0.00 +0.01| 0.989 + 0.012] 0.469 £ 0.0164] 0.000 % 0.035 | -3.72 + 0.08
Daily pl | -1.86+004 0.307 + 0.0041] 0.000 % 0.00 | -3.10 + 1.27
figgm | -1.70 £ 0.01] -0.01+0.00 | 0.995 = 0.003| 0.330 + 0.0008] 0.000 + 0.00 | -3.02 + 0.22
- pl -1.48 0.426 £ 0.0098] 0.000 + 0.00 | -3.02 + 0.32
MODD | Tri-daily =T 148+ 0.06] -0.00%0.01 | 0998 £ 0.002] 0.425 £ 0.0097] 0.000 £ 0.01 | -3.08 £ 0.28
Wweekly | P! 152 0.424 +0.0332] 0.176+0.05 | -3.05+0.29
figgm | -1.49+0.13] -0.00 + 1.70 | 0.997 + 0.004] 0.435  0.0545 0.160 £ 0.10 | -3.09 + 0.25
* Amplitudesare converted so they do not contding @t scaling (used in CATS) so that t
comparedSee Appendix A.

All three long sites have only 19 or 20 out of over 60000+ hours missiigso we can fill those
gaps by linear interpolation without fear of that contamiiggtite results. Now because we are only
assuming one noise model we can perform an MLE that is efficiently computed ushagti®urier
transform in O(n log n) operations.

For the analysis of the hourly data we selected to use three linear modelsntsemiecewise linear

trends with breakpoints at the end of each year and a trend plus acceleration (all models also include
an annual and serannual signal). We also selected to test three stochastic models:|pavwarise

only, FIGGMonly and white wise only (as a null hypothesi3)e results are given in Tables 4, 5,

and 6 belowThe upper tables give the stochastic egiarameters and the lower gihe estimates of

the trends (and accelerations) and their uncertaiftfesBIC for the most likg stochastic and linear
model combination is highlighted in all the tables. In every case the preferred stochastic model is the
FIGGM (which can be visually confirmed in Figure 4). The preferred linear model is the trend only

for AMEL1 and the trend plusceeleration for ANJM and KADD; but only slightly for ANJM

compared to the trend only. We see that in the case of the FIGGM model thap#iameter is

fairly consistent throughout whereasth@e nd o par ameters are dependent
reflect the conflict between the stochastic and linear parameters. For instance in the case of MODD,
where there is an obvious long period variation ghgarameter which characterises the power

spectrum at low frequencies changes frar20 for the trendnlyto-0 . 30 and o2, whi ch r €

lAlthough it is obvious that wdre some data is losver a few hourshe coordinates are generated with the
same coordinate as prior to the data loss.
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crossover frequency, increases indicating a shift to lower frequencies. The piecewise linear trend

and

Afsoaks upo some of the | ow frequency power
Table 4: AME1
Linear Model| ar aL ) MLE BIC
Trend -1.90| -0.91| 0.9847| 0.095538| 538311.421 -1076511.46¢
FI GGM Noise Piecewise |-1.89]|-0.28| 0.9912| 0.095511| 538330.531] -1076471.728
Acceleration | -1.89| -0.91| 0.9848| 0.095538| 538311.450 -1076500.38¢
PowerLaw Noise _Treno! -1.87 - 0.095653| 538228.208 -1076367.318
Piecewise | -1.87 - 0.095653| 538228.567 -1076290.074
White Noise Trend - - 0.834429| 389448.878 -778819.794
Piecewise - - 0.646531| 406973.038 -813790.154
Stochastic Model
Year FIGGM FIGGM* FI GGM| PowerLaw White
2007 | -7.48+ 025| -753+ 060 | -7.53+ 060 | -8.20+ 5.03 -7.75+ 0.02
2008 | -6.87+ 031| -6.81+ 072 | -6.81+ 0.72| -6.03+ 5.05 -6.82+ 0.01
Piecewise | 2009 | -6.96+ 031] -699+ 0.72 | -6.99% 0.72| -7.22% 5.07 -6.96 + 0.01
Linear 2010 | -6.06+ 0.31| -598+ 0.72 | -5.98+ 0.72| -551+* 5.07 -6.08 + 0.01
2011 | -6.60+ 031| -664+ 072 | -6.64+ 072| -6.38% 5.05 -6.60 + 0.01
Trends 2012 | 597+ 031| -6.02+ 072 | -6.02+ 072 | -7.32+ 505 | -595+ 0.01
2013 | -6.02+ 0.32| -599+ 073 | -599+ 073 | -554+ 5.07 -6.06 + 0.02
2014 | -10.22+ 0.47| -10.40+ 0.94 | -10.40+ 0.94]| -10.89+ 5.67 | -10.06+ 0.02
Trend Only -6.76 + 0.08 -6.75 + 0.08 -7.00+1.58 | -6.58+0.0014
Trendplus Trend -6.80 £ 0.24
Acceleration| Acc. 0.0160 = 0.06
* This uses thetochastip ar amet er s deri ved from t hstochasticng! e

