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1 Summary 
The long term subsidence study part two (LTS II) is a follow-up of part one that was finished in 2015 

(NAM, 2015a). The main objective of the LTS II project is implementation of the results obtained in 

LTS I into a stochastic workflow and its application on the Ameland field. If successful, this workflow 

could provide a new technical standard that may be used for future subsidence models and forecasts 

to be implemented in the “measurement and control cycles” as part of the “hand-on-tap-procedure”. 

A unique feature of this newly developed stochastic workflow is that it considers the uncertainty of 

both data and multiple subsurface models in the forecasting of subsidence resulting from gas 

production. 

Results of the LTS II study demonstrate that a successful workflow was created that is able to 

confront model results with measurements in an objective way. The workflow incorporates the 

findings of the LTS I study work and is able to identify the most likely model factors like reservoir 

scenarios, compaction models and influence functions. Moreover, posterior (after confrontation with 

the data) probability distributions for the input data show redefined distributions for the input values 

of the data. 

Multiple tests in NAM and TNO ensured the consistent usage of the new software code (ESIP) and 

proved the capability to produce meaningful results. A special synthetic “dummy” model was created 

to better understand the findings.  

 

Several significant innovations were applied in the use of geodetic data. Observations from levelling 

and GPS techniques have been used in the format of spatio-temporal double differences. 

Uncertainties are described by a fully populated covariance matrix, that also takes shallow 

movements into account. Outlier removal has been implemented in a formal, conservative way. All 

these measures help getting the modelling closer to reality by reducing previously adopted 

assumptions and idealizations.  

To describe the uncertainty in possible pressure scenarios for Ameland, 193 reservoir scenarios were 

created. Thirteen of these scenarios were selected with the aim to be representative for the full 

bandwidth of the possible 193 scenarios. It is assumed in the confrontation with the data that the 

prior probability is the same for all scenarios.  

On top of the pressure variation we also varied compaction models and influence functions. Each of 

these factors has its own parameter uncertainty distribution of which the values are probed by 

Monte Carlo simulation.  

Each parameter pick by the Monte Carlo procedure results in a geomechanical model member with a 

group of members defining the ensemble. Each member is compared with the data where the 

goodness of fit defines the probability and weight of the specific member. In LTS II we choose for 

presentation purposes to mimic the “Waddenzee” measurement and control cycle (e.g. NAM 2016a) 

by calculating the 6 year averages of the subsidence rate for a given area. Rather than deterministic 

scenarios we are now able to provide the expected weighted average case including confidence 

bounds for the ensemble to express the uncertainty.  

The same workflow has been applied on “emergency stop scenarios”. This showed a clear reduction 

in the subsidence rates after a hypothetical stop in 1996 and a less clear reduction following a 

hypothetical stop in 2016. The latter can be explained by the small response of the pressures as the 
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gas field has produced most of the gas at this time. We therefore conclude that an emergency stop 

scenario in the Waddenzee for the “younger” fields like Nes and Moddergat would result in a 

significant decrease of the subsidence rate in the Waddenzee.  

As described in the work plan (NAM, 2016) we selected TNO’s Red Flag methodology (Nepveu et al., 

2010) to confront model results with data. This methodology is transparent because it will not 

change the input parameters that defined the prior ensemble. In hindsight this choice was correct 

because it provided insight in the most likely reservoir scenarios, compaction models and influence 

functions. Most likely reservoir scenarios are the scenarios that show no or low depletion in the 

aquifers. The most likely compaction model is the Time decay and RTCiM model. At present the 

Knothe influence function describes best the data, however it should be noted that the AEsubs 

simulator that is used for the elastic and salt influence does not allow for combinations between salt 

and elastic layers having large contrasts in the values of the stiffness parameters. When this is 

improved on, we expect this combination to give lower values of the test statistic because it should 

match the spatial-temporal behavior of the subsidence better. The Knothe function lacks a temporal 

component. 

The ability of the workflow to differentiate the various scenario-model combinations appears to be 

low for the actual Ameland model. However, on a synthetic model the process is capable to 

differentiate the original input model. Further discussion and investigation is required to understand 

why the process is not capable of differentiating between the real scenario-model combinations 

before this can be implemented in in the official measurement and control cycle. 

Reflecting on the objectives as defined in the workplan we conclude the following: 

1. A workflow that can test the probability of possible subsidence models in an objective way, 

with the possible hypotheses resulting from the LTS I study taken into account 

We have demonstrated a workflow capable of testing the probability of subsidence models 

incorporating the possible factors of influence as defined by LTS I. 

2. To provide an ensemble of likely subsidence forecasts, each member with a different effect 

on the future subsidence above the Ameland field. A P50 should be presented from the total 

distribution.  

An ensemble of results has been presented in this report. All statistical values can be derived from 

the probability distribution of the ensemble like confidence bonds, expectation case and P50 

values. 

3. An analysis comparing the new distribution of subsidence forecasts with the Ameland 

forecasts selected in the M&R cycle report over 2015 along with a description of the 

discrepancies and the possible consequences this may have for M&R 2016 cycle. 

Selected geomechanical members based on the salt influence function were compared to the 

Geomec M&R 2015 results and we concluded that a good match between these models is found. 

However, the results obtained so far of the stochastic expectation case are very different from the 

results that follow from the deterministic expected case as presented in NAM (2016a). We have 

confirmed in LTS II that the reservoir scenario and compaction model used in the M&R cycle 2015 
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are the most likely reservoir scenario and compaction model. We therefore conclude that 

expected case for Ameland will remain the same for M&R 2016. 

4. The impact of this result on the other gas fields that are part of the M&R cycle will be made 

clear in a qualitative sense and based on analogies. (Within the given LTS II time schedule it 

will be not possible to set up a similar project for the remaining fields.)  

 

There are clear differences in the structural setting of the Wadden Fields like Nes and Moddergat. 

The Wadden Fields are bounded by large faults that prevent a connection to large lateral 

aquifers. Therefore, we expect less uncertainty arising from the possible reservoir scenarios for 

these fields. However, the constraint of possible scenarios by the data is poorer because of the 

lifetime of these fields. The last observation probably results in a larger uncertainty of the 

subsidence forecast.  

Therefore, at present it is difficult to make a strong conclusion on the impact of the LTS II results 

on subsidence prediction in the Waddenzee arising from the Wadden Fields. We firstly need to 

decide on certain conditions e.g. do we use all compaction models for the Waddenzee or only one 

or two; certain methods for the confrontation e.g. Red Flag versus Ensemble Smoother and 

certain definitions for e.g. the test statistic. 

5. NAM will start with the application of the LTS II workflow to the other Wadden Fields. The 

first results will be expected to appear in M&R report over the year 2017. 

This will be executed under the premise that the LTS II workflow is accepted by the stakeholders.  

6. An analysis of the effect of a hypothetical stop of production of the Ameland gas field at 

specific point(s) in time, including a statement on the analogy with the other Wadden Fields 

and the effectiveness of the “hand on the tap” principle. 

The hand on the tap principle has been demonstrated for different ensembles. A production stop 

in the “Wadden Fields” would have an even more profound effect because these fields connect to 

a lesser extend to lateral aquifers. 

7. A report that clarifies the effect of an overlying salt layer on the subsidence with a 

comparison between the results from the analytical AEsubs geomechanical model and the 

results from the Ameland Geomec model. 

Agreement between the models was found. A chapter is included in this document that covers 

this comparison. 
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2 Introduction 
This report describes the results of the Long Term Subsidence Study part 2, which is a follow up study 

of part 1 (NAM, 2015a). Both studies are aimed to better understand the observed temporal 

behavior of subsidence measurements above the Rotliegend gas reservoirs in the northern part of 

the Netherlands. In particular, the measurements above the Ameland field show a continuing surface 

subsidence even after the rate of reservoir pressure depletion has slowed down. This behaviour was 

not well understood and lead to the introduction of a time dependent function between pressure 

change in the Rotliegend gas reservoir and subsidence in order to resolve the mismatch between 

model predictions and subsequent survey measurements. This allowed for a better fit, but the 

possible underlying physical mechanisms are not properly understood. This situation was 

unsatisfactory for NAM, SodM and other stakeholders like “de Waddenvereniging”. Part 1 of the 

study (NAM, 2015a) focused on the possible mechanisms that could explain such observations. The 

main conclusions from this study are listed below. In the report a short section is included on the 

regional geology and on the development history of the Ameland area. 

2.1 Summary of part 1 (NAM, 2015a) 
 [1] The time dependent subsidence effect is real and not an artefact of noise and uncertainty in the 

geodetic data. 

[2] Time dependent creep behaviour is observed and predicted to be associated with compaction of 

the sandstone in the gas reservoir, pressure diffusion and partial depletion of the aquifers as well as 

flow of the overlying salt. Salt flow in isolation appears not to be a plausible explanation for time 

dependent subsidence, while the compaction and pressure depletion models remain viable 

hypotheses within the possible uncertainty ranges. 

[3] Deformation experiments of Rotliegend reservoir core material under in-situ conditions show that 

reservoir compaction involves a porosity-dependent element of in-elastic deformation through grain 

cracking and an elastic (reversible) element. The contribution of non-reversible inelastic strain 

increases with porosity. 

[4] The subsidence modelling precision can significantly be improved by taking correlation structures 

in the surveillance data into account. By appropriately differencing the survey data, biases as well as 

complexities in covariance structures can be reduced. In addition, methods have been developed for 

identifying and handling outlier measurements, data reduction techniques for large geodetic data 

sets, as well as improvements to processing and including GPS data. 

[5] An improved and more formal statistical method is proposed to validate and test the quality of 

subsidence predictions against the survey data. It is based on a Bayesian framework that can provide 

a coherent structure for the creation of initial models built on prior information, the objective 

updating of these models using collected geodetic data and the quantitative testing of future 

predictions.  
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2.2 Objective of the Long Term Subsidence study part two (LTS II) 
Point 5 of the main conclusions recommends to formally test the quality of the subsidence prediction 

against the measurements using a Bayesian framework, while conclusion 2 clearly states that the 

observed diffusional subsidence behavior is probably the result of a mix of mechanisms and 

subsurface processes. Therefore, all of the mentioned mechanisms like salt creep, pressure diffusion, 

aquifer depletion and compaction creep should be incorporated in such a method. 

This recommendation was in essence taken over by the regulator that defined a number of 

conditions for a follow up study. Based on the discussions a work proposal was written by NAM 

(NAM, 2016). 

The main objectives of this proposal are: 

1. A workflow that can test the probability of possible subsidence models in an objective way, 

with the possible hypotheses resulting from the LTS I study taken into account 

2. To provide an ensemble of likely subsidence forecasts, each member with a different effect 

on the future subsidence above the Ameland field. A P50 should be presented from the total 

distribution.  

3. An analysis comparing the new distribution of subsidence forecasts with the Ameland 

forecasts selected in the M&R cycle report over 2015 along with a description of the 

discrepancies and the possible consequences this may have for M&R 2016 cycle. 

4. The impact of this result on the other gas fields that are part of the M&R cycle will be made 

clear in a qualitative sense and based on analogies. (Within the given LTS II time schedule it 

will be not possible to set up a similar project for the remaining fields.)  

5. NAM will start with the application of the LTS II workflow to the other Wadden Fields. The 

first results will be expected to appear in M&R report over the year 2017. 

6. An analysis of the effect of a hypothetical stop of production of the Ameland gas field at 

specific point(s) in time, including a statement on the analogy with the other Wadden Fields 

and the effectiveness of the “hand on the tap” principle. 

7. A report that clarifies the effect of an overlying salt layer on the subsidence with a 

comparison between the results from the analytical AEsubs geomechanical model and the 

results from the Ameland Geomec model. 

In order to meet these objectives a research consortium was set up with the organizational structure 

as pointed out in Figure 1. 
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Figure 1: Organizational structure of the LTS II project. 
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3 Regional Geology 
The Ameland gas field area consists of a number of separate but adjacent early Permian Rotliegend 

fault blocks located in the area straddling the offshore M09 block, the western N07 block, and the 

Noord Friesland concession. These are part of the Ameland Bank which forms a wedge-shaped 

terrace on the north-eastern, down-thrown side of the Hantum Fault Zone. It opens towards the 

north and narrows towards the south with its apex in the vicinity of Kollum in North Friesland. The 

Ameland Bank structure is bounded to the east by the Lauwerszee Trough graben, and to the 

northwest by the Terschelling Basin (Figure 2). 

