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The first comprehensive study of the precision and accuracy of GPS coordinates was [Larson and 

Agnew, 1991] (with an acknowledgement to [J. L. Davis et al., 1989]). They concluded that the short-

term precision was on the order of 17 mm for the vertical and for long-term precision, 11.7 mm with a 

baseline dependence of 13 parts in 10
8
. However at that time the GPS constellation was incomplete 

and measurements were made over a span of around 7-8 hours (at the most optimal time of day) on 4 

ï 5 consecutive days.  The data was processed as baseline measurements and not converted to 

individual site coordinates (hence the baseline dependence). The small amount of data precluded any 

attempt to look at time dependence in the data.  

Using continuous measurements of near surface monuments from a laser strainmeter in Southern 

California [F Wyatt, 1982] and [F. K. Wyatt, 1989] demonstrated that the power spectra had a power 

law dependence on frequency of the form  
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In addition, [John Langbein et al., 1993] showed that other geodetic measurements such as two-colour 

geodimeters, creepmeters and water wells also demonstrated an f
-2
 dependence in their power spectra. 

This behaviour is typically known as Brownian motion or random walk. [Agnew, 1992] showed that 

the spectra of many geophysical phenomena can often be approximated by a power-law dependence 

on frequency and introduced a more general form of the power spectra (following the work of 

[Mandelbrot and Ness, 1968]), given by 

 
ὖὪ  ὖ 

Ὢ

Ὢ
 

(2) 

   

where P0 and f0 are normalising constants, f is the frequency and ə is the spectral index. [Johnson and 

Agnew, 1995] demonstrated the effect long-range time dependent correlations have on the estimates 

of uncertainty, primarily that neglecting such behaviour leads to estimates of the uncertainty that are 

overly optimistic (too small). They argued that if this random walk motion seen in geodetic data is 

related to monument motion then it is an issue for all geodetic instruments. 

Using Maximum Likelihood Estimation (MLE) [J. Langbein and Johnson, 1997] estimated the 

amplitudes of random walk and white noise in the time series from two-colour EDM (geodimeter) 

measurements. They found that the random walk noise level averaged about 1.3 mm/ãyr with a range 

between 0 and 4 mm/ãyr. The first paper to examine time-correlated noise in GPS data was [N E King 
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et al., 1995]. They found no evidence of random-walk noise in the time series but did find some 

evidence of short-term correlation of around 25 days from the autocorrelation function. The amount of 

white noise in the series was found to be on the order of 5 mm in the vertical. However only one 

baseline was analysed and it was 2 ½ years in length. They concluded that the random walk noise 

might simply be undetectable at that point.  

In addition to temporally correlated noise, GPS time series were also identified as containing a 

spatially correlated, common mode [Wdowinski et al., 1997]. This to some extent has divided GPS 

time series analysis into two categories, global and regional (or unfiltered and filtered respectively). 

Where there is a network of sites with sufficiently small baselines the common mode signal can be 

removed by a variety of methods such as stacking of the residuals [Wdowinski et al., 1997], principal 

component analysis [Serpelloni et al., 2013] or by the use of defining a regional reference frame and 

fitting and applying a daily Helmert transformation [Hurst et al., 2000]. In general a globally 

distributed set of sites are sufficiently separated that they may be considered to be uncorrelated from 

each other and the common mode noise cannot be reduced and the noise is typically higher than the 

filtered (regional) series.  

 [Zhang et al., 1997] examined 19 months of continuous GPS (CGPS) data from 10 sites in southern 

California. Since a common mode signal was removed the results were for a regional, filtered 

network. They used MLE, autocorrelation analysis and power spectra to analyse the time series. For 

the MLE analysis they chose three candidate models; white noise only, white noise plus flicker noise 

[Voss and Clarke, 1975] (ə = -1) and white plus random walk noise. They found that the flicker plus 

white noise model best described the data. The average amplitudes for the vertical component was 6.8 

± 0.6 mm (95% confidence) for the white noise and 6.2 ± 2.7 mm [sic] (95% confidence) for the 

flicker noise (Note that in this paper they used an approximation for the flicker noise covariance and 

so the amplitudes may not be comparable to later papers). By fitting a straight line to the power 

spectra (in log-log space) they obtained a median spectral index of -0.4.  [Mao et al., 1999] examined 

a globally distributed set of 23 sites that contained 3 years of data. They also used a combination of 

power spectra and MLE with integer spectral indices and concluded that white plus flicker noise best 

described the noise content of the series.  In the vertical the mean white noise and flicker noise 

amplitudes were 10.3 mm and 14.7 mm respectively. The mean spectral indices, estimated from the 

power spectra, ranged from -0.74 to -1.02. They also found that the white noise component had a 

latitude dependent bias in the vertical (noisier at the equator). [Calais, 1999] confirmed the above 

results (in the horizontal only) using three permanent sites in Europe as did [Caporali, 2003] who 

used the two-sample Allan variance [Allan, 1966] to study the noise characteristics of 21 sites from 

the EUREF network with time spans ranging from 3 to 6 years. [Caporali, 2003] also found very little 

evidence of random walk noise in the time series.  

While most of the earlier studies concentrated on the integer spectral indices as potential stochastic 

models, primarily because their knowledge on how to create covariance matrices was limited to 

flicker and random walk noise, there is no reason why a non-integer spectral index may not be more 

appropriate. Indeed the spectral indices estimated from fitting a line to the power spectra highlighted a 

range of non-integer values but invariably close to, or slightly lower (closer to zero),  than -1. [S.D.P. 

Williams, 2003] introduced the fractional differencing method of [Hosking, 1981] which allowed one 

to produce a covariance matrix for a power-law noise with any spectral index and therefore the ability 

to estimate the spectral index in addition to the noise amplitudes using MLE. [S.D.P. Williams et al., 

2004] analysed a total of 954 continuous GPS position time series, with lengths from 16 months to 10 

years, from 414 individual sites in nine different GPS solutions (both regional and global solutions) to 

produce the most comprehensive study of noise content so far. They used two MLE approaches to 
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study the data; the traditional method of assuming white noise, white plus flicker noise and white plus 

random walk and a second analysis where the spectral index and amplitude of the power-law noise 

were estimated simultaneously with the white noise. For the global solutions the mean spectral index 

for the vertical component was found to be -0.8 ± 0.4 which was therefore consistent with a flicker 

plus white noise model (which was the most likely model in the integer analysis also).  Both noise 

components showed a latitude dependence on their amplitudes (higher at equatorial sites) together 

with a bias to larger values in the Southern Hemisphere. The flicker noise amplitude was 20.2 mm/yr
¼
 

and 23.1 mm/yr
¼
 (SOPAC and JPL solutions respectively) and the white noise amplitudes were 3.9 

mm and 7.7 mm.  The noise was found to be significantly lower in the in the regional filtered 

solutions and the estimated spectral index was found to be more varied than the global solutions but 

they were still centred around a value close to flicker noise.  The average noise amplitudes in the 

vertical were 7.9 mm/yr
¼ 

for the flicker noise and 3.2 mm for the white noise.  A significant reduction 

in the noise amplitudes could also be seen since the first CGPS networks began in the early 1990ôs. 

They also divided the GPS sites into different monument types and found that the deep drilled braced 

monument design offered the lowest noise levels.  

The papers since [S.D.P. Williams et al., 2004] all tend to confirm the same results that a suitable 

noise model for CGPS coordinate time series is a flicker plus white noise model. The average 

parameters from the major studies are shown in the table below. We note that a) the more recent 

studies tend to have longer time spans and more sites; b) the noise amplitudes have reduced and c) the 

presence of random walk is still unconfirmed. 

Table 1. Means and Standard Deviations of the White Noise and Flicker Noise Estimates for the 

vertical Component from various studies. Also Included is the Approximate Time Span of Data Used, 

the Number of Sites and any Estimate of Spectral Index. 