The crucial parameters in this mode¢és_a n d

parameterérom the trend and acceleration model

0]

as ¢t he

S e

real ly

di

the trendgsee the bottom half of Tables 4, 5 andWg notice that these parameters are most
consistent when we look at the preferred model based on the BIC. To test this further we simulated

400 time series using the stochastic and linear parameters from MODD for the trend plus acceleration
model. We then fit those parameters using MLE for all three linear models. The results, in the form of

histograms, are shown in Figure\WWe can see thahe estimated stochastic parameters for the trend
and piecewise continuous are all within the expected ranges from the simulations incluelng the

and-0.3 forg,.

The bottom halves of Tables 4, 5 and 6 show the estimated trends (and accelerations) and their

uncertainties as a function of the stochastic model used. We can immediately see the overly

pessimistic and overly optimistic uncertainties from the pdaerand the white noise model; there is
a scaling factor of 25600 between the uncertainties of the two models. The two FIGGM columns

ctate

marked with a * and Atake the stochastic model parameters from the trend only and the trend plus
acceleration models drapply it to the piecewise linear model. For the two sites where the trend plus
acceleration model is the most likely we see the uncertainties from that model are somewhere between
the other two. For AME1 where there is no acceleration, the uncertargie®se to the trend only
model but bigger than the piecewise linear medath probably under predicts the uncertainties.
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Table 5: ANJM

Linear Model| ar aL ) V] MLE BIC
Trend -1.90| -0.81| 0.9839| 0.098739| 536047.484 -1071983.595
FI GGM Noise Piecewise | -1.93| -0.10| 0.9904| 0.098703| 536072.260 -1071955.18¢€
Acceleration| -1.93 | -0.66 | 0.9859| 0.098731| 536053.307 -1071984.104
PowerLaw Noise .Treno! -1.90| - - 0.098896| 535938.434 -1071787.76¢
Piecewise | -1.90| - - 0.098896| 535938.535 -1071710.011
White Noise _Treml_ - - - 0.796477| 392646.309 -785214.656
Piecewise - - - 0.633136| 408411.147 -816666.371
Stochastic Model
Year| FIGGM FIGGM* FIG G MA| Power Law White
2007 | -5.18+ 0.20[ -5.22+ 052 -5.22+0.41| -4.75+ 590| -4.61+ 0.02
2008 | -2.70+ 0.23] -2.74+ 0.62] -2.73+0.50 | -3.31+ 5091| -2.84+ 0.01
2009 | -5.31+ 0.23] -5.28+ 0.62] -5.29+0.50 | -4.78+ 594| -5.27+ 0.01
. . . - + - + - + - + - +
Piecewise Linear Tren( 211 | 704 025|275+ 0163 275050| 207 5o 270+ 001
2012 | -3.46+ 0.23] -3.60+ 0.63] -3.56+0.50 | -5.00+ 5.91| -3.45+ 0.01
2013 | -3.37+ 0.24] -3.29+ 0.64] -3.32+0.51 | -2.90+ 5.94| -3.37+ 0.01
2014 | -454+ 0.37| -456+ 0.84| -457+0.69 | -4.27+ 6.62| -4.61+ 0.02
Trend Only Trend -3.85+0.06| -3.84+0.04| -3.82+1.91 | -3.68 +0.0013
Trend Plus Acceleratio ng_d 0-.41.:51215106:.%4
* This uses thetochastigparameters derived fromthe single end onl y nstochastic,
parameters from the trend and acceleration model
Table 6: MODD
Linear Model| ar aL ) V] MLE BIC
Trend -1.90| -1.20| 0.9774| 0.096103| 537906.205 -1075701.037
FI GGM Noise Years -1.90| -0.30| 0.9907| 0.096054| 537941.284 -1075693.233
Acceleration | -1.90| -0.65| 0.9876| 0.095697| 538197.075 -1076271.64(C
PowerLaw Noise Trend -1.87| - - 0.0962@ | 537833.798 -1075578.497
Years -1.87| - - 0.096204| 537834.331| -1075501.601
White Noise Trend - - - 1.508738| 348766.276 -697454.591
Years - - - 0.645565| 407075.688 -813995.454
Stochastic Model
Year| FIGGM FIGGM* FIG G MA| Power Law White
2007 | -1.66+ 0.25] -1.77+ 1.02| -1.68+0.39 | -2.33+ 5.13| -1.67+ 0.02
2008 | -0.76 + 0.31] -0.78+ 1.14] -0.76+0.48 | -056+ 5.15| -0.75+ 0.01
2009 | -3.22+ 0.31] -3.16+ 1.14] -321+0.48 | -2.77+ 5.17| -3.21+ 0.01
. . - + - + - + - + - +
Piecewise inear Trend| 2011 5555 01 500+ 118 5034045 | 2605 E15 255 001
2012 | -431+ 0.31] -437+ 1.15 -431+0.48 | -545+ 5.15| -431+ 001
2013 | -4.15+ 0.32) -3.93+ 1.16] -4.08+0.49 | -3.02+ 5.17| -4.20+ 0.02
2014 | -6.31+ 0.46| -6.82+ 1.42| -650+0.67 | -7.12+ 578| -6.16 + 0.02
Trend Only Trend -2.88+0.17| -2.74+0.04 | -3.08+1.62 | -2.97 + 0.0026
Trend Plus Acceleratio TArggd _(')%;(5)11 10'01_34
* This uses thetochastip ar amet er s deri ved fr om t hstochasticn gl e