The Rotliegend sequence is dissected by a complex fault pattern and generally dips towards the south, 

resulting in an overall rise in structural elevation to the north. The structural configuration is dominated 

by two sub-perpendicular intersecting fault trends: E-W and NNW-SSE. The E-W fault trend generally 

exhibits greater throws and more lateral continuity than the NNW-SSE trend, and therefore controls 

the distribution and shape of accumulations in the area. The result is a series of narrow, east-west 

oriented, en-echelon structures. 

The major phase of structuration occurred during the mid-Jurassic rift and involved re-activation of 

many pre-Jurassic extensional faults. The re-activation of Carboniferous faults is, at least partially, 

responsible for Zechstein halokinesis. 

The Upper Rotliegend Group was deposited on the southern margin of the Southern Permian Basin, 
where clastics from the Variscan mountains were deposited as discrete alluvial fans. These fans grade 
northwards into sands and silty shales and ultimately into red shales and evaporites, laid down in a 
sabkha and desert lake environment (Figure 2). The prevailing easterly to north-easterly winds 
moved sands from the alluvial fans and distributed them in a wide belt of dunes along the southern 
basin margin. These dune sands form the main reservoir for the Rotliegend Play of the Northeast 
Netherlands. 
 
During deposition of the Rotliegend, the Ameland Block was located at the southern fringes of the 

Southern Permian Basin desert lake. The sediments point to a complex interplay of fluvial (wadi), 

aeolian, sabkha and lacustrine depositional processes under arid conditions. A sequence of alternating 

claystones and sandstones was deposited in mudflat to damp sandflat and aeolian depositional 

environments (Figure 3). 

The Southern Permian Basin continued to subside throughout the Permian. By Late Permian times, 
the basin was periodically flooded by seawater and followed by intense evaporation. Consequently, 
the Zechstein sequence was deposited, comprising at least four depositional cycles, each showing 
the effects of increasing salinity with time. Cycles began with open marine conditions and the 
deposition of carbonates and shales.  As evaporation continued and basin restriction increased, 
gypsum (now anhydrite), followed by thick sequences of halite were deposited in the center of the 
basin before incursion of marine conditions occurred, initiating the start of a new cycle. Carbonate 
platform and slope deposits could develop along the margins of the basin. 
 
Continental environments prevailed again during the Triassic. Therefore, these Zechstein cycles were 

followed by deposition of clastics of the Lower Germanic Trias, comprised of alternating claystones 

and sandstones deposited in terrestrial, aeolian and lacustrine environments. Upper Triassic strata 

were deposited in shallow marine, lacustrine and evaporitic environments. During the Late Triassic, 

rim synclines developed which were filled with sandstones, shales and evaporites deposited in an 

aeolian/fluviatile/marine depositional environment. The development of Triassic rim-synclines and 
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the presence of collapse structures point to halokinesis of the Zechstein salt during this time. Due to 

erosion related to the Mid-Kimmerian tectonic event, the Triassic sequence is only preserved in 

depressions between salt ridges and domes. 

 

Following the major erosional episode recorded by the Mid Jurassic Unconformity, deposition started 

again in the Late Jurassic.  The area was flooded during the Early Cretaceous resulting in deposition 

of the marine Vlieland Shale and Holland Marl of the Rijnland Group. 

The Rijnland Group is overlain by a thick package of open deep marine carbonates of the Chalk 

Group.  Late Cretaceous inversion led to reactivation of the Zechstein salt diapirs, minor faulting and 

local erosion of the Chalk. The deposition of the fine-grained marine clastics of the North Sea Group 

along the Ternaard Salt Ridge was dominated by salt movement and inversion. This led to great 

thickness variations, especially in the Lower and Middle North Sea Group. See Figure 4 for a cross-

section indicating structural variation in the overburden of the Ameland gas field. 

Within the Ameland area, the Upper Rotliegend Group can be divided into the Ten Boer Claystone, 

Upper Slochteren Sandstone, Ameland Claystone and Lower Slochteren Sandstone (Figure 4). The 

Upper Slochteren Sandstone can further be subdivided into 6 reservoir units of which unit 4 is the 

most productive one. 

The Ten Boer Claystone is a silty claystone, 90 to 100 meters thick, deposited in a mudflat setting. 

Towards the south, it contains locally some porous fluvial sand streaks at the base. However, within 

the Ameland area, no sands of significant thickness are expected, and as such, the Ten Boer 

Claystone is expected to act as both a lateral seal and as a top seal. 

The main reservoirs of the Rotliegend Play are the dune / dry sandflat to damp sandflat sands of the 

Upper Slochteren Sandstone (ROSLU). The ROSLU, within the Ameland area, has been deposited in a 

predominantly damp to wet sandflat environment, grading towards the north in a wet sandflat to 

mudflat depositional environment. The gross thickness of the Upper Slochteren Sandstone is 

expected to be around 94 meters.  
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Figure 2: Structural elements in the Dutch subsurface during the Late Jurassic to Early Cretaceous. Shaded in white are 
basins whereas darker colours indicate progressively higher areas. The red circle indicates the location of the study area 
(after Van Adrichem Boogaert & Kouwe, 1993). 
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Figure 3: Conceptual model of the sedimentary environment during deposition of the Permian Rotliegend; the red circle 
indicates the location of the study area in this depositional setting; dashed box indicates transition from Slochteren to 
Silverpit formation (McKie, 2011). 

 

Figure 4: Conceptual cross-section through the Permian Rotliegend indicating the change of reservoir from south to north 
(McKie, 2011). 
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Figure 5: Cross section indicating structural variation in the overburden of the Ameland gas field. 
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4 Historic development and current state of the Ameland area 
The Ameland area is from a dynamic perspective split into a number of fault blocks that are more or 

less in pressure communication. Figure 6 highlights the boundaries of the main dynamic 

communication areas. 

Figure 6: Ameland Fields Map. 

The Upper Slochteren reservoir is developed from three locations (Figure 7) the AME-1 land location 

on the east of the island, the AME-2 mini-satellite 2 km to the north of the island and the Ameland 

Westgat-1 platform (AWG-1), 3 km to the north-east of the island. 

  

Figure 7: Ameland field at surface. 
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4.1 Ameland Oost 

 
Ameland-Oost is located in the Dutch part of Southern North Sea area. The field was discovered in 

1964 by well AME-1 drilled from the Ameland Island.  The field contains several intra field faults 

further sub-dividing the field into a number of producing blocks with limited connectivity across the 

faults (Figure 6).  Production started in 1986 through wells drilled from the locations AME-1 and 

AWG-1, followed by producing wells drilled from the AME-2 location. Produced gas from AME-1 and 

AME-2 is delivered to AWG-1 platform by the connecting pipelines, where it is compressed and 

exported to the main export pipeline (NGT) and routed to the processing facility onshore in the 

Netherlands (Uithuizermeeden). After an initial stage where the gas flowed naturally from the 

reservoir through the facilities, a compression station was installed in 1994 to increase the recovery 

by lowering the AWG (and AME-1/AME-2) operating pressure. After various reconfigurations, 

currently the minimum pressure at which the wells are operating is around 10 bar. 

16 wells were drilled to Ameland-Oost field, 2 of which were abandoned and 7 are currently 

producing gas. The remaining wells are not producing currently due to number of reasons, specific in 

each individual case. 

4.2 Ameland Westgat 
Ameland-Westgat , located north of Ameland-Oost, was first discovered in 1975 by well AWG-1. The 

field has 3 major faults dividing it into 4 major blocks with a proved connectivity across these faults. 

The Upper Slochteren is being produced from the AWG-1 platform complex. In 1993, the first 

development well AWG-107 was drilled in the reservoir block W10. The second development well 

AWG-108, also targeting block W10, was drilled in 1998 and found reservoir pressure higher than 

expected indicating the limited connectivity within the same block. It’s currently believed that there 

might be additional faults within W10 block than cannot be seen on seismic. The third development 

well (AWG-101C) was drilled in block W30 in December 2007. This well showed the block to be 

depleted by some 185 bar in most of the high-permeability streaks. Due to technical issues while 

completing the well only Units1 to Unit3 are believed to be perforated. 

3 wells were drilled to Ameland-Westgat field, 1 of which is currently not producing (AWG-101C, 

different options are considered to restore production from block W30) and 2 are currently 

producing gas: AWG- 107 and AWG-108. 

4.3 Ameland-N07FA 

 
Ameland-N07FA Field was discovered by well N07-2 (renamed to N07-FA101) in 1991. It is a Base 

Zechstein tilted fault block, bounded to the north, east and west by prominent faults, with throws of 

100-200 m, and dipping to the south. The structure lies immediately east of the Ameland-Westgat 

field. The Upper Slochteren reservoir has been developed from the AWG-1 platform complex. In Q3 

1997 a mono-pile structure was placed to provide the structure for a mini-satellite platform for 

development of Ameland-N07FA together with M09-FB. A Field Review has shown that the gas 

volumes in M09-FB are too small to warrant a development of the block. This has resulted in a 

different development concept for Ameland-N07FA, now with an extended reach well from the AWG 

platform (AWG-110). Note that the AWG-110 well found the Ameland-N07FA reservoir depleted by 

some 60 bar compared to the N07-2 discovery well. As the only 2 producing fields in the vicinity are 
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Ameland-Oost and Ameland-Westgat, it is likely that the Ameland-N07FA structure is connected to 

either one of them. There is 1 production well drilled into Ameland-N07FA field: AWG-110. 

Accumulations M09-FA, M09-FB, Nes-Noord and Ameland-Noord have not been developed yet. 

Based on the Ameland-N07FA development well (AWG-110) results, minor depletion of M09-FA 

accumulation cannot be excluded, while Nes-Noord, Ameland-Noord and M09-FB fields are believed 

to be at virgin pressure.  
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5 Dynamic modeling and evaluation 
 

In order to assess future production and development options, a 3D simulation model has been built 

for the Ameland area, modeling both the flow of gas and water as well as the adjacent aquifers. Also 

the nearby, as yet undrained, accumulations are included in this model to assess the remaining 

development opportunities. Based on the observations made in Ameland so far, depletion of M09-FA 

cannot be excluded and hence this has been assumed to be slowly depleting. In contrast M09-FB, 

Ameland Noord and NSN have been modeled as remaining at virgin pressure as given the current 

understanding, it is highly unlikely that these accumulations are depleted. 

Based on production data and pressure observations this model has been matched to a best fit for 

future production predictions. The same model is used every year for the M&R cycle updates. For the 

subsidence evaluation, the remaining uncertainty in the pressures in the producing areas is very low, 

due to the direct measurements that are available. However, especially on the edges of the field and 

in the adjacent aquifers where little data is available, large uncertainties with respect to the pressure 

in these areas remain, which does influence subsidence calculations and evaluations. Hence for this 

exercise the simulation model approach has been adapted to generate multiple scenarios that 

provide a match to the historic production and observed pressures, but do generate different 

pressure predictions for those areas where no direct pressure measurements have been collected. 

In order to generate these scenarios, the main parameters that influence the pressure of the 

Rotliegendes reservoir away from the existing drainage points have been selected and varied using 

an automated history match routine that is normally used to find the best fit. These parameters are: 

 Total GIIP of the Ameland field (GIIP)  

 Permeability in gas leg of the reservoir (K_gas)  

 Permeability in water leg of the reservoir (K_aqf) 

 Residual gas in aquifer (Sgr) 

 End-point relative water permeability (Kwrg) 

 Fault transmissibility to the East of Ameland-Oost (Fault_81, Figure 9) 

 Fault transmissibility to the South of Ameland-Oost (Fault_64 and Fault_105, Figure 9) 

 

 

Figure 8: Ranges in multiplication factor for the various parameters that have been studied. 

Within these parameter ranges, visualized in Figure 8, individual estimates for each parameter were 

chosen and the model was run using these parameters, both over the history of the Ameland field as 

well making a prediction into the future. By comparing the differences between the simulated 

historical pressures and the actual measured pressures, one can obtain a numerical indicator how 

close the model represents the real measurements. This parameter is defined as sum of all the 

min max min max min max min max min max min max min max min max

Very wide 0.95 1.05 0.01 100 0.01 100 0.5 1.5 0.5 1.5 0 1 0 1 - -

Wide 0.96 1.04 0.04 25 0.04 25 0.6 1.4 0.6 1.4 0 1 0 1 - -

Mid 0.97 1.03 0.1 10 0.1 10 0.7 1.3 0.7 1.3 0 1 0 1 - -

Narrow 0.98 1.02 0.2 5 0.2 5 0.8 1.2 0.8 1.2 0 1 0 1 - -

Selective 0.98 1.02 0.2 10 0.001 10 0 2 0.8 1.2 0 1 0 1 0 1

Fault_81 Fault_64GIIP K_Gas K_Aqf Sgr Kwrg Fault_105
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squared differences between observed and measured pressured and expressed as the RMS (Root 

Mean Squared) value. 