Study Global or Regional 

White noise 

amplitude 

(mm) 

Flicker noise 

amplitude 

(mm/yr¼) 

Time 

span of 

data 

Number 
of sites 

Estimated 
spectral index 

[Zhang et al., 1997] Regional 6.8 ± 0.6 6.2 ± 2.7 1.6 10 -0.4 

[Mao et al., 1999] Global 10.3 14.7 3 23 -0.72, -1.02 

[S.D.P. Williams et al., 2004] 

SOPAC Global 3.9 ± 1.9 20.2 ± 5.5 3.6 207 -0.8 ± 0.2 

JPL Global 7.7 ± 2.6 23.1 ± 7.8 2.5 268 -0.8 ± 0.3 

SOPAC SCIGN (R) 3.0 ± 0.5 7.0 ± 5.0 2.7 147 -0.9 ± 0.5 

JPL SCIGN (R) 3.6 ± 0.9 7.0 ± 3.2 2.2 58 -1.0 ± 0.7 

USGS SCIGN (R) 4.1 ± 1.0 9.2 ± 3.7 2.5 112 -0.8 ± 0.4 

PANGA PANGA (R) 5.0 ± 1.9 12.5 ± 4.9 3.9 54 -0.7 ± 0.3 

SOPAC PANGA (R) 2.4 ± 0.7 8.6 ± 4.0 4.4 30 -0.9 ± 0.3 

SOPAC BARGEN (R) 2.3 ± 0.6 5.5 ± 2.2 4.7 47 -0.9 ±0.4 

REGAL REGAL (R) 4.2 ± 1.1 10.9 ± 5.5 4.0 31 -0.9 ± 0.4 

[Beavan, 2005] Global 3.7 ± 0.8 8.5 ± 2.6 4.1 15  

[A R Amiri-Simkooei et al., 2007] Global 5.4 ± 0.6 9.3 ± 0.7 10 5  

[J. Langbein, 2008] 
SCIGN (R) 2.3 ± 0.5 4.6 ± 1.3 3.5-10 210  

BARGEN (R) 2.3 ± 0.3 3.6 ± 1.1 3.5 ï 10 26  

[Teferle et al., 2008] Global 3.1 ï 5.3 10.9 ï 20.4* 4 6 -0.4, -1.2 

[Santamaría-Gómez et al., 2011] Global 1.9 ± 0.1 5.8 ± 0.1 2.5 ï 13 275 -0.88 ± 0.02 

[Serpelloni et al., 2013] 
Global 2.4 ± 1.1 12.2 ± 3.1À 2.5-14 >800 -0.7 

Regional 5.6 ± 0.7 7.4 ± 3.1À 2.5-14 >800  

* These are for power-law noise and not flicker noise but should be close; À These were calculated with another software which 

scales the amplitudes different ï they have been converted to be the same as CATS. See Appendix A. 
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[Calais et al., 2006] looked at sites in the North American Plate interior and estimated the random 

walk noise amplitudes using MLE and assessed them against their monument class (sites whose 

monuments are suitable for tectonic studies such as braced monuments, pillars, bedrock, anchored 

pillars etc. and those that are not suitable such as rooftops and fence posts). They found random walk 

amplitudes on the order of a few mm/yr
½ 

to 10 mm/yr
½ 

and found that the tectonically suitable 

monuments performed slightly better. However they did not estimate the amount of flicker noise in 

the time series so the random walk amplitudes will be biased high by neglecting this noise. [A R 

Amiri-Simkooei et al., 2007] used a different technique to MLE, least-squares variance covariance 

estimation (LS-VCE) but came up with similar results to MLE. As well as increasing the number and 

time span of series  examined, different stochastic models have been introduced as candidates. [J. 

Langbein, 2004; 2008] introduced First-Order Gauss Markov noise (equivalent to an autoregressive 

noise of order 1), a Generalised Gauss Markov noise, Bandpass noise (due to spectral leakage around 

a certain frequency such as the annual) and multiple combinations of these and the more usual power-

law models. No model has stood out as being more suitable for GPS coordinate time series. Generally 

we find that series are distributed amongst the various model combinations most likely indicating that 

the data is not sufficiently long enough to allow such increases in the degrees of freedom of the model 

to choose a preferred model. [Santamaría-Gómez et al., 2011] following on from [Simon Williams 

and Willis, 2006], who were examining DORIS data, tested two alternative white noise models, time 

variable white noise (where the white noise amplitude is allowed to reduce with time) and variable 

white noise (where the daily formal errors are used and you solve for a variance scale parameter). In 

all they tested 27 different stochastic models (mainly different combinations of 7 models). They found 

that any combination of coloured noise with variable white noise was significantly superior to the 

simple white noise model and the time-variable white noise.  

[J. Langbein, 2008] examined the time series from 236 sites in Southern California and Southern 

Nevada. He found that the sites with the smallest errors were those in Nevada (dry desert) with deeply 

braced monuments. Sites that were installed within regions of active pumping of both oil and 

groundwater had the largest errors. More recent papers tend to focus on regional networks (either 

filtered or unfiltered) and have confirmed the previous findings (for example, [Serpelloni et al., 2013], 

[Khan et al., 2010]). Most of these papers have used MLE (and the related LS-VCE) as the estimation 

method. However, others have tried more heuristic methods to analyse the time series. [Hackl et al., 

2011], [Caporali, 2003] and [Niu et al., 2014] have used the Allan variance whereas [Bottiglieri et al., 

2010] used Independent Component Analysis and [Khan et al., 2010] in addition to using MLE also 

looked at the series autocorrelation. [Olivares and Teferle, 2013] used Bayesian Monte Carlo Markov 

chains to study the time series whereas [Montillet et al., 2013] used Negentropy and Empirical Mode 

Decomposition. However, none of the results differ from what was found using the traditional MLE 

method. 

Recently, [Dmitrieva et al., 2015] used a combination of MLE and a Kalman filter to estimate a 

network-wide estimate of  noise in GPS time series. Only one estimate of the amplitudes of the noise 

was estimated. Using 15 sites from central eastern USA they found random walk of 0.82 mm/yr
½
 

alongside flicker white noise (with amplitudes 4.0 mm/yr
¼
 and 1.1 mm respectively) in the horizontal 

but no random walk in the vertical component (the flicker noise and white noise amplitudes were 7.9 

mm/yr
¼
 and 2.3 mm respectively). The random walk amplitude is at the low end of that found from 

other geodetic data but at the high end of results found from short baseline studies (see below).  
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Short Baseline Studies  
 

In order to better isolate site-specific effects several authors have analysed long running, short GPS 

baselines (< 1km) to take advantage that certain errors such as satellite orbit, residual troposphere and 

ionosphere are differenced to negligible levels. Using a dense network of sites with braced 

monuments at Yucca Mountain, Nevada [Hill et al., 2009] found root mean square residuals of 0.20-

0.72 mm for the vertical component (no attempt was made to look at temporal correlations) and found 

a correlation in the seasonal cycle that lagged local temperature measurements by about a month. 

They suggested this could be related to bedrock thermal expansion.  [M A King and Williams, 2009], 

using 10 short baselines, found white noise on the order of 0.18 mm in the vertical and flicker noise 

with an amplitude of 1.85 mm/yr
¼
. They also placed a loose constraint on the order of any random 

walk noise due to monument instability at around 0.5 mm/yr
½ 

for a baseline. They also found annual 

variations that correlated well with temperature data but a simple model of linear thermal expansion 

could only explain the signal at one baseline. Further they also found spurious trends over 0.5 mm/yr 

that may be explainable as a combination of near field multipath and changing satellite geometry. 

Periodic Signals  
 

GPS site coordinates are naturally subject to periodic signals from a variety of sources. [Mao et al., 

1999] noted that peaks in the power spectra were clearly visible at annual and semi-annual periods for 

some sites.  A large component of signals at annual and semi-annual periods are known to be true 

physical motion [Blewitt and Lavallee, 2002; Van Dam et al., 2001] and are due to surface loading 

due to hydrology, atmospheric and ocean bottom pressure. [Blewitt and Lavallee, 2002] found typical 

amplitudes of 4 mm for the vertical in the annual and 1.5 mm for the semi-annual. However [Dong et 

al., 2002] found that less than half of the power observed at the annual period can be explained by 

seasonal surface mass redistributions and concluded that the remainder must be due to unmodeled wet 

tropospheric effects, bedrock thermal expansion, satellite orbits and phase centre variation models. 