parameters from the trend and acceleration model
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Figure 5 Histograms of the estimated parameters from 400 Monte Canldesioms of the MODD time series (based on tl
trend plus acceleration model). The red lines indicate the estimated parameters from the actual time series.

Given a realistic stochastic model we can use this to check for any significaudefirerdent

changes. Site AMEL is a good example. We can see from Table 4 that 2014 has a trend that is around
3-4 mm/yr larger than the other years. Is this significant or are the variations in the trend expected
from the stochastic model? We can ask whether the yearlgls are significantly different from the

single trend only but have to be cautious because we are estimating two sets of parameters from a
single dataset so they are correlated to some extent. Takingcorosiations into account and
propagatinghe covariancegorrectly we find that 2014 is indeed significantly different from the long
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term trend (Figure 6However this is based on the general3d®S/NAM model and not modified to
align it to the filtered regional results.
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Figure 6. Significance dhe piecewise linear trends with respect to the-temm trend given the optimal stochastic mode
for the data. Red dots are the estimated yearly trends with respect to tteriorigend. Black lines indicate the confidenc
bounds. The bounds appear ndarger than the individual formal errors because we have 8 degrees of freedom rathe
typically examining the ondimensional confidenc& OTE : this is purely from the optimal stochastic model derived
from the data no attempt has been made to accotfor systematic effects or align the noise model with previous
findings and processing results.

Comparison with Leica CrossCheck Time Series

We were also supplied with the two years of AME1, ANJM and MODD processed using the Leica
CrossCheck service wih uses the Bernese software. In a similar manner to the report

iCr osschecking t he GP Swelexamioed theChaselmes diférence& betsveen vi ¢ e 0
AME1 and ANJM with respect to MODD. We have plotted the power spectra in Figure 7 together

with the power spectra from the same baselines from t&R¥6 results and also plotted the average

spectrum calculated from the filtered NGL time series.
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Figure 7. Power Spectra for the Bernese derived Leica time series baselines and3h8 ®aselineAME1-MODD and
ANJM-MODD. Red dots are the average spectra from the two Leica baseline time series, blue dotsOféeGPBelata.
Orange line shows the average spectrum from the NGL filtered series and the yellow line represents the average sj
from the 06GPS data.

The results show that the Leica baseline results are less noisy than the filtered NGL series and slightly
more noisy that the B6PS results. The Manalyses of the baselines gewapectral index 60.85

and-0.86 for AMEXMODD and ANM-MODD respectively with amplitudesf 2.43+ 0.38and2.10

+ 0.31. The estimated white noise amplitudes were 1.56 + 0.07 and 1.29 m@.0&r comparison

the average values from the filtered NGL results are a spectral ind@85fwithamplitudeof 526 +

0.17 and white noise amplitude of 2.14 £ 0.11 mm.