As GIIP and permeability were only varied over the total field, one can see that in some cases the 

residual error as calculated by the program would very quickly increase suggesting a very poor match 

or even non convergence of the model. Hence based on the initial results some fine tuning of the 

parameter range has been done leading to the range in the lowest row of the table above.  

 

Figure 9: Top of structure map of the Ameland area with faults 64, 81 and 105 indicated by the red lines. 

 

However even within that range, some models would lead to a poorer match.  The RMS values of all 

the 193 reservoir models is shown in Figure 10, from the better models (RMS<45) a selection of 13 

models has been chosen for the ESIP calculation (Figure 10).  
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Figure 10: RMS for each Mores model. The selection for the ESIP calculation has been made from the reservoir models 
with RMS < 45 (green dots). 

It should be noted that a number of further variables (local variation of GIIP multipliers, intra field 

faulting intra field permeability variation) exist, that ensure that in these scenarios the model could 

be history matched without creating large changes to the pressures levels away from the center area. 

Rather than increasing the number of parameters for the routine to match these individual cases, in 

such cases the poorer history match was accepted as a viable scenario for predicting the overall 

pressure in the region. Based on the fact that even the closest model shows an RMS of 20 and 

provides a reasonable history, there is quite some confidence that models with an RMS up to 60 can 

be matched and even some models with higher RMS’s probably still can be matched quite 

reasonably. The approach has been chosen to just assume that models could be matched up front 

and only if subsidence analysis would point to specific models that have a higher RMS, to spend time 

investigating these cases and see how the match quality could improve without affecting the 

pressures away from the field. 

The data generation of such an exercise is rather large and hence the real simulated models were not 

stored to avoid running out of space. To aid analysis of the consequences of varying the above 

parameters on the pressure distributions, ‘dummy wells’ were defined in those areas of the model 

that do not contain any real wells (Figure 11). 
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Figure 11: Overview of ‘dummy’ wells introduced to observe aquifer response. 

These dummy wells do not interfere with the flow pattern of the simulation, but do generate a table 

that shows the pressure that would be observed in these wells if they were real. Hence they provide 

a good insight how the pressure in those remote areas varies over time as we change parameters. 

5.1.1 Results assessment 

For all of the scenarios, pressure grids were generated and provided to the geomechanics team as 

input to the subsidence routines. At a later stage to test the validity of the so called emergency stop, 

pressure scenarios have been generated assuming the Ameland production would have stopped in 

1996 and a second set where no more production after 2016 is assumed. 

Assessing the results, it is clear that the quality of the pressure match on an observation point by 

point basis in the Ameland wells is predominantly governed by the gas permeability multiplier and 

the GIIP (which is why the GIIP range had to be narrowed down). This is exactly as one would expect. 

In contrast, the pressure in the ‘pseudo’ aquifer observation wells over history is mostly influenced 

by the following parameters  

a) Aquifer permeability: the larger the aquifer permeability, the more depletion is observed 

b) The faults separating the aquifer from the gas bearing blocks 

c) Whether or not residual gas is present. The presence of residual gas has 2 effects;  

a. Due to the presence it will influence the relative permeability of the water, reducing 

the ability of the aquifer to flow towards the depleted gas bearing sands 

b. The gas present in the aquifer will have a strong dampening effect on the pressure 

response, maintaining high pressures in the area. 

Hence overall one could say that a scenario with a low aquifer permeability, sealing faults or with 

significant residual gas will ensure high pressures in today’s aquifer, and in order to generate 

depletion of the aquifer ‘today’, one would need a scenario with high aquifer permeability, no 

residual gas and non-sealing faults. 
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6 Use of geodetic data 
Levelling and GPS (Global Positioning System) data have been prepared for geomechanical modelling 

following the new approach that has been proposed in LTS I project. Data processing has been 

carried out by Delft University of Technology (van Leijen et al., 2017) in close cooperation with NAM. 

6.1 Innovations as recommended in LTS phase 1 (2013-2015) 
1. The observations from different survey techniques are not combined prior to geomechanical 

modelling in a single dataset. Handling separate datasets for levelling and GPS avoids 

smoothness assumptions that would be required for their alignment. 

2. Spatio-temporal double differences are used instead of temporal single differences. The 

confrontation of measurements and geomechanical model predictions takes place at the 

level of changes of surface positions between two points in space and two epochs in time 

(see Figure 12). Thus, no assumptions on a stable reference point are necessary. Note that 

the original recommendation from LTS-1, which was more restrictive, has been revised 

(Samiei-Esfahany and Bähr, 2017). 

 

Figure 12: Concept of double differences (TU Delft, 2016). 

3. The stochastic properties of the geodetic observations are described by their full covariance 

matrix. Compared to previous approaches this yields a more realistic assessment of 

uncertainties. 

4. Individual outliers are identified by a more formal and objective approach. As the assumption 

of an a priori geomechanical model is unavoidable for this purpose, the threshold is chosen 

in a way that only the most obvious outliers are rejected. Thus, subjective expert assessment 

is reduced to the necessary minimum. “Tuning” the measurements towards a previous 

model prediction is largely avoided. 
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5. The discrepancy between measurements and geomechanical model predictions originates 

not only from uncertainty of geodetic observations (measurement noise) and model errors 

but also from shallow movements. These movements, like building settlements, cannot be 

attributed to measurement imperfection and are not considered in the geomechanical model 

either. Thus, they are subsumed by the so-called idealisation noise, which is now taken into 

account. 

6.2 Survey data and measurement noise 
Figure 13 provides an overview of the datasets used in the study. 

 

Figure 13: Spatial distribution of geodetic observations used in this study. 

6.2.1 Levelling 

Levelling data from 436 benchmarks observed in 26 campaigns between 1986 and 2014 have been 

used in this study. For the first time, optical levelling data have been complemented by hydrostatic 

levelling observations. This technique of measuring height differences by means of a water-filled 

tube has been applied by Rijkswaterstaat in the study area until 2002. Thus, also benchmarks in the 

Waddenzee can be connected to the levelling network on the island. To quantify the measurement 

uncertainty, standard models have been used for both optical and hydrostatic levelling. 

6.2.2 GPS network (since 2006) 

The more recent GPS observations originate from a network of permanent monitoring stations 

established in 2006. Four of them have been used in LTS II (see Table 1). The network is extended 

campaign-wise by the benchmarks in the Waddenzee. Benchmarks on the platforms AWG1 and 

AME2 have been observed in several campaigns before installing continuously operating stations in 

2014. From the campaign data as well as the stations on the two platforms, only the vertical 

component is used. The observed horizontal displacement is considered unreliable for these points 

due to the survey setup. 
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Table 1: Continuous GPS stations used in this study. 

Name Location Installation Used components 

AME1 Production location on Ameland 2006 x, y and z 

AME2 Production platform 2014 only z 

AMEL Nes village  2014 x, y and z 

AWG1 Production platform 2014 only z 

 

The data from the four continuously operating stations have been sampled yearly and corrected for 

temperature effects, atmospheric loading as well as annual and semi-annual harmonics. The latter 

correction compensates for systematic errors that are inherent to the GPS system. The measurement 

uncertainty is modelled by the stochastic model proposed in LTS I (Williams 2015), which comprises 

the uncertainty of determining the antenna position and a setup error. This setup error of 1.5 mm is 

applied to the campaign data only and accounts for the yearly mounting of the equipment. 

The previously mentioned concept of spatio-temporal differencing has been applied to the GPS data 

in a modified way. NAM obtains the processed data in form of displacements with respect to an 

assumedly stable reference network of currently more than 10 stations. Their stability is closely 

monitored in yearly intervals. The spatial differences are formed with respect to a virtual reference 

station representing the whole network of reference stations. For reliability purposes, the monitored 

benchmarks in the Waddenzee consist of clusters of three. Observations from all three benchmarks 

of a cluster have been used to maximise the information content for the modellers. 

6.2.3 GPS baselines (1993-2004) 

Prior to 2006, only few GPS observations have been carried out by NAM in the study area, mainly to 

establish a connection from the island to the platforms AWG1 and AME2. Benchmarks have been 

occupied and processed in pairs (baseline). Only the vertical component is available from these 

measurements. Since very little is known about the processing approach, a conservative standard 

deviation of 11 mm has been assumed for these height differences. 

6.2.4 InSAR 

In spite of the availability of InSAR (Interferometric Synthetic Aperture Radar) data from Ameland, 

these have not been used in the study for multiple reasons. The spatial coverage in the eastern part 

of the island, where the gas field is situated, is very sparse. In addition, the quality of the available 

measurements is poor due to lack of stable Radar reflectors (well-founded buildings, rock outcrops, 

etc.) in that area. This circumstance together with pending imperfections in stochastic modelling 

would require a very conservative approach for uncertainty modelling. After all, there would have 

been little (if any) added value to this project while the effort of data preparation would have been 

disproportionately large. 

6.3 Idealisation noise 
This noise component describes displacements of the measurement points due to shallow 

movements like building settlement or soil compaction. Together with the measurement noise, it 

models the uncertainty of geodetic observations when confronted with geomechanical predictions. 

The model parameters for idealisation noise have been calibrated in an onshore study area in LTS 

phase 1 (Samiei-Esfahany and Bähr, 2015) and revised recently (Samiei-Esfahany and Bähr, 2017). 

The model differentiates between two components: 



26 
 

 Temporal component: This subsumes all shallow effects that are correlated in time and 

uncorrelated in space. It can be considered as an autonomous movement of an individual 

benchmark that has nothing in common with the behaviour of neighbouring benchmarks. An 

example would be settlement of the individual building a benchmark is attached to. 

 Spatio-temporal component: This subsumes all shallow effects that are correlated in both 

space and time. It can be considered as a coherence in movement with neighbouring 

benchmarks, whereas the level of coherence decreases with distance. An example would be 

the compaction of a shallow peat layer. 

A determining factor for the temporal component is the type of foundation of a benchmark. The 

autonomous movement of a deeply founded (“underground”) benchmark may be negligible, 

whereas the settlement of a benchmark attached to a poorly founded building may be not. A 

discrimination between different types of benchmark is not possible, because a classification would 

be very subjective and because an extended model estimation would suffer from too few 

observations in too many classes. Hence, the autonomous movement of all benchmarks is 

considered to be reasonably explained by a single model. This assumption is extended to GPS 

permanent stations, which are attached to buildings and production platforms and thus fall into the 

stability range of levelling benchmarks. The only exception was made for offshore benchmarks in the 

Waddenzee, which are form class on its own. They all have a practically identical layout (a several 

metres long pole driven into the ground) and are placed in clusters of three. The levellings between 

benchmarks within the same cluster constitute an excellent opportunity to estimate model 

parameters for the temporal component. 

Another factor is the type of soil. Peat grounds are more prone to natural compaction than sandy 

soil, and the associated idealization noise can be expected to be higher. This applies in particular to 

the spatio-temporal component. Since the study area from LTS I is dominated by peat grounds and 

the soil on Ameland and below the Waddenzee is dominated by sand, it can be expected that the 

model “peat based” parameters from (Samiei-Esfahany and Bähr, 2017) would be too pessimistic for 

LTS II. To account for this, the spatio-temporal component has been assumed zero in all modelling 

calculations with the Ameland data. 

6.4 Outlier handling 
Outliers that are detectable by the closed loop property of levelling networks have been excluded 

from the dataset. So have been outliers that could be identified from relative movements within a 

cluster of three (GPS) benchmarks in the Waddenzee (van Leijen et al., 2017). The 2006 observations 

of those Waddenzee benchmarks that have been placed in that year have been excluded as well. 

They are suspected of significant settlement during the first year after placement. Another exclusion 

applies to two hydrostatic levelling campaigns (279H08 and 279H09). For these, contradictory 

indications existed regarding the year of observation (1987 or 1988). It was not possible to resolve 

this inconsistency. 

Apart from the aforementioned cases there are also types of outliers that cannot be identified 

without assumptions on the geomechanical model. An example is the confusion of a benchmark with 

a nearby benchmark during surveying, which can yield jumps of several decimeters in the time series. 

To detect these types of outliers (“abnormal behavior”, “identification errors”, “disturbances”), the 

approach proposed in LTS phase 1 has been applied to the levelling data: An a priori geomechanical 
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model prediction is subtracted from time series of height differences between pairs of benchmarks. 

The resulting residuals are tested in a geodetic framework. A largely relaxed threshold accounts for 

the uncertainty of the potentially imperfect model assumptions. Thus, 9 observations have been 

identified as outliers (van Leijen et al., 2017). 