Spurious long period signals can also occur due to aliasing of tidal signatures [Penna and Stewart, 

2003; Penna et al., 2007]. A prominent 13.6 day peak in the power spectrum of the common mode 

noise was seen by [S.D.P. Williams et al., 2004] and attributed to tidal aliasing.  Using 167 sites from 

the International GNSS Service (IGS) network, [Ray et al., 2008] found anomalous harmonics in the 

spectra at 1.040 ± 0.008 cycles per year (up to around the 6
th
 harmonic) which is close to the repeat 

period of the GPS constellation of 351.2 days. These harmonics of the GPS ñDraconiticò year have 

also been found by [A R Amiri-Simkooei et al., 2007; Santamaría-Gómez et al., 2011] amongst others. 

The effect an annual signal (or any long period signal) has on estimated trends if they are unaccounted 

for was studied by [Blewitt and Lavallee, 2002; M S Bos et al., 2010] and they recommended that 2.5 

years be adopted as a standard minimum span for estimating trends. Below 2.5 years the velocity can 

be biased to an unacceptable level. This however is only true in the case when no annual signal is 

estimated. [James L. Davis et al., 2012] explored the implications that seasonal signals may not be 

pure sinusoids with a constant amplitude and phase and suggested that some of the noise in GPS time 

series might be due to neglecting the variability of the seasonal signal. However their seasonally 

derived stochastic model (similar to the annual band-pass noise explored by [J. Langbein, 2004; 

2008]) would always lead to a flat spectrum at frequencies lower than the annual; something that has 

not been seen in GPS time series so far (see Figure 2 of [Ray et al., 2008] for example). It is likely 
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that it forms some part of the noise characteristics of GPS time series but not at a sufficiently large 

level to be the main cause of the time-correlated noise. 

Offsets 

 

It is well known that GPS coordinates time series are disrupted by offsets (sharp change of the mean) 

that can be broadly categorized into actual crustal movements, mainly earthquakes, or artificial events 

such as environmental, equipment malfunction and change or human error that either occur at known 

(such as documented equipment changes) or unknown times with sizes that are, at best, known very 

imprecisely. A thorough investigation of offsets in GPS time series was performed by [S. D. P. 

Williams, 2003]. He showed that on average one offset occurs on a component by component basis 

every 9 years (but this could be as frequent as one in every 2 years) and that undetected offsets in the 

time series can mimic random walk behaviour. Following on from this [Gazeaux et al., 2013] reported 

on the results of the Detection of Offsets in GPS Experiment (DOGEx) which was used to test the 

effectiveness of various methods used by different groups to detect and remove offsets. They found 

that currently, manual methods were superior to any automatic solution. They also noted from 

analysing the SOPAC archive (the Scripps Orbit and Permanent Array Center) that out of all noted 

offsets 33% were unknown, 34% due to a seismic event and 29% attributed to equipment change. 

Finally [F.K. Wyatt and Agnew, 2005] studied the baseline between two continuous GPS sites at 

Pinon Flat Observatory in southern California, PIN1 and PIN2, which are some of the oldest 

continuous sites having begun measuring in the early 1990ôs. The records for these sites have been 

meticulously maintained and many experiments were performed there to test the equipment. As 

mentioned above the baseline analysis of these two sites reduces the noise by up to an order of 

magnitude allowing offsets of the order of 1 mm or less to be detected and attributed to such changes 

as simple removing and replacing the same antenna. Such offsets would not be visible in a normal 

individual coordinate time series. 

Campaign Measurements  
 

Very little work has been done on the noise uncertainties of campaign GPS and there is no real 

defining paper on the subject. In general the noise at a campaign site should be no different than at a 

continuous GPS site apart from two obvious differences. First, campaign measurements may use 

ordinary tripods during the measurement campaign (which may or may not consist of a full 24 hour 

dataset) and therefore no permanent anchorage to the solid bedrock. It would therefore be difficult to 

assess monument motion in the same manner as for the permanent sites. Secondly, the antenna and 

tripod (where used) will be installed over a benchmark during every campaign. Theoretically this 

should lead to an additional ñset-upò noise that would only manifest itself in continuous data at the 

start of the measurements and when there was a change in the antenna/monumentation at the site. We 

have no knowledge of the size of this set up noise and it would likely be operator dependent. We 

know from [F.K. Wyatt and Agnew, 2005] that removing and replacing the antenna can produce 

offsets on the order of a few mm. Factoring in uncertainties in measuring the height of the antenna 

above the benchmark which is also likely to be on the order of a few mm. [Arianna Pesci et al., 2009; 

A. Pesci et al., 2010; Teza et al., 2010] have produced the most comprehensive work on this so far. 

They use simulated data with noise equivalent to continuous GPS (or real data from sites close to the 
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campaign site) and add an additional noise to account for the ñset-upò noise (which is white noise per 

individual campaign) and run Monte Carlo simulations to estimate the trend uncertainties. The only 

unknown is the size of this ñset upò noise. An experiment where campaign sites were set up and 

removed over a number of weeks with a very close permanent site(s) in order to produce baseline 

solutions is the likely way to go forward. 

Conclusions 
 

There is an extensive body of literature examining the stochastic noise in GPS coordinate time series 

and other major effects expected to have an effect when attempting to measure trends, changes in 

trends and their associated uncertainties. The predominant finding is that GPS coordinates are 

correlated both spatially and temporally and that an appropriate model is a combination of flicker 

noise and white noise (or potentially white noise and power-law noise with a spectral index close to -1 

or slightly lower). The origin of this noise is still unknown but we do know that over time both the 

amplitude of the white noise and the time-correlated noise has reduced in size pointing at least partly 

to something that is not purely physical (e.g. tropospheric or ionospheric) but related to the 

improvements in the processing algorithms, the satellite geometry and the number of GNSS sites 

available. Random walk, which is attributed to motion of the monument, has not been categorically 

proven so far. If it does indeed exist that it should be lower than 1 mm/yr
½ 

at well-designed sites. A 

conservative value to use may by the 0.82 mm/yr
½ 

found by [Dmitrieva et al., 2015]. Another good 

review on some of the issues for GPS coordinates is given by [M King et al., 2010]. The size of the 

noise is dependent on the type of network you have from global, through to filtered regional and short 

baseline solutions, the noise decreases respectively. The noise amplitudes have also steadily reduced 

in time. When estimating the trends of the continuous and campaign GPS the noise amplitudes and 

models should be derived from the long continuous sites to provide the best, most realistic stochastic 

model for the project. In terms of the campaign measurements we should use the models derived from 

the continuous results and factor in an additional set up noise with a best guess estimate of the 

amplitude. 

3ÔÏÃÈÁÓÔÉÃ -ÏÄÅÌÌÉÎÇ ÏÆ '03 ÔÉÍÅ ÓÅÒÉÅÓ 

Methods  
 

There are many different methods in the scientific literature for estimating and qualifying temporal 

correlations in time series. Many of these methods are heuristic in nature such as Allan variance, 

detrended fluctuation analysis, power spectral analysis, variograms. Others such as Maximum 

Likelihood Estimation (MLE) and Variance-Covariance Estimation are more parametric [Beran, 

1994].  Often the objective of the statistical analysis is not to show that there are time correlations in 

the data but to characterize it in order to understand its behaviour regarding other parameters and their 

uncertainties estimated from the time series. In this work we use one heuristic method, Power Spectral 

analysis and one parametric method, MLE, to produce a realistic stochastic model for the permanent 

monitoring stations based on the analysis of the vertical time series provided, inference from 

comparison with time series from stations in Netherlands processed by other groups using established 

scientific processing software and comparison with past analysis of GPS time series (see literature 
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review above). Power spectra are well known methods for examining time series in the frequency 

domain. They measure the amount of a signalôs power occurs in a given frequency band. We use here 

the redefined periodogram [Scargle, 1982] (and its equivalent for continuous data using FFTôs) to 

evaluate the power spectrum of the time series. Power spectra are useful visualization tools because 

many stochastic models have a simple functional relationship to frequency (for example, equations 1 

and 2 above), significant periodic signals are easy to identify and the overall scale of the process can 

be evaluated.  