Discussion

The analysis of the three long permanent sites together with the shorter series indicates a consistent
FIGGM model witheg being just short of random walk -dt9.2is around 0.98 which equates to a
cross oveperiodof around 10+ days and the spectral index at low frequepgcig just below flicker
noise and in the range0[65;0.91]. The spectral index aw frequencyis certainly consistent with

the other time series produced by various groupsathicthe results from the literature review.
However the amplitude is smaller than both the unfiltered and filtered series and the Leica baseline
series and isimilar to the results from short baseline studiei very hard to reconcile that the noise

is equivalent to short baseline processing given that mamg are differenced to negligible levels in

those studies, something that cannot be achieved beentich wider area of the networksgems likely that

the processing methodology used constrains the positions to the extent that some real land motion
could be suppressed patrticularly at high frequenEiaker noise has been shown to characterise the
spectrum ahigh frequenciegup to 1Hz)[Bock et al. 200Q J. Langbein and Bo¢R004 whereas a
spectral inde close to-2 is a likely outcome of a Kalman filter that probably treats the coordinates in
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the constraint as a random watow much the low frequency end of the spectrum is constrained, and
therefore effecting any estimates of subsidence or changebsitience, is unknowomparisons

with the Leica CrossCheck results sugdest at i t by awns@nificantiamairg but the test is
verylimited. To err on the side of caution in our results and conclusions we recommend aligning the
noise model with previous findings.

301 AEAOOEA 6-AIKOEIAAZGEDODBA $AOA

The results from the three lotighe series are seen to be sufficiently similar to derive a single noise

model for all of the continuous data. This model, which we will call th6&B&/NAM model, is a

FIGGM with parameters that are averages from the three models witwesBIC. Theparameters

foreg o 0are-1.91,-0 . 7 4, 0.9861 r es pe c Thismedelgivewanturtertdinty= 0. 09
in the trend of 0.6 mm/yr after 1 year down to 0.04 mm/yr after 10 years. However, given the

uncertainty in the processing method and thepaoron with both the results from the literature

review and the other groups time series we will present some alternative models to consider:

1. General 06GPS/NAM model : $zr=-1.915. =-0.740= 0. 986 1, 0 = 0.0967]
2. General 06GPS/NAM model plus0.5mia/lyr of random wal k. There i
there exists a random walk due to monument instability that is not yet identifiable in the time
series but will already influence the long term trend uncertainties. The magnitude reflects the
estimate givemy [M A King and Williams2009.

3. As for model 2 but 1 mm/ ayr of r therdndaom wal k.
walk could be used to also reflect any long term variations that have been damped by the
Kalman filter.

4. General 06GPS/NAM model scaled by a factor of 3. This bringsgheer spectrum in line
with the noise levels of the regionally filtered GPS data. However the power at high
frequencies is too largethe power at high frequencies is tightly constrained (see Table 2)

5. 06-GPS/NAM maodified at low frequencies to mimic thag@litude of the regional noise. The
new parameters beingd=-1.915,=-0.85250= 0. 99238, G = 0.0967]. T
the parametes, which shifts the cross over frequency to a lower value which then increases
the power at low frequencies. This is puraligack of the envelope calculation to mimic the
regional noise and has no physical reason for the change in parameters.

6. General 06GPS/NAM model with an additional FIGGN{=-2 8 =-0.85250= 0. 9980 6,
= 0.04] to mimic the regional noise. This is similar to the argument for additional random
walk so that only powers at low frequencies are affected except the spectrum will tend to
0.8525 instead o® at very low frequencies.

7. A model based on the daily solutions from the regional filtered data from NGL. This model
is a power law with spectraldex =-0.8525 and amplitude of 1.50 m&26 mm/yf i
CATS notatiof and white noise of amplitude 2.13 mm.

Co

Examples of simulated time series from the 7 models together with the detrended AME1 series are
plotted in Figure 8.
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Figure 8. Examples of sirfated time series from the 7 models described in theAésa. shown for comparison is the
detrended time series for AMEL.

We can see that some of the models look very similar visually to AME1 except modelsd

partially 5. Model 7 is to be expedtsince it is projecting the results from a daily solution down to
hourly values and therefore has too much power at these frequencies (although this is not important
when estimating the trend uncertainties). The pespectrum of these models is showrrigure 9.

Figure 9. Power Spectra of the six of the proposed models (model 3 not shown).

We can see that the two models where th&B&/NAM model is modified to mimic the regional
noise at low frequencies do just that whilst they retain the cqrozetr at low frequencies. Model 4
which simply scales the 86PS model by 3 is not a reflection of the hourly data at high frequencies.
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