  



28 
 

7 Workflow confrontation of model results with measured data  

7.1 General, description   
A probabilistic workflow was developed by TNO (2016) with the objective to confront model results 

with the measured data. Basically it automates the choice of model aspect plus the accompanying 

input variables and confronts these results with the measured data. A measure of the fit to the data 

is obtained by calculating the quality of the match of the model with the data. The quality is 

expressed by a probability value to each model member. The tool is named ESIP (Ensemble-based 

Subsidence Interpretation and Prediction). Next to delivering a probabilistic workflow, ESIP’s 

objective is also to provide an objective description of the statistical outcome and to provide steer in 

reducing the uncertainty by incorporating the geodetic data.  ESIP incorporates TNO’s semi-analytical 

simulator AEsubs (Fokker and Orlic, 2006). A semi-analytical approach is necessary in this project 

because it allows for fast computing of results. Typical computing times for the Ameland numerical 

model, based on a finite element approach, are around 4 hours, which would take more than 4 years 

before one ensemble is finished. AEsubs produces an ensemble within one day for the elastic case 

and two weeks for a case that includes a viscous salt layer. 

Nomenclature 
The ESIP procedure uses a number of words that deserves more explanation and definition. A 
description of these can be found below: 

 Compaction model: Four compaction models have been implemented in the ESIP tool: 
RTCiM, Time decay, Bi-Linear and Linear 

 Reservoir scenario: pressure input that results from the Mores simulator. The Mores 
simulator is not part of the ESIP module but ESIP handles the pressure output from Mores 

 Member: a model member represents a single run of the geomechanical model with certain 
choices for the influence function, compaction model and reservoir scenario 

 Scenario-model combination: A specific combination of a reservoir scenario, compaction 
model and influence function 

 Ensemble: a collection of members that result from a Monte Carlo analysis on a specific 
scenario-model combination. 

 Influence function: function which translates the reservoir compaction to surface subsidence. 
The influence functions used are Greens functions applied in AEsubs and Knothe.  

 

ESIP requires the following input:  

1. Geodetic data.  
2. An ensemble of reservoir flow model simulation results (pressure scenarios through time) and a 

prior ensemble of geomechanical realisations or members being built on top of the pressure 
scenarios 

3. Input of geomechanical parameters for the different compaction models. 
From the reservoir scenarios, ESIP calculates compaction and subsidence using the TNO 

geomechanical simulator AEsubs. The geodetic data are processed into double difference data and a 

corresponding covariance matrix. The modelled ensemble is confronted with the data. A schematic 

representation of the ESIP workflow steps is provided in Figure 14. 
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Figure 14: Schematic representation of the ESIP workflow (TNO, 2016). 

The ESIP workflow contains 4 internal modules that form the core of the program. 

7.2 CUPiDO  
The module CUPiDO (Connecting Undifferenced Points in Deformation Observations; working title 

“getdata”) has been created by TU Delft as an interface between geodetic data and the ESIP 

workflow. It selects observations for a specified area and time period of interest. The output is a non-

redundant set of double differenced displacements (see Figure 12) with an appropriate stochastic 

description in form of a fully populated covariance matrix (see Figure 15). Figure 16 shows the 

standard deviations of all double differences as a function of distance and time. 
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Figure 15: Covariance matrix (left) of the double difference observations used in the project. The off-diagonal elements 
describe the stochastic interdependence. The correlation matrix (right) is a normalized form of the covariance matrix, 
which better visualizes the correlation structure. 

  

  

Figure 16: Standard deviations of the individual double difference observations. Whereas this visualization does not 
convey the full stochastic information, it provides a good impression of the precision of the individual double differences. 
The upper row shows the contribution of the measurement noise, which is related to the uncertainty of the 
measurement itself. The lower row displays the full uncertainty budget. This also comprises the idealisation noise, which 
accounts for movements of shallow soil layers. The figures on the left hand cover GPS network observations (permanent 
station and campaigns 2006-2016), and the figures on the right hand side cover levelling (1986-2014) and GPS baseline 
observations (1993-2004). 
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7.3 Calculate compaction 
The calculation of the compaction involves a number of steps that are summarised in the next 

paragraphs. 

7.3.1 Upscaling 

The reservoir model Mores uses a fine pressure grid that needs to be up-scaled in both vertical and 

horizontal directions before the pressure information can be used as an input to the geomechanical 

models. The goal of up-scaling is that a fine compaction grid produces the same amount of 

compaction as the up-scaled grid. The vertical upscaling is performed firstly followed by a horizontal 

up-scaling over a coarser grid.  

The vertically averaged pressures 𝑷𝒂𝒗, volumes 𝑽𝒕𝒐𝒕, porosities ∅𝒂𝒗 and grid block center positions 

𝑿𝒂𝒗  and 𝒀𝒂𝒗 for one vertical column of the 3-D grid can be expressed as: 

𝑷𝒂𝒗 =
∑ 𝑪𝒎𝒌(∅𝒌).𝑷𝒌.𝑽𝒌

𝒏
𝒌=𝟏

𝑪𝒎(∅𝒂𝒗).𝑽𝒕𝒐𝒕
         (1)  

𝑽𝒕𝒐𝒕 = ∑ 𝑽𝒌
𝒏
𝒌=𝟏           (2)  

∅𝒂𝒗 = ∑ ∅𝒌.
𝑽𝒌

𝑽𝒕𝒐𝒕

𝒏
𝒌=𝟏           (3)  

𝑿𝒂𝒗 = ∑ 𝑿𝒌.
𝑽𝒌

𝑽𝒕𝒐𝒕

𝒏
𝒌=𝟏           (4)  

𝒀𝒂𝒗 = ∑ 𝒀𝒌.
𝑽𝒌

𝑽𝒕𝒐𝒕

𝒏
𝒌=𝟏           (5) 

𝑪𝒎𝒌(∅𝒌) in equation (1) corresponds to the uni-axial compaction coefficient of one grid block as a 

function of its porosity, pressure, and time. After the first step of vertical upscaling we have a 2D 

irregular fine grid for 𝑷𝒂𝒗, ∅𝒂𝒗, 𝑽𝒕𝒐𝒕 at upscaled positions (𝑿𝒂𝒗, 𝒀𝒂𝒗). 

The next step involves the horizontal upscaling of the vertically up-scaled grid. ESIP allows for a 

flexible entry of the desired grid size but typically the size varies between 500 and 1000 m. Basically 

the horizontal upscaling follows the same equations as used for the vertical up-scaling. The end 

product is a 2D coarser irregular grid. 

7.3.2 Compaction models 

ESIP allows for input into four different compaction models that are briefly described in TNO (2016).  

7.3.2.1 Linear elasticity 

The simplest model that is available is the linear compaction model of which the uni-axial 

compaction can be described by: 

𝑽𝒄𝒐𝒎𝒑(𝒙, 𝒚, 𝒕) = 𝑪𝒎(𝒙, 𝒚). 𝑽(𝒙, 𝒚). 𝒅𝑷(𝒙, 𝒚, 𝒕)      (6) 

The Cm can be entered as a single value or as a function of porosity and will translate values of the 

Cm into a stiffness value. Paragraph 8.4 shows how the dependency of the Cm and Young’s modulus 

with the porosity is assessed for the Ameland case. 
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7.3.2.2 Bi-linear elasticity 

This is a model that introduces a different Cm value after a critical depletion pressure. It is based on 

the observations of the temporal subsidence behaviour by NAM where a slow subsidence rate during 

the first years of production is followed by a faster subsidence rate. This rate can be translated in a 

𝑽𝒄𝒐𝒎𝒑𝒑𝒓𝒆
 and  𝑽𝒄𝒐𝒎𝒑𝒑𝒐𝒔𝒕

 , which are defined by the following relationships 

 

𝑽𝒄𝒐𝒎𝒑𝒑𝒓𝒆
(𝒙, 𝒚, 𝒕) = 𝑪𝒎𝒑𝒓𝒆

(𝒙, 𝒚). 𝑽(𝒙, 𝒚). (𝑷𝟎(𝒙, 𝒚) − 𝑷(𝒙, 𝒚, 𝒕))   (7) 

 

𝑽𝒄𝒐𝒎𝒑𝒑𝒐𝒔𝒕
(𝒙, 𝒚, 𝒕) = 𝑪𝒎𝒑𝒓𝒆

(𝒙, 𝒚). 𝑽(𝒙, 𝒚). (𝑷𝟎(𝒙, 𝒚) − 𝑷𝒕𝒓𝒂𝒏𝒔(𝒙, 𝒚)) +

                                     𝑪𝒎𝒑𝒐𝒔𝒕
(𝒙, 𝒚). 𝑽(𝒙, 𝒚). ( 𝑷𝒕𝒓𝒂𝒏𝒔(𝒙, 𝒚) − 𝑷(𝒙, 𝒚, 𝒕))    

                                                                                                                                               (8) 

where 𝑷𝟎 and 𝑷𝒕𝒓𝒂𝒏𝒔 respectively define the virgin pressure and the transition pressure where the 

compressibility changes from the lower 𝑪𝒎𝒑𝒓𝒆
  to a higher  𝑪𝒎𝒑𝒐𝒔𝒕

 value.  

7.3.2.3 Time-decay compaction model 

The observation of a delayed, slowly accelerating subsidence at the onset of pressure depletion in 

combination with continuing subsidence after depletion has ceased, is consistent with a time lag 

(time decay) process where the subsidence response to reservoir compaction is asymptotic, with a 

characteristic time decay constant. Processes of this type are fundamental and commonplace 

throughout the natural world; they are the signature of non-equilibrium dynamical systems. The 

archetype of processes in this class is the familiar diffusion or heat equation. Time decay type models 

have been proposed as explanations for subsidence delay in the past. Houtenbos [pers. comm., 

2006] proposed a simple empirical time decay relationship between ‘subsidence volume’ and the 

mass of gas produced. A number of issues in the physical reasoning led to a rejection of this proposal 

by NAM and SodM. It was observed at the time though, that transfer functions of this type did 

appear to provide a satisfactory temporal match to subsidence data and that they are characteristic 

of a diffusive, and therefore physically reasonable, process. A distantly related time dependent 

process was contained within the Rate Type Compaction Model [RTCM] (de Waal, 1986), which also 

sought to explain observed subsidence delay above a number of reservoirs. 

Time-decay compaction can be modeled using a convolution of a linear relationship between 

pressure depletion and reservoir rock compaction with an exponential time decay function: 

 

𝑽𝒄𝒐𝒎𝒑(𝒙, 𝒚, 𝒕) = 𝑪𝒎(𝒙, 𝒚, 𝒕). 𝑽(𝒙, 𝒚, 𝒕). 𝒅𝑷(𝒙, 𝒚, 𝒕) ∗𝒕
𝟏

𝝉
 𝒆𝒙𝒑 [

−𝒕

𝝉
]   (9) 

Here, 𝒕, is time, ∗𝒕 , is the convolution operator with respect to time and, 𝝉, is a time decay constant.  
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7.3.2.4 Rate type isotach model 

 

Traditional uniaxial experiments are conducted at one single constant loading rate. De Waal (1986) 

ran a series of experiments changing the loading rate during the experiments. The basis for the 

experiments originated from observation done on soft soil and chalks (Bjerrum, 1967) that indeed 

show a compaction behaviour that is dependent on loading rate.  De Waal (1986) demonstrated that 

a faster loading rate led to stiffer response of the rock sample. 

TNO (2013) further investigated the application of this model on cemented rock using the laboratory 

experiments from de Waal as a starting point (De Waal, 1986). Figure 17 shows the Standard Linear 

Solid (SLS) model, the simplest form of the general isotach model, as a spring-dashpot system (TNO, 

2013). 

 

Figure 17: Representation of the SLS model. 

De Waal (1986) ran a series of experiments changing the loading rate during the experiments where 

he demonstrated that a faster loading rate led to stiffer response of the rock sample. These 

experimental observations might explain the subsidence behaviour at the onset and arrest of 

production, which can be seen as changes in loading rate of the reservoir rocks.  At a change of the 

loading rate, a first direct strain response is recorded followed by a more gradual response. 