We will use Maximum Likelihood Estimation as described by [J. Langbein and Johnson, 1997; Mao 

et al., 1999; S.D.P. Williams et al., 2004; Zhang et al., 1997] to evaluate the amplitudes and type of 

stochastic model present in the GPS time series.  Importantly, for reasons explained further below, we 

employ the methods, algorithms and stochastic models introduced in [M Bos et al., 2008; M S Bos et 

al., 2013; M S Bos et al., 2014]. First, we will give a very brief introduction to MLE to facilitate the 

interpretation of the results. 

Given a Gaussian data vector, x, the joint distribution function for a given covariance matrix, C, is 

equal to 
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where n is the number of data and det is the matrix determinant. The log-likelihood function is given 

by 
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where ln is the natural logarithm. The covariance matrix is adjusted until the likelihood estimate is 

maximised. In addition, since the data vector x is the residual from a linear model typically including 

an intercept, secular rate (or rates), offsets and periodic signals, these parameters need to be evaluated 

alongside the estimated covariance matrix. The data residuals, x, are related to the design matrix, A, 

the original data xô and the estimated model parameters, m by  

 ὼ ὼ ὃά (5) 

using the weighted least squares formula 

 ά ὃὅ ὃ ὃὅ ὼᴂ (6) 

 

The data covariance matrix, in GPS time series analysis [J. Langbein and Johnson, 1997; Mao et al., 

1999; Zhang et al., 1997] typically takes the form 

 ὅ  „ Ὅ  „  ὅ  „ὅ  (7) 

 

or  

 ὅ  „ Ὅ  „  ὅ  (8) 
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where I is the n x n identity matrix representing the unit covariance matrix for white noise (no cross 

correlation), Crw, Cfl and Cpl are the unit covariance matrices for random-walk, flicker or any other 

temporally correlated noise (often power law noise with a spectral index, ə) respectively and ů
2
 

representing the variance of the various stochastic models.  

The likelihood function is typically maximised using a function such as the uphill simplex or Brent 

algorithms.  If we wish to test between competing models of the covariance matrix or different linear 

models, A, then we can compare the ML values. However this does not take into account the 

complexities of the different models (number of estimated parameters both in the linear and the 

stochastic model). A better test is to use the Bayesian Information Criteria (BIC) which is defined as 

 ὄὍὅ ς ὓὒὉὯÌÎὲ (9) 

 

where MLE is the maximum likelihood estimate, k is the number of estimated parameters (both linear 

and stochastic). If the number of parameters between different models remains equal then the BIC is 

equal to the MLE. 

There are three main, computationally intensive, parts to this problem: the computation of the 

determinant of the covariance matrix, the weighted least squares and the inverse of the covariance 

matrix. If the MLE is performed in a high-level, numerical computation language such as matlab then 

the three parts can be computed as shown in the equations. However there are different methods for 

obtaining the individuals parts which are computationally faster (up to O (n log n) instead of O (n
3
)) 

and often have greater numerical stability. These often depend on the form of the covariance matrix 

and are discussed to some extent in [M Bos et al., 2008; M S Bos et al., 2013; M S Bos et al., 2014]. 

Stochastic Models 
 

As can be seen from above, MLE relies on the choice of stochastic models available (of which there is 

a huge variety) that can be formulated to create a covariance matrix. BIC can then be used to test 

between competing models and between combinations of models.   Perhaps the most common 

stochastic model in geophysics is the power-law model as described by equation 2. It is related to 

fractals and fractional Brownian motion. Power law models where the spectral index is an integer 

have been given names such as random walk (ə = -2), flicker noise (ə = -1), and white noise (ɔ = 0). 

Another common model, particular in statistics, is the autoregressive model : primarily the 

autoregressive one parameter model (AR(1) or sometimes known as First-Order Gauss Markov noise) 

due to its ease of implementation. In terms of power spectrum an AR(1) model has a slope of -2 at 

high frequencies and a slope of 0 at low frequencies. The cross-over frequency depends on the single 

parameter, ɔ. [M S Bos et al., 2014] (re) introduced some other useful models. The first, an 

autoregressive fractionally integrated (ARFI) model has a change in the power law slope related to ɔ 

where the difference between the slopes on either side of the cross-over frequency is always 2 but the 

whole spectra is tilted by ə. So if the low frequency spectral index is -1, then the high frequency 

spectral index would by -3. A Generalised Gauss Markov, first introduced by [J. Langbein, 2004], is 

similar to an AR(1) except the spectral index above the cross-over frequency can take any spectral 

index, ə. However, the spectral index below the cross-over frequency is always 0. We introduce here 

a new model, the Fractionally Integrated Generalised Gauss Markov (FIGGM), which combines the 

GGM model and fractional integration (which forms power-law noise: comes from the fact that 
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integrating white noise produces random walk noise) which can be defined by three parameters, əL, əR 

and ɔ; a spectral index below (to the left) the cross-over frequency, a spectral index above (to the 

right) of the cross-over frequency and a parameter, ɔ (0 Ÿ 1), that defines where the cross-over 

frequency lies. As ɔ tend to 1 the cross-over frequency decreases in frequency. The FIGGM model is 

useful in that all of the above models are subsets of this model. 

Permanent GPS Data 
 

The primary dataset supplied by NAM are the time series from 20 permanent stations in northern 

Netherlands (Figure 1 below). The processing was carried out by 06-GPS using the GNSMART 

software by Geo++ GmbH.  The description of the methodology is given in the project report (Geo++ 

Anjum continue GPS test NAM447_4.pdf with addendum: Continuous Object Monitoring withh 

Gps.pdf). 

 

Figure 1.  Map of the GPS sites used in this study. Triangles indicate the permanent sites provided by NAM and processed 

by 06-GPS. Squares indicate permanent sites that have been processed by the Jet Propulsion Laboratory and Nevada 

Geodetic Laboratory. Circles indicate the position of some of the campaign sites. 

The main feature of this processing to note is that the approach uses a Kalman filter with a 12 station 

(not consistent throughout the time period) network of reference sites that are held ñfixedò. These 

fixed stations are processed annually (with six weeks of data) in a separate processing stream where 

thier positions are relaxed to allow changes in their coordinates. If the coordinates change beyond a 

pre-defined threshold then the reference coordinates are updated and used in future processing 

updates. The coordinates are sampled to hourly intervals which is unusual with respect to the 

scientific community which typically uses intervals of days and sometimes weeks. Of the 20 

permanent stations only three (AME1, MODD and ANJM) date back to 2006 and have a long time 

series that is preferable for a thorough time series analysis. 

file:///D:/SHELL/Geo++%20Anjum%20continue%20GPS%20test%20NAM447_4.pdf
file:///D:/SHELL/Geo++%20Anjum%20continue%20GPS%20test%20NAM447_4.pdf
file:///D:/SHELL/Continuous%20Object%20Monitoring%20withh%20Gps.pdf
file:///D:/SHELL/Continuous%20Object%20Monitoring%20withh%20Gps.pdf
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Reference time series for comparison  
 

In order to aid the interpretation of a suitable stochastic model we have supplemented the above 

dataset with other useful reference time series.  In addition to the 20 permanent sites, 06-GPS has also 

provided a reference time series for the ITRF station Westerbork which is 450 days long. The Nevada 

Geodetic Laboratory (NGL) at the University of Nevada, Reno, the geodetic group at the Jet 

Propulsion Laboratory (JPL) and the Scripps Orbit and Permanent Array Centre (SOPAC) all produce 

time series for continuous sites around the global. Useful sites in the region from JPL and NGL are 

also plotted in Figure 1.  JPL and NGL both use the GIPSY/OASIS software whereas SOPAC uses 

the GAMIT/GLOBK software. Figure 2 shows four time series for the Westerbork site. It is plainly 

clear that the 06-GPS site coordinates are more precise than the daily GPS solutions from the research 

groups (however that does not imply they are more accurate) and is clearly a result of the constraints 

imposed by the Kalman filter and the fixing of the reference stations.  The same conclusions was seen 

when the 06-GPS solutions for AME1, ANJM and MODD were compared to the Leica CrossCheck 

results which uses the Bernese software (see the document ñCrosschecking the GPS Leica 

CrossCheck serviceò for more details).  Another thing to note is the similarity between the JPL and 

NGL solutions that both use GIPSY whereas the SOPAC solution which uses GAMIT/GLOBK is less 

similar and appears to have a larger annual signal compared to the others. 

 
 

Figure 2. The vertical coordinate time series for the ITRF site Westerbork from different GPS solutions. 

 

For the remainder of the stochastic modelling we will concentrate on the three longest sites: AME1, 

ANJM and MODD in the Waddenzee but supplement and compare those with results from the NGL 

solutions. 

Power Spectral Analysis  

 

The power spectra from the three longest sites are plotted in Figure 3. Also shown is the stacked 

(averaged) power spectrum from all 20 continuous sites. Note that this plot is in log-log form so that 

any power-law process will show as a straight line in the figure. White noise for instance would show 

as a flat spectrum (slope of 0) whereas random-walk noise would show increasing power at low 

frequencies with a slope of -2. We see that the spectra from AME1, ANJM and MODD and the 

averaged power spectrum all show power-law dependence and peaks relating to various tidal 
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frequencies. Also shown is the power-spectrum for power-law noise with an index of -1.88. This is a 

good fit to the observations at high frequencies but appears to overestimate the power at periods lower 

than around 10-20 days (~ 6e
-7
 Hz). At lower frequencies the spectra appear to have a different, lower, 

power-law dependence that looks to be a good candidate for a FIGGM model. Also evident is the lack 

of a white noise floor at the highest frequencies (there is a little flattening of the spectra close to the 

Nyquist frequency but that is related to the discretization of the data). 

 
Figure 3. Power Spectra of the hourly time series. Blue dots represent the combined spectra from the longest sites: AME1, 

ANJM and MODD. Orange curve is the averaged spectrum from all 20 sites. Light blue curve is a synthetic power spectrum 

for power-law noise with a spectral index of -1.88. Light grey lines are some representative positions of tidal peaks.  

 

The power spectra for the three longest sites are also shown with more detail in Figure 4. Included on 

the figures are some representative spectra so that the 06-GPS time series can be placed in context 

with previous studies. The red line on each plot is the spectra derived from the ML fit to the hourly 

data (see MLE section below) and the yellow line is the spectra from a power-law ML fit to the data. 

The blue line is the average from the ML fit to 11 NGL sites in the region (unfiltered) and the green 

line is the ML fit to the same sites after an average common mode signal has been removed (filtered 

data) and a representative curve for the filtered noise model from Table 1.  The purple line 

characterizes the spectra from short baseline studies [Hill et al., 2009; M A King and Williams, 2009] 

and the grey lines are spectra for random-walk noise at levels suspected to be due to monument 

motion; 0.5 mm/ãyr [M A King and Williams, 2009] and 2 mm/ãyr [J. Langbein and Johnson, 1997]. 
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Figure 4a. Power Spectrum for site AME1 (blue dots). Also included on the plot is the spectrum derived from the MLE 

analysis (below) and some representative spectra from the literature review and the NGL time series in the region. 

 

We note the following observations: 

¶ The power of the hourly data is significantly lower at all frequencies than the unfiltered 

results from the geodetic research groups (as also witnessed visually in Figure 2). 

¶ The power is lower than the filtered (regional networks) and does not show a similar white 

noise limit at high frequencies. 

¶ The power at low frequencies (below 10-20 days) is similar in amplitude to the short baseline 

studies. 

¶ The power-law slope at low frequencies is similar to the baseline, filtered and unfiltered 

results. 

¶ At high frequencies the power-law slope is close to -2 which could be interpreted as 

monument motion. However if it was it would be much greater than previously encountered 

and would likely be visible in baseline and filtered studies. 

¶ The slope and power of MODD at low frequencies are larger than ANJM and AME1. 
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Figure 4b. Power Spectrum for site ANJM (blue dots). Also included on the plot is the spectrum derived from the MLE 

analysis (below) and some representative spectra from the literature review and the NGL time series in the region. 
 

The close to random-walk behaviour at high frequencies is therefore unlikely to be due to monument 

motion but is likely due to the Kalman filtering which will constrain the coordinates stochastically as 

a random walk. How much this constraint affects the series at low-frequencies, where subsidence and 

time-varying subsidence effects are to be seen, is unknown. Given the good agreement found between 

the Leica CrossCheck and the 06-GPS results for AME1, ANJM and MODD (particularly the 

differenced results to MODD ï similar to but not exactly equivalent to the baseline and filtered 

results) we will proceed to produce a realistic stochastic model from these three sites that can then be 

applied to the rest of the continuous sites and use it to produce a model for the campaign sites. 
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Figure 4c. Power Spectrum for site MODD (blue dots). Also included on the plot is the spectrum derived from the MLE 

analysis (below) and some representative spectra from the literature review and the NGL time series in the region. 
 

Maximum Likelihood Analysis  
 

As mentioned above there is a serious computational burden involved in MLE primarily centred on 

the covariance matrix, computing its inverse and its determinant and is one of the reasons for the 

development of heuristic methods. Even using daily observations (as opposed to hourly) a simple ML 

algorithm can take many hours per site depending on the length and complexity of the covariance 

model chosen. For sites such as AME1, ANJM and MODD with over 2800 days (68000+ hours) 

forming a covariance matrix alone would require around 35Gb of memory without attempting to 

invert it etc. Therefore attention must be placed on exactly how to process the data to get a 

satisfactory result within a reasonable amount of computational burden (in both time and size). 

Depending on the stochastic model chosen and whether the series is free from gaps and outliers 

certain methods allow various kinds of computational speed ups and the ability to forgo the creation 
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of a full covariance matrix. If we choose a stochastic model where the covariance matrix, or its 

cholesky decomposition, is Toeplitz then there are several methods that can be employed that can be 

of the O(n
2
) or even in some circumstances O(n log n) instead of the usual O(n

3
) in the number of 

computations required.  

The first obvious choice is to convert the hourly data to daily data by simple averaging and then use 

conventional methods to calculate the stochastic noise parameters. We chose to use a power law plus 

white noise model and estimate a piece-wise linear trend with break points at the end of each year. 

The results are shown in Table 2. 

 

Table 2. ML estimated parameters from daily averaged results assuming a power-

law plus white noise model with a linear model that estimates a piece-wise linear 

trend with break points at the end of each year. The results do not differ 

significantly when a single trend is used instead. * these amplitudes have been  

multiplied by ȹt-ə/4 to compare with the amplitudes in Table 1. See Appendix A. 