Therefore, total strain is the sum of a direct part and a time dependent secular part: 

𝜺 = 𝜺𝒅 + 𝜺𝒔          (10) 

The rate type isotach compaction in ESIP is derived from an explicit Euler finite-difference scheme 

keeping a constant time step ∆𝒕. To calculate the compaction of one grid block grid (𝒙, 𝒚) the applied 

numerical scheme can be divided into 5 steps as follows (TNO, 2016): 

1) From the current effective vertical stress 𝝈′(𝒕) and strain 𝜺(𝒕), calculate the creep strain rate as: 

�̇�𝒔(𝒕) = (
𝜺(𝒕)−𝜺𝟎

𝝈′(𝒕)
− 𝑪𝒎𝒅

) �̇�𝒓𝒆𝒇
′ (

𝜺(𝒕)−𝜺𝟎

𝝈′(𝒕)  .  𝑪𝒎𝒓𝒆𝒇

)

−𝟏/𝒃

     (11) 

The vertical effective stress is derived from the reservoir depth and the mean density 𝝆𝒎𝒆𝒂𝒏 of the 

subsurface up to the reservoir top 𝒛𝒓 as:  

𝝈′(𝒕) =  (𝝆𝒎𝒆𝒂𝒏. 𝒈. 𝒛𝒓) − 𝑷(𝒕)        (12) 
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At t0, that is at the onset of pressure depletion/production, the direct elastic strain 𝜺𝒅(𝒕𝟎) and 

secular or creep strain 𝜺𝒔(𝒕𝟎) are both considered equal to zero, and thus total strain 𝜺(𝒕𝟎) is set to 

zero. 

The reference total strain is expressed as: 

 𝜺𝟎 = −𝑪𝒎𝒓𝒆𝒇
 . 𝝈𝒓𝒆𝒇

′          (13) 

with the reference vertical effective stress 𝝈𝒓𝒆𝒇
′ = 𝝈′(𝒕𝟎). 

Three material parameters (𝑪𝒎𝒓𝒆𝒇
, 𝑪𝒎𝒅

, 𝒃)  and one state parameter (�̇�𝒓𝒆𝒇
′ ) are needed to compute 

the rate type compaction.  The material parameters𝑪𝒎𝒓𝒆𝒇
 and 𝑪𝒎𝒅

 are respectively the reference 

and direct compaction coefficients, where 𝑪𝒎𝒓𝒆𝒇
 is the compaction coefficient corresponding to the 

pre-depletion loading rate, and thus by definition quite high. Parameter 𝑪𝒎𝒅
 is dedicated to map out 

the direct effect at the change of loading rate. In the scenario of the change of loading rate due to 

the onset of pressure depletion, 𝑪𝒎𝒅
 is expected to be low in order to mimic the stiff response of the 

reservoir rocks. The ranges and source for the values of these parameters are described in paragraph 

8.4). 

2) The second step of the Euler scheme consists in calculating the increase in creep strain as: 

∆𝜺𝒔 = �̇�𝒔(𝒕) . ∆𝒕         (14) 

and update the creep strain as: 

𝜺𝒔(𝒕+𝟏) → 𝜺𝒔(𝒕) + ∆𝜺𝒔         (15) 

3) The time is updated as 𝒕+𝟏 → 𝒕 + ∆𝒕 

4) Following a linear stress-strain relationship one can calculate the direct elastic strain as:  

𝜺𝒅(𝒕 + ∆𝒕) = 𝑪𝒎𝒅
. (𝝈′(𝒕 + ∆𝒕) −  𝝈𝒓𝒆𝒇

′ )       (16) 

5) Finally one can calculate the total cumulative strain as: 

𝜺(𝒕 + ∆𝒕) = 𝜺𝒔(𝒕 + ∆𝒕) + 𝜺𝒅(𝒕 + ∆𝒕)       (17) 

And the total cumulative compaction as:  

𝑽𝒄𝒐𝒎𝒑(𝒕 + ∆𝒕) = −𝜺(𝒕 + ∆𝒕)         (18) 

with 𝑽 the grid block net volume, assumed constant over time. Clearly, accounting for changes in grid 

block net volume will not significantly change the compaction. After this last fifth step the workflow 

returns to the first step for the next time step. 

Again it is important to note that the present rate type isotach compaction model is attempting to 

mimic the delay and persistence in subsidence rates at the onset and arrest of production, by only 

considering the reservoir compaction and assuming a purely elastic linear response of the rocks 

surrounding the reservoir rocks. The creep of a possible visco-elastic salt layer on top of the reservoir 

might also contribute to the non-linearity in the subsidence. 
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7.4 Calculate Subsidence 
The compaction of the reservoir deforms the overburden as well resulting in the development of a 

subsidence bowl at the surface. The translation of reservoir compaction to subsidence requires the 

involvement of an influence function or Green’s function. Geertsma (1973) provided a linear 

analytical influence function based on the nucleus of strain concept and assuming the over and under 

layers surrounding the reservoir as elastically homogeneous. Fokker and Orlic (2006) developed a 

semi-analytical method for generating influence functions for a multi-layer model, for layers with 

different elastic properties. The semi-analytical approach has the advantage of combining relatively 

complex sub-surface settings with small computational times, making it suitable for inversion and 

data assimilation exercises. The TNO tool in which this methodology is incorporated is called AEsubs 

and is part of the ESIP workflow. AEsubs is a program that calculates the subsidence profile for a 

single compacting “nucleus” with given depth, and for a given elasticity profile. The single-nucleus 

subsidence profile can be integrated over an input field mesh to achieve a subsidence profile. The 

application calculates the subsidence for a model with different horizontal layers with each a 

different elasticity modulus and Poisson’s ratio.  

Salt flow can be modelled in AEsubs by giving a layer a non-zero linear viscosity. The assumption of 

linear viscosity is supported by both laboratory observations (Spiers et al., 1986; Spiers and Carter, 

1998) as field observations.  

There are a number of simpler, non-physical, influence functions that have been proposed in the 

literature that are placed under the umbrella of geometrical-integration methods (e.g. Sroka et al. 

2011). These methods are mainly developed to describe the effect volume extraction of the 

subsurface by room and pillar mining on the surface subsidence but can be applied to a compacting 

reservoir as a result of depletion as well (e.g. Hejmanowski and Sroka, 2000). The Knothe function is 

a widely applied influence function of this type and therefore implemented in ESIP. The benefit of 

this method is the freedom to fit the influence angle to the observations ( in Figure 18). 

The Knothe influence function is a functional form which is dependent on the reservoir depth (H) and 

the angle(ϕ) (Cai et al. 2014). Here ϕ is the Monte Carlo Parameter (Figure 18). 

 

Figure 18:  Knothe influence function. 

The function implemented in ESIP follows Knothe’s theory: 𝑔𝑣 =
1

𝑅2 𝑒
−𝜋

𝑟2

𝑅2  
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where 𝑅 is the influence radius as 𝑅 = 𝐷 ∙ 𝑡𝑎𝑛(𝜑), with 𝐷 the reservoir depth and 𝜑 the influence 

angle. The influence angle is the only parameter that can be varied in the Monte Carlo procedure and 

is not a function of time. 

A comparison with the subsidence bowl shape generated with Geertsma and van Opstal and the 

Knothe influence function is shown Figure 19. For Knothe an influence angle of 55 degrees has been 

used as the ESIP calculation returns this as the angle which fits best to the modelled subsidence. The 

Knothe influence function returns a steeper subsidence bowl. 

 

Figure 19: Comparison with the shape of the Knothe subsidence bowl using an influence angle of 55 degrees and a 
Geertsma and van Opstal calculation. 

7.5 Model confrontation and conditioning 
The model confrontation is the heart of the Bayesian ESIP workflow and confronts the a-priori 

defined model results with the data including its variance/covariance structure. The difference 

between the measurements and the data is the measure to calculate the likelihood of the specific 

member. To do so the model member produces double-difference results at the locations of the 

benchmarks. The goodness of fit between the model results and data is expressed by the value of 

𝜒2/𝑁.  

In ESIP there are two methods available with the goal to refine the predictions: 

1. The “Red-Flag” confrontational method (Nepveu et al., 2010)  

2. The Ensemble Smoother approach (e.g. Fokker et al. 2016). 
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The LTS II study results are only based on the Red-Flag approach. The ensemble smoother is a 

methodology that mixes and conditions the output of individual model results to create new model 

results finally iterating to a narrower distribution of possible realisation. The mixing of the member 

solutions makes a mapping to the original reservoir scenarios and geomechanical model members 

less transparent. The aim of LTS II is to demonstrate the tool and provide more insight in plausible 

scenarios and input values to the models and influence functions. Therefore, only a description of the 

Red Flag model is presented in this report.  

To arrive at the best posterior ensemble to be used in subsidence predictions, the ensemble 

smoother method is perhaps a better method, because it will collapse the prior model ensemble 

around the best scenarios, models and input values. We refer to TNO (2016) for a description of the 

ensemble smoother. 

7.5.1 Red flag confrontation method 

The Red Flag method (Nepveu et al., 2010) was designed to enable decision-making when a 

threshold in a process is about to be exceeded.  The methodology combines measurements with 

prior information and updates the probability of each model member after a confrontation step with 

the data. With this updated probability the probability of the member ensemble can be calculated. 

For a particular realisation 𝒓 of the ensemble 𝒅𝒅𝒓
𝒑𝒓𝒊𝒐𝒓

, the Red-Flag approach defines the mismatch 

function as: 

𝜒2 = (𝒅𝒅𝒓
𝒑𝒓𝒊𝒐𝒓

− 𝒅𝒅)
𝑻

𝑪𝒅𝒅
−𝟏(𝒅𝒅𝒓

𝒑𝒓𝒊𝒐𝒓
− 𝒅𝒅)                                                    (19)  

 

with 𝒅𝒅 the data vector and  𝒅𝒅𝒓
𝒑𝒓𝒊𝒐𝒓

the prior model. The lower the value of the mismatch function, 

the better the match of the vector of prior double difference predictions with the measurements. In 

this formulation, 𝑪𝒅𝒅 represents the covariance matrix of the measurements. The Bayesian 

probability of a particular realization 𝒓 of the ensemble is given by: 

𝑷(𝒅𝒅𝒓
𝒑𝒓𝒊𝒐𝒓

|𝒅𝒅) =
𝑷(𝒅𝒅𝒓

𝒑𝒓𝒊𝒐𝒓
) .  𝑷(𝒅𝒅|𝒅𝒅𝒓

𝒑𝒓𝒊𝒐𝒓
)

∑ 𝑷(𝑵𝒆
𝒊=𝟏 𝒅𝒅𝒊

𝒑𝒓𝒊𝒐𝒓
) .  𝑷(𝒅𝒅|𝒅𝒅𝒊

𝒑𝒓𝒊𝒐𝒓
)
 .   (20) 

With: 

𝑷(𝒅𝒅|𝒅𝒅𝒓
𝒑𝒓𝒊𝒐𝒓

) = 𝒆𝒙𝒑[−
𝜒2

𝟐𝑵
 ].       (21) 

with 𝑵 the number of double differences. The calculation scheme of the confrontation with the 

geodetic data measured on e.g. T1 and T2 is explained in detail in TNO, 2016. 
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7.6 Demonstration of the ESIP workflow 
Based on discussions with the steering committee, several tests were set up to test and demonstrate 

the functionality, effectiveness and reproducibility of the ESIP software. The aim of these tests was to 

answer the following questions: 

- How does the outcome of the upscaling and interpolation procedures compare to 

existing methods currently used by NAM? (7.6.1) 

- How does the calculated subsidence from different compaction models compare to 

those from existing methods currently used by NAM? (7.6.2) 

- How consistent are the outcomes of the ESIP software when run by different users on 

different machines? (7.6.3) 

- What probability distributions for the different compaction models does ESIP return 

when applied on synthetic input data with a known compaction model? (7.6.4) 

- What is the impact of data density (spatial and temporal) variations on ESIP’s ability to 

discriminate between the likelihood of certain pressure depletion and compaction 

models? (7.6.5) 

Here, we describe the testing process for answering these questions. We start with a test aimed to 

verify the quality of upscaling, then a test of the output consistency. These tests are followed by an 

experiment/discussion of the output distributions provided by ESIP compared to the known input, 

and an experiment to verify the influence of data density on model discrimination. 

7.6.1 Upscaling and interpolation steps 

The pressure data as received typically consists of pressure values for a number of reservoir layers, 

and often uses a grid size that is unpractically small for compaction and subsidence calculations. One 

of the first steps in the ESIP workflow is therefore to transform the pressure data into manageable 

grid sizes and time steps. To verify the quality of the upscaling procedure, and check if the results are 

consistent with procedures previously used, we used raw pressure data from the ‘Dummy model’ 

and upscaled these using ESIP and NAM’s equivalent scripts in parallel.  