 

Site name 

Spectral Index 

ə 

Power Law 

Amplitude* 

(mm/yr-ə/4) 

White Noise 

Amplitude 

(mm) 

0647 -1.95 ± 0.13 7.00 ± 0.31 0.00 ± 0.0010 

AME1 -1.85 ± 0.04 4.71 ± 0.06 0.00 ± 0.0000 

ANJM -1.87 ± 0.04 5.21 ± 0.07 0.00 ± 0.0001 

dw16 -2.15 ± 0.11 9.56 ± 0.35 0.00 ± 0.0007 

dw26 -2.03 ± 0.11 7.94 ± 0.29 0.00 ± 0.0000 

dzyl -2.08 ± 0.15 8.65 ± 0.41 0.00 ± 0.0000 

eems -1.65 ± 0.14 4.29 ± 0.19 0.00 ± 0.0011 

froo -1.95 ± 0.14 6.10 ± 0.28 0.00 ± 0.0007 

grij -1.71 ± 0.14 5.07 ± 0.22 0.00 ± 0.0000 

MODD -1.86 ± 0.04 4.76 ± 0.06 0.00 ± 0.0001 

norg -1.94 ± 0.13 6.49 ± 0.29 0.00 ± 0.0009 

over -2.01 ± 0.14 6.80 ± 0.30 0.00 ± 0.0013 

sted -1.83 ± 0.17 5.88 ± 0.28 0.00 ± 0.0000 

tenp -1.89 ± 0.09 6.10 ± 0.18 0.00 ± 0.0000 

tjuc -1.80 ± 0.12 5.29 ± 0.24 0.00 ± 0.0015 

usqu -1.99 ± 0.15 7.35 ± 0.36 0.00 ± 0.0000 

veen -1.97 ± 0.09 7.32 ± 0.21 0.00 ± 0.0003 

wsra -2.21± 0.11  9.05 ± 0.30 0.00 ± 0.0000 

zand -2.00 ± 0.14 7.91 ± 0.35 0.00 ± 0.0019 

zdvn -2.03 ± 0.13 7.50 ± 0.34 0.00 ± 0.0010 

zeer -1.68 ± 0.15 4.41 ± 0.21 0.00 ± 0.0000 

weighted 

mean 
-1.90 ± 0.02 5.27 ± 0.22 0 ± 0 

 

We find very consistent results for all the sites with the spectral index close to -1.90 ± 0.02, amplitude 

of 5.3 ± 0.2 mm/yr
-ə/4

 and no white noise. This is inconsistent with previous studies for daily GPS and 

appears to reflect the noise at high frequency in the hourly data. For the three longest sites we can also 

analyse the time series averaged to three days and one week (Table 3).  The main finding from this is 

a reduction of the spectral index as we average over longer time scales. This is consistent with the 

change in the slope in the power spectrum seen in Figures 3 and 4. 

As mentioned above the computational burden to analyse the hourly data with a power-law plus white 

or a FIGGM plus white noise model would be too great. However two factors do allow us to perform 

an MLE on the data. First, Figures 3 and 4 and the white noise amplitudes in Tables 2 and 3, lead us 

to assume that we do not have a white noise component in the data (at least not at the level 
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measurable) and secondly the time series are very nearly completely continuous, that is, there are very 

few gaps in the data.  

 

 

Table 3. ML estimated parameters for daily, tridaily and weekly averaged time series from the three longest sites. 

Results from a power-law plus white noise and an iGGM plus white noise model are shown. Cells where an uncertainty 

is not given are either because the uncertainty is smaller than the decimal places given or because no uncertainty was 

estimated 

Site Sampling Model əR əL ɔ ůpl*  ůwh trend 

AME1 

Daily 
pl -1.85 ± 0.04   0.308 ± 0.004 0.0 -6.97 ± 1.22 

figgm -1.98 ± 0.01 -0.07  ± 0.00 0.926 ± 0.004 0.318 ± 0.0003 0.003 ± 0.0000 -6.59 ± 0.04 

Tri-daily 
pl -1.40   0.426 ± 0.010 0.000 ± 0.0000 -6.85 ± 0.25 

figgm -2.00 ± 0.25 -0.85  ± 0.12 0.572 ± 0.110 0.421 ± 0.010 0.000 ± 0.0196 -6.70 ± 0.10 

Weekly 
pl -1.26   0.464 ± 0.0162 0.0 -6.81 ± 0.16 

figgm -1.31 ± 0.12 -0.003 ± 1.17 0.975 ± 0.028 0.463 ± 0.0162 0.000 ± 0.056 -6.70 ± 0.12 

ANJM 

Daily 
pl -1.87 ± 0.04   0.332 ± 0.0044 0.000 ± 0.00 -3.79 ± 1.39 

figgm -2.00 ± 0.01 -0.007 0.908 0.325 ± 0.0040 0.000 ± 0.000 -3.69 ± 0.03 

Tri-daily 
pl -1.23   0.447 ± 0.0102 0.000 ± 0.000 -3.78 ± 0.16 

figgm -2.00 ± 0.27 -0.71  ± 0.10 0.516 ± 0.096 0.438 ± 0.0101 0.000 ± 0.000 -3.71 ± 0.06 

Weekly 
pl -0.99   0.472 ± 0.0165 0.000 ± 0.001 -3.76 ± 0.08 

figgm -1.00 ± 0.09 -0.00  ± 0.01 0.989 ± 0.012 0.469 ± 0.0164 0.000 ± 0.035 -3.72 ± 0.08 

MODD 

Daily 
pl -1.86 ± 0.04   0.307 ± 0.0041 0.000 ± 0.00 -3.10 ± 1.27 

figgm -1.70 ± 0.01 -0.01 ± 0.00 0.995 ± 0.003 0.330 ± 0.0008 0.000 ± 0.00 -3.02 ± 0.22 

Tri-daily 
pl -1.48   0.426 ± 0.0098 0.000 ± 0.00 -3.02 ± 0.32 

figgm -1.48 ± 0.06 -0.00 ± 0.01 0.998 ± 0.002 0.425 ± 0.0097 0.000 ± 0.01 -3.08 ± 0.28 

Weekly 
pl -1.52   0.424 ± 0.0332 0.176 ± 0.05 -3.05 ± 0.29 

figgm -1.49 ± 0.13 -0.00 ± 1.70 0.997 ± 0.004 0.435 ± 0.0545 0.160 ± 0.10 -3.09 ± 0.25 

* Amplitudes are converted so they do not contain the ȹt scaling (used in CATS) so that the PL and FIGGM results can be 

compared. See Appendix A. 

All three long sites have only 19 or 20 out of over 60000+ hours missing
1
 and so we can fill those 

gaps by linear interpolation without fear of that contaminating the results. Now because we are only 

assuming one noise model we can perform an MLE that is efficiently computed using the Fast Fourier 

transform in O(n log n) operations. 

For the analysis of the hourly data we selected to use three linear models: trend only, piecewise linear 

trends with breakpoints at the end of each year and a trend plus acceleration (all models also include 

an annual and semi-annual signal). We also selected to test three stochastic models: power-law noise 

only, FIGGM only and white noise only (as a null hypothesis). The results are given in Tables 4, 5, 

and 6 below. The upper tables give the stochastic noise parameters and the lower give the estimates of 

the trends (and accelerations) and their uncertainties. The BIC for the most likely stochastic and linear 

model combination is highlighted in all the tables. In every case the preferred stochastic model is the 

FIGGM (which can be visually confirmed in Figure 4). The preferred linear model is the trend only 

for AME1 and the trend plus acceleration for ANJM and MODD; but only slightly for ANJM 

compared to the trend only. We see that in the case of the FIGGM model that the əR parameter is 

fairly consistent throughout whereas the əL and ɔ parameters are dependent on the linear model and 

reflect the conflict between the stochastic and linear parameters.  For instance in the case of MODD, 

where there is an obvious long period variation, the əL parameter which characterises the power 

spectrum at low frequencies changes from -1.20 for the trend only to -0.30 and ɔ, which represents the 

                                                           
1
 Although it is obvious that where some data is lost over a few hours the coordinates are generated with the 

same coordinate as prior to the data loss. 
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cross-over frequency, increases indicating a shift to lower frequencies. The piecewise linear trend 

ñsoaks upò some of the low frequency power and the stochastic model becomes less correlated.  