Figure 20 shows the pressures after upscaling from a 100x100m grid size with 15 distinct vertical 

layers with varying thickness, to a one-layer format with a lateral grid block size of 500x500m. To 

quantify the difference between the NAM and ESIP upscaling, we look at the sum of the pressure 

times the volume for all the grid blocks. Since the compaction is related to the volume times pressure 

depletion, the sum of pressure times volume will be a proxy for the compaction and subsidence and 

should not differ too much between upscaling procedures. See Table 2 for the obtained values. In the 

exercise here, we find a match to within 0.1% between the methods (main contributions to the 

difference comes from the edges of the upscaled grid, which originates from different grid-centres in 

both methods), clearly well below the uncertainty levels of both pressure and volume, and 

demonstrating the agreement between the upscaling procedures.  

To also establish if the procedure has actually correctly upscaled the properties from the raw input, 

we calculated the same sum of volume times pressure over the fine input data. For the pre-upscaled 

input data, the total sum was 2.16262 x 1013, while for the post-upscaling process we obtain an 

almost identical value (difference 0.0014%), indicating that the upscaling of the pressure data will 

have very little impact on the accuracy of the calculated compaction volume. 
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Figure 20: Upscaled pressures in a dummy model. 

Table 2: Sums of volume times pressure over the grids for different upscaling procedures, and pre-upscaling. 

Data set sum(V*P) for all grid cells [m3bar] Relative deviation from input 

NAM upscaling 2.16519 x 1013 0.1% 

ESIP upscaling 2.16262 x 1013 <0.01% 

Raw input 2.16262 x 1013 0% 

7.6.2 Subsidence calculation 

We continued with the upscaled data from the previous section to verify that the differences in the 

resulting subsidence as determined by ESIP and existing NAM scripts are negligible. The NAM scripts 

used, apply a Geertsma and van Opstal (1973) calculation with a rigid basement at 5 km. The 

subsidence is calculated for a linear, time decay and a rate type compaction model. The results from 

both workflows are presented in Figure 21 (linear compaction), Figure 22 (time decay compaction) 

and Figure 23 (rate type compaction), showing an excellent agreement.  
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Figure 21: Calculated subsidence using a linear compaction model from NAM scripts (green) and ESIP (blue). The red 
circle in the top figure highlights the location of the benchmarks for which the subsidence is shown. 
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Figure 22: Calculated subsidence using a Time decay compaction model from NAM scripts (green) and ESIP (blue). 
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Figure 23: Calculated subsidence using a rate type compaction model from NAM scripts (green) and ESIP (blue). 

7.6.3 ESIP-outcome reproducibility 

The aim of the reproducibility test is to establish that, given the complexity of the software, the 

outcome of the software is not affected when changing either the operator or the physical computer 

it is installed on.  

To perform the test, a set of synthetic double difference data were generated to serve as geodetic 

input data, together with a total of 76 different reservoir scenarios. Two different operators, at two 

different computers (one at TNO, the other at NAM), used the identical geodetic and pressure input 

data, but ran the software independently, starting from the upscaling of the input data all the way 

through to the confrontation steps.  

In these independent runs, four compaction models were tested [linear, bilinear, time decay, rate 

type]. On each pressure model, 15 different sets of parameters (generated by the MC approach, 

which draws all input parameters from a uniform distribution) were tested for each compaction 
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model. The total number of ensembles tested per compaction model was therefore 76 times 15 = 

1140, bringing the total number of ensembles for all four compaction models to 4560.  

The double differences generated for these 1140 ensembles per compaction model are confronted 

with the synthetic input double difference data, making a weighing of the individual ensembles 

within a compaction model possible. Figure 24 shows the resulting (sorted) weights per compaction 

model for the two runs. The distributions of the weights are close to identical for the runs. It should 

be noted that the non-infinite number of MC runs adds some random deviations between the runs. 

Only if one were to run the same test for an infinite number of MC runs, identical distributions 

should be expected.  

In Figure 25, we compare the two sets in terms of double differences and prior and posterior 

weighted averages. In green, the double differences as calculated for all 1140 tested (linear 

compaction) models. The result for one of the runs (NAM or TNO) is in light green, the other in 

darker green. For both sets, an average (prior to the data confrontation) is shown in blue (again, light 

and dark blue to distinguish between the two runs), indicating both runs have generated similar data 

sets (spread in green lines) with a near-identical average (blue lines). After confrontation, the 

different models get a weight assigned based on their resemblance to the data, resulting in a 

posterior average that are indistinguishable (red and cyan lines). Figure 25 shows this for the linear 

compaction model. The same can be done for the bilinear, time decay and rate type compaction 

models.  

From the scatter in the plot of model vs data, a 
𝜒2

𝑁
value can be determined using: 

 
𝜒2

𝑁
=

𝟏

𝑵
(𝒅𝒅𝒓

𝒑𝒓𝒊𝒐𝒓
− 𝒅𝒅)

𝑻
𝑪𝒅𝒅

−𝟏(𝒅𝒅𝒓
𝒑𝒓𝒊𝒐𝒓

− 𝒅𝒅)                                                          (22) 

To quantify a goodness of fit. The resulting  
𝜒2

𝑁
 values from these three different runs (one by TNO, 

one by NAM) are listed in Table 3 from the output of the red flag confrontation method, for all four 

compaction models that were tested. The good agreement between the different operators 

demonstrates the reproducibility in all cases. 
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Figure 24: Model weight distributions from two different ESIP runs (NAM, TNO) on the same input data. Runs were 
performed on the same (synthetic) geodetic input and the same 76 pressure models. The weights have been sorted per 
compaction model from small to large (x-axis indicates member number, total of 1140 members per compaction model).  

 

 

Figure 25: Synthetic input double differences (black line) compared to model double differences from all linear 
compaction model members (light green and dark green reflecting the difference in run, by either TNO or NAM). Prior 
weighted averages for both runs (light and dark blue) as well as the posterior weighted averages (red and cyan) are both 
indistinguishable between the two runs. Posterior average shows close agreement to the input data. 
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Table 3  𝝌𝟐 𝑵⁄  results between different runs (TNO, one by NAM), for Red Flag confrontation of the synthetic data with 
four compaction models (each value based on a total of 1140 members; 15 sets of compaction model parameters for 76 
different pressure scenarios).  

Operator Confrontation 
method 

Linear Bilinear Time decay Rate Type 

TNO Red Flag 1.053 1.049 1.126 1.050 

NAM Red Flag 1.053 1.050 1.118 1.050 

 

7.6.4 Comparing ESIP output with known input 

ESIP was developed to assess the ranges of possible surface subsidence based on uncertainty in input 

data. Using the dummy model, we are in a position where we can generate a synthetic subsidence 

data set, and compare the output distributions with the known input compaction model. Because the 

uncertainty in the input data (which is also present in the synthetic data) is taken into consideration 

in the ESIP process, the output will never be a one-model selection. Instead, it will produce a range of 

models each having a probability assigned to it. It should be expected, however, that the known 

input lies within the range of models with reasonable probability. We discuss the results here, and 

use the outcome of the tests here to create an understanding and awareness of the workflow 

output. 

For the comparison we used one reservoir scenario to generate synthetic double differences (and 

subsidence) using a bilinear compaction model with known parameters Cm, pre, Cm, post and Ptrans. We 

then applied the ESIP workflow, which generates double differences for a range of compaction model 

parameters and confront these with the synthetic data, resulting in a weighing, or probability 

distribution of all the tested models.  Two different setups are presented here. 

In the first test, we generated synthetic data using a bilinear model where the two compaction 

coefficients, Cm, pre and Cm, post, are very close to one another, making the model effectively close to a 

linear compaction model. A total of 1000 models were tested in the ESIP process, of which the model 

weights after confrontation with the synthetic data is shown in Figure 26, plotted against the three 

compaction model parameters that were varied among the 1000 members. The parameter values as 

used for generating the synthetic data are marked by the blue lines.  

One can see a clear distribution of the model weights centred around the input value for Cm,pre, and 

to a lesser extend for Cm,post, whereas for the transition pressure there appears to be no preference 

for a certain value. Although on first glance these results might not be a convincing and successful 

demonstration of the workflow, these results are to be expected for the model used here. The non-

discriminating power in Ptrans is the result from the near-identical values used for Cm, pre and Cm, post, 

meaning that the location of Ptrans has only little effect on the resulting compaction and subsidence.  

The difference in the distributions of Cm parameters also has its origin in the synthetic data. Because 

the transition pressure chosen in the synthetic data only comes into effect later on in the data, there 
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are relatively few double differences affected by a change in Cm, post, whereas Cm, pre has a higher 

impact on the match between model and data, hence a narrower distribution.  

 

Figure 26: Model weights resulting from the confrontation with synthetic data, plotted against the compaction model 
parameters. The input parameter values for the synthetic data are marked by the blue lines. 

To assess that the models with higher weight assigned in Figure 26 also follow the synthetic input 

data (i.e. they are actually good models describing the data), we plotted the model compaction (Cm 

times dP) versus the pressure in Figure 27. The comparison is commonly shown as a subsidence vs 

time plot, but to show the behaviour of the compaction model only, we eliminate all the contributory 

factors coming from the pressure and elasticity parts of the models, by plotting the compaction 

instead of the subsidence. The red line is the synthetic data. All other lines show the compaction 

predicted by each model tested, their colour represents the model weight as determined by the ESIP 

procedure. Because of the low contrast in Cm, pre and Cm, post, the data in red shows almost a linear 

compaction behaviour. The best models in yellow, even those where Ptrans is very different from that 

used in the synthetic data, all lie around the input compaction data. 

  

Figure 27: Model compaction values as a function of pressure. The red line is the synthetic data, and the other lines the 
tested models. Their colour represents the model weight as in Figure 26, yellow being the higher probability. 
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The test was performed a second time with a bilinear compaction model as input now having more 

contrasting pre and post compaction coefficients. The resulting model weights after confrontation 

are plotted again against the model parameters in Figure 28. As a result of the higher contrast in the 

compaction coefficients, it now does matter what transitional pressure is used for a model to have a 

good resemblance to the data, resulting in the presence of structure in the weight distribution of 

Ptrans, which was absent in Figure 26. The models with a high weight now has a value for each of the 

three compaction model parameters around the known input values. 

Note however that there are many models with a very low (close to zero) weight, even at locations 

around the input parameters. These exist because the weights can actually not be decoupled to the 

different parameters as the figure suggest, but are the result from a set of parameters. Because 

there is a large contrast in parameters in this test, it can happen that even though one parameter is 

close to the input, say Cm,pre is close to the blue line, the other parameters might be too far off, 

resulting in a poor match to data and correspondingly low weight. 

 

Figure 28: Model weights resulting from the confrontation with synthetic data, plotted against the compaction model 
parameters. The input parameter values for the synthetic data are marked by the blue lines. Compared to the results in 
Figure 26, there is now a large contrast in the two compaction coefficients of the input. 

Like for the previous set, we also generated a compaction versus pressure plot, in Figure 29. Because 

there now is contrast in compaction coefficient pre and post the transitional pressure, the input data 

(red line) exhibits a clear kink around Ptrans. Again, the data with the highest weights after 

confrontation (yellow) follow the synthetic input data very well. 
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Figure 29: Model compaction values as a function of pressure. The red line is the synthetic data, and the other lines the 
tested models. Their colour represents the model weight as in Figure 28, yellow being the higher probability. 

In summary, the models with a high weight after the confrontation with the geodetic data in ESIP do 

describe the data well. When plotting the assigned model weights against the model parameter 

values, the known input values lie within the regions of highest weights. Note that the width of these 

distributions depends on the impact the particular parameter has on the match to the data; the more 

impact, the narrower the constrained/distribution of weights for this parameter will be. Additionally, 

note that the weights can strictly speaking not be decoupled into the individual parameters that 

make up the model, meaning that also low weights can exist at or around the true parameter value 

in these type of plots. 

7.6.5 Effect of data density on model discrimination 

Since most of the area of the subsidence bowl lies below the Waddenzee and only part of the 

subsidence bowl on the Ameland island, the subsidence data is not evenly distribution in the lateral 

sense. Most of the levelling benchmarks are located directly above the gas reservoir, while there are 

only a few GPS stations directly above the lateral aquifers. The distribution of the benchmarks has 

raised concern in the past about the ability of the data handling to discriminate between different 

reservoir scenarios.  

An example is the ability to discriminate between a model where the lateral aquifers do deplete in 

one model and not in another. While these models can predict a very different subsidence volume, 

and correspondingly very distinct subsidence rates, they could both fit the subsidence bowl above 

the gas very well, i.e. the part where most of the geodetic data lie. Because of the high data density 

in this area, a very different fit between model and data on the few benchmarks above the aquifer 

might not result in a clear discrimination between these two subsidence bowls, even though they can 

largely vary in terms of subsidence rate predictions. 

Since ESIP carries not only the variance per double difference but also the covariance between 

double differences, it is claimed that it should be able to still make the discrimination between 

models to some degree, even though the models only give different predictions on a very small 

portion of double differences. The idea is that, even though there is a very high density of double 

differences above the island, these get a relatively lower individual effective weight through the 

C
m

 x
 d

P
 

P 



49 
 

covariance matrix since they carry more dependence on one another, compared to points that lie 

more isolated in the Waddenzee area.  

We tested the effect of the data density above the aquifer by running the ESIP model multiple times. 

We varied both the data density and the aquifer depletion in these models. In terms of data density, 

we once used a high density above the gas and once after removing some of these data, while 

keeping the amount of data above the aquifer constant. In terms of the pressure models for 

generating the input geodetic data, we used one being a pressure model with significant aquifer 

depletion. Both this pressure model as well as a pressure model with very little aquifer depletion are 

then tested in the ESIP workflow, with the hypothesis that, independent of the data density, the 

pressure model used for generating the synthetic benchmark data is the one that gets higher weights 

assigned.  

The synthetic data is generated for a bilinear compaction model. The confrontation was done for 

1000 members per reservoir scenario, so a total of 2000 members per tests. 

If the data density does indeed not result in the method favouring certain models, then the high 

depletion – low density and high depletion – high density tests would give similar weight 

distributions, both in favour of the high aquifer depletion model, and similar for the two low 

depletion tests. 

The final pressures for the two pressure models (dummy model) used for the confrontation are 

shown in Figure 30. The locations of the benchmarks are shown in Figure 31, where the green 

polygon highlights the benchmarks used in the high data density cases, while the red polygon 

highlights those for the low data density case.  

 

Figure 30: Two pressure models used in the tests here. The top figure shows low pressure depletion in the aquifer, while 
the bottom figure shows high depletion in the aquifer. Depletion in the gas reservoir are comparable. Pressure model 
with the high aquifer depletion was used to generate synthetic double difference data. 
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Figure 31: Benchmarks used in the tests. Green polygon bonds all benchmarks used for the case of high data density 
above the reservoir, while the red polygon encloses the benchmarks for the low data density case. Numbers in the figure 
label the benchmarks as used in the high data density case from 1 to 7. 

Here we test the workflow using synthetic data that was generated using the high aquifer depletion 

pressure model. This model would give rise to subsidence above the aquifer, where there is however 

only one benchmark. The synthetic data is generated using a bilinear compaction model; once with 

high compaction coefficients to amplify the difference between the two pressure models above the 

aquifer, and once with low compaction coefficients to do the test for models that only have subtle 

differences above the aquifer.  

The first set of synthetic data was generated using a bilinear compaction model with relatively large 

compaction coefficients, to amplify the differences between the two different reservoir models 

above the aquifer.  

We start with the low data density case, where making the distinction between different pressure 

scenarios is expected to be easier, given the relatively large number of points above the aquifer. 

Similar to the plots presented in Section 7.6.4, Figure 32 shows the model weights after 

confrontation for the low data density case, plotted against the compaction model parameters. In 

blue, the values used for generating the synthetic data are shown. Clearly, the weights from the full 

ensemble (containing models based on both the high and low aquifer depletion models), 

demonstrating that the workflow does return models around the known input. 

2 

3 
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Figure 32: Model weights plotted against the compaction model parameters (low data density). The blue lines indicate 
the parameters used for generating the synthetic data. 

The same model weights are plotted inFigure 33, now against ensemble number. The first 1000 

ensembles use the high aquifer depletion model (i.e. the same that was used for generating the 

synthetic benchmark data), while varying the compaction model parameters, and the second 1000 

models use the low aquifer depletion model. All models that have a weight assigned to them that is 

visible on the scale of the plot belong to the set that used the high aquifer depletion pressure 

scenario, i.e. the best subsidence models after confrontation seem to all be based on the correct 

pressure model. The sum of the weights of the first thousand members is >0.99, and the sum of the 

weights of the second thousand members is 10-12 (total sum being 1); evidently allocating most 

weight to the members that used the same pressure scenario that was used for generating the 

synthetic input data. As expected, a distinction in the likelihood of these two pressure scenarios can 

be made, with the low data density. 

 

Figure 33: Model weights plotted for all the ensembles tested (low data density, synthetic input data generated using the 
high aquifer depletion). The first 1000 ensembles use the high aquifer depletion pressure model, whereas the second set 
of 1000 models use the low aquifer depletion model. Sum of the weights of the first thousand members is 0.99, whereas 
the sum of the second thousand members gives 10-12. 



52 
 

 

The same bilinear compaction model was used to generate the synthetic data for the larger number 

of benchmarks used in the high data density case. As in the low data density case, we confronted the 

synthetic data with 1000 ensembles using the high aquifer depletion pressures, and 1000 ensembles 

using the low aquifer depletion scenario. The resulting weights are plotted as a function of the 

compaction model parameters in Figure 34, which similar to Figure 32, demonstrates that also with 

the high density case the best models seem to be using compaction model parameters similar to 

those used for the input. 

 

Figure 34: Model weights plotted against the compaction model parameters (high data density). The blue lines indicate 
the parameters used for generating the synthetic data. 

More importantly, Figure 35 shows that one can still discriminate between the two reservoir 

scenarios, as the models with the highest weights or probability are based on the pressure scenario 

with the high depletion. The sum of the weights of the first one thousand members is now still >0.99, 

with the sum of the second still negligible with a sum of 10-6, demonstrating that still a clear 

distinction is possible. 
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Figure 35: Model weights plotted for all the ensembles, similar to Figure 33, now using a high data density (relatively 
fewer points above the aquifer). A similar distinction between pressure depletion models is seen as for the low data 
density case. Sum of the weights of the first thousand members is 0.99, whereas the sum of the second thousand 
members gives 10-6. 

The above shows that for a more extreme case, the workflow can still discriminate between the two 

different pressure scenarios, regardless of the distribution of the benchmarks. We do the same, but 

now using a compaction model on the synthetic data that gives less compaction, making the 

difference above the aquifer in terms of subsidence smaller. 

In the second test we use an extreme case where the compaction coefficients are small, such that 

the subsidence above the aquifer resulting from members with or without aquifer depletion will be 

more similar. The member weights after confrontation with the synthetic data are shown in Figure 

36 for both the low data density and high data density cases, indicating both setups return member 

weight distributions around the known compaction parameter input.  
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Figure 36:  Member weights plotted against the compaction model parameters. Top figure is when using the low density 
of benchmarks, bottom for using a high density of benchmarks. The blue lines indicate the parameters used for 
generating the synthetic data, showing the low compaction coefficients used. Both high and low data density cases 
return similar distributions, both around the parameters used in the synthetic data. 

In Figure 37, the same weights for the low data density test are shown but now plotted against the 

member number. Again, the first one thousand members used the same pressure member that was 

used for generating the synthetic data (with high aquifer depletion) and the second half used the 

pressure model with the low aquifer depletion. Clearly, the best models all fall in the first half of the 

set, which are the members that used the same pressure scenario as that was used for generating 

the synthetic data. The sum of the weights of the first half is 0.54, where that of the second half is 

0.46, showing a small but visible distinction based on the average weight, for this extreme case that 

shows very little compaction. Figure 38 shows the same but now for the high data density case. 

Again, the best models lie within the first half, meaning the best models are still those that use the 

correct pressure scenario. The average weights when using the high data density, however, are much 

closer for both pressure scenarios, as the total sum of the high depletion scenario is 0.49, and the 

low depletion scenario is 0.51, showing on average almost no difference. The distinction based on 

the average weight is therefore almost not present based on the average weights, since there are 
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also models with the high depletion case that have a much lower weight (those that result in too 

much compaction). 

 

 

Figure 37:  Same as data as in Figure 36 for the low data density case, but now plotted against the member number. The 
first half of the set used the same pressure scenario as was used for the data generation (high aquifer depletion), while 
the second half used the other pressure scenario. Clearly, the models with the highest weight all fall in the first half of 
the set, all using the same pressure scenario as was used for the input data. The sum of the weights of the first thousand 
members is 0.54, while the sum of the weights of the second set of one thousand members is 0.46, indicating still a small 
but visible discrimination.  

 

Figure 38: Same weights as in Figure 36, for the high data density case, but now plotted against the member number. The 
first half of the set used the same pressure scenario as was used for the data generation (high aquifer depletion), while 
the second half used the other pressure scenario. Still, the models with the highest weight all fall in the first half of the 
set, all using the same pressure scenario as was used for the input data. However, in this case the sum of the weights of 
the first thousand members is 0.49, while the sum of the weights of the second set of one thousand members is 0.51, 
showing that a discrimination based on the average weight per pressure scenario is in this extreme case difficult.  

The total weighted average, though, still describes the data well, and still takes more weight from the 

models that used the high depletion scenario. The effect is illustrated in Figure 39 and Figure 40. 

Figure 39 shows the subsidence on six locations, location 1 being above the aquifer, for all the 
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members tested in the high data density case. The colouring indicates the member’s weight; yellow 

being high, blue being low. In dark blue is the prior average, and in red the posterior average, the 

latter closely resembling the data (black), also above the aquifer (location 1). The spread is however 

very large, as some of the members using the high depletion case can predict very large subsidence. 

In the confrontation, these members will receive a very low weight. 

The same data is plotted in Figure 40, but now only plotting the data from members that used the 

low depletion scenario (i.e. the pressure model that was not used in the input data). The spread of 

data at location 1 is much smaller, and all these members seem to describe the data at location 1 

well, meaning that on average all these models can give good predictions, but at the same time none 

of them are very good, suggested by the lack of yellow lines. All the best models, with the highest 

weights, still come from the set of members using the high depletion scenario. 

 

Figure 39: Subsidence on three locations, high data density, all members. Locations of the benchmarks are indicated in 
Figure 31. 

 

Figure 40: Subsidence on some locations, high density data, only 'wrong pressure members'. Locations of the 
benchmarks are indicated in Figure 31. 
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In summary, the tests here demonstrated that for a model with significant subsidence above the 

aquifer, a clear distinction can be made between different aquifer depletion scenarios with both a 

low and high data density above the gas column (away from the aquifer). The distinction can be 

made both based on the best models, and on the sum of all weights over all the members for each 

pressure scenario (see Figure 33 and Figure 35). When the input data was generated to the extreme 

case where little compaction is expected, and correspondingly little difference in subsidence with or 

without aquifer depletion, the members that gained highest weight after data confrontation still 

belonged to the set of members using the correct pressure depletion model, and a visual distinction 

is possible. Based on the average weights, however, the discrimination disappears for the high data 

density case. This is because besides the high weight members in the high depletion scenario, there 

are also scenarios (with high compaction) that have a much lower weight than that are present in the 

low aquifer depletion case, pulling the average down. With the low data density, there is still a small 

distinction possible based on the average weights.  

7.6.6 Summary of ESIP testing 

A range of tests were devised to demonstrate the ESIP workflow and to get acquainted with the 

output. The tests described in Section 7.6.1 and Section 7.6.2 compare the upscaling, interpolation 

and subsidence calculations that are performed in the ESIP workflow with those from methods used 

by NAM, to verify differences in methods are negligible. Section 7.6.3 demonstrates that the output 

of the complex piece of ESIP software does not change when used by different individuals or on 

different machines. Section 7.6.4 compares the output, especially the model weights after 

confrontation, with a known input of synthetic data, to on one side demonstrate that the known 

input parameters fall indeed within the ranges where model weights are higher, and on the other 

hand to help create an understanding for how to interpret the output. In the last test, Section 7.6.5, 

we verify that, through the incorporation of the covariance matrix, areas with a low density of 

subsidence data, such as those in the Waddenzee, do not incite a particular favour towards certain 

pressure scenarios that give a good fit above the island (with high data density), leaving little 

distinction about the aquifer depletion. The test demonstrated that, even for an extreme case, 

distinctions between pressure scenarios can be made based on the weight distribution. 

 

7.7 Comparison of AEsubs with FE element numerical simulations: testing 

the influence of salt flow. 
To demonstrate that the analytical solutions of AEsubs are able to approach the results that can be 

obtained from a numerical FE element simulator, we use the Ameland FE model as a reference. This 

model is described in NAM (2011) and can be regarded as the state-of-the-art geomechanical model 

for Ameland to provide the subsidence volume contribution caused by the Ameland production in 

the measurement and control as part of the “Hand aan de Kraan” procedure. The model contains a 

grid that represents the geology of the Ameland area.  