Table 4: AME1 
 

 Linear Model əR əL ɔ ů MLE BIC 

FI GGM Noise 

Trend -1.90 -0.91 0.9847 0.095538 538311.421 -1076511.469 

 Piecewise -1.89 -0.28 0.9912 0.095511 538330.531 -1076471.728 

Acceleration -1.89 -0.91 0.9848 0.095538 538311.450 -1076500.389 

Power-Law Noise 
Trend -1.87 - - 0.095653 538228.208 -1076367.318 

Piecewise -1.87 - - 0.095653 538228.567 -1076290.074 

White Noise 
Trend - - - 0.834429 389448.878 -778819.794 

Piecewise - - - 0.646531 406973.038 -813790.154 

 

  Stochastic Model 

Year FIGGM FIGGM* FIGGMÀ Power Law White 

Piecewise 

Linear 

Trends 

2007 -7.48 ±   0.25 -7.53 ±   0.60 -7.53 ±   0.60 -8.20 ±   5.03 -7.75 ±   0.02 

2008 -6.87 ±   0.31 -6.81 ±   0.72 -6.81 ±   0.72 -6.03 ±   5.05 -6.82 ±   0.01 

2009 -6.96 ±   0.31 -6.99 ±   0.72 -6.99 ±   0.72 -7.22 ±   5.07 -6.96 ±   0.01 

2010 -6.06 ±   0.31 -5.98 ±   0.72 -5.98 ±   0.72 -5.51 ±   5.07 -6.08 ±   0.01 

2011 -6.60 ±   0.31 -6.64 ±   0.72 -6.64 ±   0.72 -6.38 ±   5.05 -6.60 ±   0.01 

2012 -5.97 ±   0.31 -6.02 ±   0.72 -6.02 ±   0.72 -7.32 ±   5.05 -5.95 ±   0.01 

2013 -6.02 ±   0.32 -5.99 ±   0.73 -5.99 ±   0.73 -5.54 ±   5.07 -6.06 ±   0.02 

2014 -10.22 ±   0.47 -10.40 ±   0.94 -10.40 ±   0.94 -10.89 ±   5.67 -10.06 ±   0.02 

Trend Only   -6.76 ± 0.08 -6.75 ± 0.08 -7.00 ± 1.58 -6.58 ± 0.0014 

Trend plus 

Acceleration 

Trend   -6.80 ± 0.24   

Acc.   0.0160 ± 0.06   

* This uses the stochastic parameters derived from the single trend only model, À uses the stochastic 

parameters from the trend and acceleration model 

The crucial parameters in this model are əL and ɔ as these really dictate the uncertainty estimates of 

the trends (see the bottom half of Tables 4, 5 and 6). We notice that these parameters are most 

consistent when we look at the preferred model based on the BIC. To test this further we simulated 

400 time series using the stochastic and linear parameters from MODD for the trend plus acceleration 

model. We then fit those parameters using MLE for all three linear models. The results, in the form of 

histograms, are shown in Figure 5. We can see that the estimated stochastic parameters for the trend 

and piecewise continuous are all within the expected ranges from the simulations including the -1.2 

and -0.3 for əL.  

The bottom halves of Tables 4, 5 and 6 show the estimated trends (and accelerations) and their 

uncertainties as a function of the stochastic model used. We can immediately see the overly 

pessimistic and overly optimistic uncertainties from the power-law and the white noise model; there is 

a scaling factor of 250-500 between the uncertainties of the two models. The two FIGGM columns 

marked with a * and a À take the stochastic model parameters from the trend only and the trend plus 

acceleration models and apply it to the piecewise linear model. For the two sites where the trend plus 

acceleration model is the most likely we see the uncertainties from that model are somewhere between 

the other two. For AME1 where there is no acceleration, the uncertainties are close to the trend only 

model but bigger than the piecewise linear model which probably under predicts the uncertainties. 
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Table 5: ANJM 
 Linear Model əR əL ɔ ů MLE BIC 

FI GGM Noise 

Trend -1.90 -0.81 0.9839 0.098739 536047.484 -1071983.595 

Piecewise -1.93 -0.10 0.9904 0.098703 536072.260 -1071955.186 

Acceleration -1.93 -0.66 0.9859 0.098731 536053.307 -1071984.104 

Power-Law Noise 
Trend -1.90 - - 0.098896 535938.434 -1071787.769 

Piecewise -1.90 - - 0.098896 535938.535 -1071710.011 

White Noise 
Trend - - - 0.796477 392646.309 -785214.656 

Piecewise - - - 0.633136 408411.147 -816666.371 

 

 Stochastic Model 

Year FIGGM FIGGM* FIGGMÀ  Power Law White 

Piecewise Linear Trend 

2007 -5.18 ±   0.20 -5.22 ±   0.52 -5.22 ± 0.41 -4.75 ±   5.90 -4.61 ±   0.02 

2008 -2.70 ±   0.23 -2.74 ±   0.62 -2.73 ± 0.50 -3.31 ±   5.91 -2.84 ±   0.01 

2009 -5.31 ±   0.23 -5.28 ±   0.62 -5.29 ± 0.50 -4.78 ±   5.94 -5.27 ±   0.01 

2010 -3.70 ±   0.23 -3.72 ±   0.63 -3.72 ± 0.50 -3.61 ±   5.93 -3.70 ±   0.01 

2011 -2.79 ±   0.23 -2.73 ±   0.63 -2.75 ± 0.50 -2.07 ±   5.91 -2.79 ±   0.01 

2012 -3.46 ±   0.23 -3.60 ±   0.63 -3.56 ± 0.50 -5.00 ±   5.91 -3.45 ±   0.01 

2013 -3.37 ±   0.24 -3.29 ±   0.64 -3.32 ± 0.51 -2.90 ±   5.94 -3.37 ±   0.01 

2014 -4.54 ±   0.37 -4.56 ±   0.84 -4.57 ± 0.69 -4.27 ±   6.62 -4.61 ±   0.02 

Trend Only Trend  -3.85 ± 0.06 -3.84 ± 0.04 -3.82 ± 1.91 -3.68 ± 0.0013 

Trend Plus Acceleration 
Trend   -4.41 ± 0.14   

Acc.   0.1625 ± 0.04   

* This uses the stochastic parameters derived from the single trend only model, À uses the stochastic 

parameters from the trend and acceleration model 

Table 6: MODD 
 Linear Model əR əL ɔ ů MLE BIC 

FI GGM Noise 

Trend -1.90 -1.20 0.9774 0.096103 537906.205 -1075701.037 

Years -1.90 -0.30 0.9907 0.096054 537941.284 -1075693.233 

Acceleration -1.90 -0.65 0.9876 0.095697 538197.075 -1076271.640 

Power-Law Noise 
Trend -1.87 - - 0.096204 537833.798 -1075578.497 

Years -1.87 - - 0.096204 537834.331 -1075501.601 

White Noise 
Trend - - - 1.508738 348766.276 -697454.591 

Years - - - 0.645565 407075.688 -813995.454 

 

  Stochastic Model 

Year FIGGM FIGGM* FIGGMÀ Power Law White 

Piecewise Linear Trend 

2007 -1.66 ±   0.25 -1.77 ±   1.02 -1.68 ± 0.39 -2.33 ±   5.13 -1.67 ±   0.02 

2008 -0.76 ±   0.31 -0.78 ±   1.14 -0.76 ± 0.48 -0.56 ±   5.15 -0.75 ±   0.01 

2009 -3.22 ±   0.31 -3.16 ±   1.14 -3.21 ± 0.48 -2.77 ±   5.17 -3.21 ±   0.01 

2010 -2.19 ±   0.31 -2.02 ±   1.15 -2.13 ± 0.48 -1.74 ±   5.17 -2.22 ±   0.01 

2011 -2.88 ±   0.31 -2.99 ±   1.15 -2.93 ±0.48 -2.60 ±   5.15 -2.85 ±   0.01 

2012 -4.31 ±   0.31 -4.37 ±   1.15 -4.31 ± 0.48 -5.45 ±   5.15 -4.31 ±   0.01 

2013 -4.15 ±   0.32 -3.93 ±   1.16 -4.08 ± 0.49 -3.02 ±   5.17 -4.20 ±   0.02 

2014 -6.31 ±   0.46 -6.82 ±   1.42 -6.50 ± 0.67 -7.12 ±   5.78 -6.16 ±   0.02 

Trend Only Trend  -2.88 ± 0.17 -2.74 ± 0.04 -3.08 ± 1.62 -2.97 ± 0.0026 

Trend Plus Acceleration 
Trend   -0.75 ± 0.14   

Acc.   -0.5801 ± 0.04   

* This uses the stochastic parameters derived from the single trend only model, À uses the stochastic 

parameters from the trend and acceleration model 
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Figure 5. Histograms of the estimated parameters from 400 Monte Carlo simulations of the MODD time series (based on the 

trend plus acceleration model). The red lines indicate the estimated parameters from the actual time series. 

 

Given a realistic stochastic model we can use this to check for any significant time-dependent 

changes. Site AME1 is a good example. We can see from Table 4 that 2014 has a trend that is around 

3-4 mm/yr larger than the other years. Is this significant or are the variations in the trend expected 

from the stochastic model? We can ask whether the yearly trends are significantly different from the 

single trend only but have to be cautious because we are estimating two sets of parameters from a 

single dataset so they are correlated to some extent. Taking cross-correlations into account and 

propagating the covariances correctly we find that 2014 is indeed significantly different from the long 
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term trend (Figure 6). However this is based on the general 06-GPS/NAM model and not modified to 

align it to the filtered regional results. 

 
Figure 6. Significance of the piecewise linear trends with respect to the long-term trend given the optimal stochastic model 

for the data. Red dots are the estimated yearly trends with respect to the long-term trend. Black lines indicate the confidence 

bounds. The bounds appear much larger than the individual formal errors because we have 8 degrees of freedom rather than 

typically examining the one-dimensional confidence. NOTE : this is purely from the optimal stochastic model derived 

from the data no attempt has been made to account for systematic effects or align the noise model with previous 

findings and processing results. 

 

Comparison with Leica CrossCheck Time Series  
 

We were also supplied with the two years of AME1, ANJM and MODD processed using the Leica 

CrossCheck service which uses the Bernese software. In a similar manner to the report 

ñCrosschecking the GPS Leica CrossCheck serviceò we examined the baseline differences between 

AME1 and ANJM with respect to MODD. We have plotted the power spectra in Figure 7 together 

with the power spectra from the same baselines from the 06-GPS results and also plotted the average 

spectrum calculated from the filtered NGL time series. 
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Figure 7.  Power Spectra for the Bernese derived Leica time series baselines and the 06-GPS baselines AME1-MODD and 

ANJM-MODD. Red dots are the average spectra from the two Leica baseline time series, blue dots from the 06-GPS data. 

Orange line shows the average spectrum from the NGL filtered series and the yellow line represents the average spectrum 

from the 06-GPS data. 

 

The results show that the Leica baseline results are less noisy than the filtered NGL series and slightly 

more noisy that the 06-GPS results. The ML analyses of the baselines give a spectral index of -0.85 

and -0.86 for AME1-MODD and ANJM-MODD respectively with amplitudes of 2.43 ± 0.38 and 2.10 

± 0.31. The estimated white noise amplitudes were 1.56 ± 0.07 and 1.29 ± 0.06 mm. For comparison 

the average values from the filtered NGL results are a spectral index of -0.85 with amplitude of 5.26 ± 

0.17 and white noise amplitude of 2.14 ± 0.11 mm. 

Discussion 
 

The analysis of the three long permanent sites together with the shorter series indicates a consistent 

FIGGM model with əR being just short of random walk at -1.9. ɔ is around 0.98 which equates to a 

cross over period of around 10+ days and the spectral index at low frequency, əL, is just below flicker 

noise and in the range [-0.65,-0.91].  The spectral index at low frequency is certainly consistent with 

the other time series produced by various groups and with the results from the literature review. 

However the amplitude is smaller than both the unfiltered and filtered series and the Leica baseline 

series and is similar to the results from short baseline studies. It is very hard to reconcile that the noise 

is equivalent to short baseline processing given that many errors are differenced to negligible levels in 

those studies, something that cannot be achieved over the much wider area of the network. It seems likely that 

the processing methodology used constrains the positions to the extent that some real land motion 

could be suppressed particularly at high frequencies. Flicker noise has been shown to characterise the 

spectrum at high frequencies (up to 1Hz) [Bock et al., 2000; J. Langbein and Bock, 2004] whereas a 

spectral index close to -2 is a likely outcome of a Kalman filter that probably treats the coordinates in 
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the constraint as a random walk. How much the low frequency end of the spectrum is constrained, and 

therefore effecting any estimates of subsidence or changes in subsidence, is unknown. Comparisons 

with the Leica CrossCheck results suggest that it isnôt biased by any significant amount but the test is 

very limited. To err on the side of caution in our results and conclusions we recommend aligning the 

noise model with previous findings. 

3ÔÏÃÈÁÓÔÉÃ -ÏÄÅÌ ÆÏÒ ÔÈÅ 6ÅÒÔÉÃÁÌ #ÏÎÔÉÎÕÏÕÓ $ÁÔÁ 

The results from the three long time series are seen to be sufficiently similar to derive a single noise 

model for all of the continuous data. This model, which we will call the 06-GPS/NAM model, is a 

FIGGM with parameters that are averages from the three models with the lowest BIC. The parameters 

for əR, əL, ɔ are -1.91, -0.74, 0.9861 respectively with ů = 0.0967 mm. This model gives an uncertainty 

in the trend of 0.6 mm/yr after 1 year down to 0.04 mm/yr after 10 years. However, given the 

uncertainty in the processing method and the comparison with both the results from the literature 

review and the other groups time series we will present some alternative models to consider: 

1. General 06-GPS/NAM model : [əR = -1.91, əL = -0.74, ɔ = 0.9861, ů = 0.0967] 

2. General 06-GPS/NAM model plus 0.5 mm/ãyr of random walk. There is the possibility that 

there exists a random walk due to monument instability that is not yet identifiable in the time 

series but will already influence the long term trend uncertainties. The magnitude reflects the 

estimate given by [M A King and Williams, 2009]. 

3. As for model 2 but 1 mm/ãyr of random walk. As well as monument instability the random 

walk could be used to also reflect any long term variations that have been damped by the 

Kalman filter. 

4. General 06-GPS/NAM model scaled by a factor of 3. This brings the power spectrum in line 

with the noise levels of the regionally filtered GPS data. However the power at high 

frequencies is too large ï the power at high frequencies is tightly constrained (see Table 2) 

5. 06-GPS/NAM modified at low frequencies to mimic the amplitude of the regional noise. The 

new parameters being [əR = -1.91, əL = -0.8525, ɔ = 0.99238, ů = 0.0967]. The main change is 

the parameter ɔ, which shifts the cross over frequency to a lower value which then increases 

the power at low frequencies. This is purely a back of the envelope calculation to mimic the 

regional noise and has no physical reason for the change in parameters. 

6. General 06-GPS/NAM model with an additional FIGGM [əR = -2, əL = -0.8525, ɔ = 0.99806, ů 

= 0.04] to mimic the regional noise. This is similar to the argument for additional random 

walk so that only powers at low frequencies are affected except the spectrum will tend to -

0.8525 instead of -2 at very low frequencies. 

7.  A model based on the daily solutions from the regional filtered data from NGL. This model 

is a power law with spectral index = -0.8525 and amplitude of 1.50 mm (5.26 mm/yr
ə/4 

in 

CATS notation) and white noise of amplitude 2.13 mm. 

Examples of simulated time series from the 7 models together with the detrended AME1 series are 

plotted in Figure 8. 
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Figure 8. Examples of simulated time series from the 7 models described in the text. Also shown for comparison is the 

detrended time series for AME1. 

 

We can see that some of the models look very similar visually to AME1 except models 4, 7 and 

partially 5. Model 7 is to be expected since it is projecting the results from a daily solution down to 

hourly values and therefore has too much power at these frequencies (although this is not important 

when estimating the trend uncertainties).  The power-spectrum of these models is shown in Figure 9. 

 
Figure 9. Power Spectra of the six of the proposed models (model 3 not shown). 

 

We can see that the two models where the 06-GPS/NAM model is modified to mimic the regional 

noise at low frequencies do just that whilst they retain the correct power at low frequencies. Model 4 

which simply scales the 06-GPS model by 3 is not a reflection of the hourly data at high frequencies. 


