The linear viscous salt behavior in AEsubs was tested in the past and results (Figure 41) were 

published by Fokker and Orlic (2006). In the LTS II report we will demonstrate that AEsubs is also able 

to produce solutions similar to FE models based on the Ameland area. 
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Figure 41: Validation of the AEsubs for subsidence prediction with the finite element simulator DIANA, using the visco-
elastic profile presented in the left figure and the center of compression at a depth of 3,000 m. Profiles are shown for 
zero time, 95 days, 440 days, and 950 days. Vertical displacements are increasing with time; horizontal displacements are 
decreasing (from Fokker and Orlic, 2006).  

We selected one reservoir scenario for making the comparison of the results obtained for AEsubs and 

the FE model. The particular model has a good quality history match. The model’s pressure depletion 

profile in the year 2016 is plotted in Figure 42.  Since we are interested in comparing the subsidence 

profiles from the different approaches and not the compaction that results from different 

compaction models, we only consider one compaction model. The model used is a time decay 

compaction model with a Cm multiplier of 1.2 and a time-constant of 7 years, i.e. what is used in the 

most recent measurement and control cycle publication (NAM, 2016a). 

 

Figure 42: Pressure depletion in 2016 according to the model used for the AEsubs vs Geomec comparison. 

The main geomechanical layers of the FE model are (NAM, 2011) listed in Table 4. This table presents 

the average value taken from the FE model. The Maxwell viscosity in this table is equal to the creep 

factor used in Geomec (pers. Comm. P. Fokker (TNO) and P. Fokker (Shell)). In Geomec vertical strain 

rate is defined by: 

휀3̇3 = 𝐷(𝜎33 − 𝜎11)𝑛       (23) 
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With 𝑛 being 1 for linear viscosity and for the condition that radial strain (휀11 and 휀22) is zero and 

𝜎11 = 𝜎22. 

Maxwell viscosity is defined by: 

2𝜇휀�̇�𝑗 =
𝜇

𝜂
(𝜎𝑖𝑗 −

1

3
𝜎𝑘𝑘𝛿𝑖𝑗)  and for 𝑖𝑗 = 33     (24)  

휀3̇3 =
1

2𝜂
(𝜎33 −

1

3
(𝜎11 + 𝜎22 + 𝜎33)) and 𝜎11 = 𝜎22   (25) 

휀3̇3 =
1

3𝜂
(𝜎33 − 𝜎11),        (26) 

Therefore 𝐷 =
1

3𝜂
       (27) 

In Geomec: 𝐷 = 𝐴 ∙ 𝑒𝑥𝑝 (−
𝑄

𝑅𝑇
)      (28)  

with 𝐴 the “creep factor” [MPa-1S-1], 𝑄 the activation energy [J mol-1], 𝑅 the gas constant [J mol-1K-1] 

and 𝑇 the temperature [K]. 

 

Table 4 Average values of the finite element model 

Layer name Top layer 
[m] 

Mean E 
[GPa] 

Mean  Viscosity 
PaS 

North Sea  0 2 0.3 - 

Chalk  1000 10 0.25 - 

Cretaceous/Jurassic 1500 16 0.25 - 

Zechstein 2000 30 0.35 6.7*1017 

Ten Boer Claystone 3200 40 0.2 - 

Rotliegendes 
Sandstone (reservoir) 

3300 8 0.2 - 

Limburg 3410 40 0.2 - 

 

AEsubs makes it possible to include the effects of salt viscosity for subsidence calculations without 

having to use finite element models, however it does not allow for a combination of a viscous layer 

together with large contrasts and variability in layer stiffness. To make a comparison to the Geomec 

simulations, we used a simplified four-layer model in AEsubs, of which the properties are shown in 

Table . 

In order to include the effect of the viscous layer over time, AEsubs generates a range of influence 

functions that together describe the evolution of the surface motion resulting from a subsurface 

strain event over time. Rather than only having an instantaneous effect on the surface deformation, 

a subsurface strain event now continues to deform the surface for a certain amount of time, given by 

the convolution over time of the subsurface strain with the time dependent influence function.  

In total, AEsubs generates the influence function at 21 different time steps. Figure 43 shows the 

influence function at three moments in time (using the model parameters in Table 1Table 5). The 

first is the instantaneous influence function (t=0) and behaves in the same fashion as when no 

viscous layer is included. The other two curves show the surface deformation resulting 20 years and 

2500 years after a reservoir strain occurred. 
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Note that the deepest point, at x=0, increases over time, as expected for a viscous layer, and that the 

subsidence volume is (within the analytical precision) preserved. The shape of the influence functions 

is mainly controlled by the combination of Young’s moduli, Poisson’s ratios and depths of the various 

layers used, whereas the viscosity controls the time at which these influence functions take effect. 

The final influence function in this case, for example, comes into effect at a time 2500 years after a 

subsurface strain happens. When increasing the viscosity by a factor of two, the time of all the 

influence functions also increase by a factor of two, while leaving the shape unchanged. 

Adding more than four layers, in an attempt a better resemble the variety that is present in the 

Geomec model, resulted in unrealistic influence functions, where the subsidence volume is no longer 

preserved. Among these layers, the contrast in especially the Young’s modulus cannot be too large, 

and will be smaller than the contrasts in the Geomec simulations. A further deviation from the 

Geomec model is the depth of the reservoir. As a rule of thumb, AEsubs requires the separation 

between interfaces to be more than 10-15% of their depth, when the layer properties change 

significantly (pers. comm. P. Fokker, TNO). Hence, in order to maintain the resemblance to the salt 

layer thickness in the comparison here, the reservoir cannot be closer than 300-400m from the top of 

Layer 3. To guarantee stable and realistic influence functions, the reservoir is placed at a depth of 

3600m. An example of unrealistic influence functions is plotted in Figure 44, generated when moving 

the reservoir up to 3300m. 

 

Figure 43: Vertical influence functions for the model parameters as in Table , plotted for three different times after strain 
nucleation.   
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Figure 44: Example of unrealistic influence functions, generated when interfaces are placed too close to one another. In 
the case plotted here, the reservoir was placed at 3300m depth, compared to the 3600m in Table . The subsidence 
volume is not preserved over time, and there is permanent deformation still at a distance 14km away from the centre. 

 

Table 5 Layer properties as used in the AEsubs calculation. 

Layer Top depth (m) Young’s modulus 
(GPa) 

Poisson’s ratio Viscosity (Pa s) 

1 0 8 0.25 - 

2 2000 8 0.35 7 x 1017 

3 3100 20 0.25 - 

4 4200 20 0.25 - 

 

For the comparison to Geomec, we will use the parameters from Table 5. The depths of the viscous 

layer (Layer 2) is comparable to the average top of the Zechstein in the Geomec model, and the top 

of Layer 3 is similar to that of the top of the Ten Boer. The properties of the four layers are kept as 

close to those in Geomec at similar depths where possible. 

Figure 46 compares the surface deformation in 2016 across the subsidence bowl as calculated by 

AEsubs and Geomec. Clearly, the deepest point in the subsidence is different between the AEsubs 

model (with Cm factor of 1.2) and the output from Geomec.  

Two significant differences between the setup of the AEsubs and Geomec models, however, can 

account for such a difference. One of these is the reservoir depth, which, as discussed, is at an 

average depth of 3300m in Geomec and limited to 3600m in AEsubs because a shallower position of 

the reservoir will lead to unstable results for the subsidence. The second significant difference is the 
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lack of significant contrast in layer stiffness in the AEsubs model. Both of these will result in a deeper 

subsidence bowl when using the properties in the Geomec model. 

To get a quantitative handle on the contribution of these differences on the depth of the subsidence 

bowl, we used AEsubs to generate influence functions for different reservoir depths and properties. 

We did this for four models with parameters as indicated in Table 6. Model 1 uses layer properties 

that still produce a reliable influence function when adding viscous properties to Layer 2, and is the 

model used for comparison to Geomec. Model 2 is the same as Model 1 apart from the reservoir 

depth, so will provide an illustration of the effect of the reservoir depth limitation. Model 3 has the 

same reservoir depth as Model 1, but has a higher contrast of layer stiffness, and a higher stiffness 

below the reservoir than is possible when also using a viscous layer. Model 4 combines the two 

alterations, having both a shallower reservoir and higher stiffness contrast than Model 1.  

Table 6: Model parameters used in AEsubs to verify the effect of the limitations on the depth of the subsidence bowl. 
Property values that deviate from those in Model 1 are highlighted in bold red. 

 Layer 1 Layer 2 Layer 3 Layer 4 Reservoir  

Model 1 Top depth (m) 0 2000 3100 4200 3600 

Poisson’s ratio 0.25 0.35 0.25 0.25  

Young’s 
modulus (GPa) 

8 8 20 20  

Model 2 Top depth (m) 0 2000 3100 4200 3350 

Poisson’s ratio 0.25 0.35 0.25 0.25  

Young’s 
modulus (GPa) 

8 8 20 20  

Model 3 Top depth (m) 0 2000 3100 4200 3600 

Poisson’s ratio 0.25 0.35 0.25 0.25  

Young’s 
modulus (GPa) 

5 8 30 40  

Model 4 Top depth (m) 0 2000 3100 4200 3350 

Poisson’s ratio 0.25 0.35 0.25 0.25  

Young’s 
modulus (GPa) 

5 8 30 40  

Differences in influence functions from contrast and reservoir depth are shown in Figure 45. Both the 

difference in reservoir and stiffness contrast can individually account for a difference of more than 

20% in the deepest point of the influence function, and when combined (Model 4) this is more than 

50%. In order to make a fair comparison between the AEsubs and Geomec models, which is the aim 

of the exercise here, it is justified to increase the Cm factor from 1.2 to 1.8 (a 50% increase) to 

compensate for the limitations encountered in AEsubs with a viscous layer. 
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Figure 45: Influence functions (u3 being vertical) generated by AEsubs for the models in Table 6. Left graph shows the 
nucleus of strain, right graph the normalised values to allow comparison between the shape of the influence functions. 

 

Figure 46: Comparison of the calculated subsidence in 2016 through a cross section through the deepest point in the 
subsidence bowl. The salt viscosity used in AEsubs is 7e17 PaS similar to the Geomec salt viscosity. To compensate for 
the lack of stiffness contrast and for the limitation to the depth of the reservoir, the Cm factor in the Time decay model 
was increased by 50% from the original Cm=1.2, to Cm=1.8. 
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The results from AEsubs with an increased Cm factor are included in Figure 46, which demonstrates 

that, when using the Cm value to compensate for model limitations, the depth of the subsidence 

bowl from AEsubs using the parameters in Table 6 become almost identical to that resulting from the 

more complex Geomec modelling. The evolution of the deepest point of the subsidence bowl over 

time is plotted in Figure 47, while the contours at several moments in time are plotted in Figure 48. 

The results from both AEsubs and Geomec show good agreement in the development of the 

maximum subsidence over time, and similarly the shape of the bowl shape shows good resemblance, 

apart from some minor offsets in the location of some contour lines. A more detailed contour plot 

for the subsidence in the year 2016 is shown in Figure 49. 

 

 

Figure 47: Evolution of the deepest point in the subsidence bowl from Geomec and AEsubs (AEsubs with Cm factor of 
1.8). 



65 
 

 

Figure 48: Subsidence contours through time, for Geomec (red) and AEsubs (blue). 



66 
 

 

Figure 49: Detailed subsidence contours above the Ameland field, generated by Geomec (red) and AEsubs (blue). 

The shape does show a reasonable match keeping in mind the simplified layering in AEsubs 

compared to Geomec. The contour pictures through time in Figure 48 demonstrate as well that the 

domal shape of the Zechstein salt has a negligible influence on the position of the bowl in time, a 

topic that will be discussed in more detail in paragraph 7.8. 

The results from running the AEsubs calculation using parameters derived from the Geomec model 

show that both methods produce very similar subsidence predictions under similar circumstances. 

The resemblance between the two outcomes indicates that the AEsubs calculations will be able to 

generate subsidence bowls of similar shape to Geomec, after including a viscous salt layer. The 

results here prove that the ESIP workflow can produce models that have a steep, deep bowl shape 

like the Ameland subsidence bowl. 

As an additional test, we improve the resemblance one step further by slightly adjusting the viscosity 

in AEsubs, while remaining well within the acceptable viscosity values (and thereby also within the 

distribution used in the future viscosity distributions in the ESIP workflow). The resulting subsidence 

across the subsidence bowl for the year 2016 are shown in Figure 50 and Figure 51 for a salt viscosity 

ranging from 5 x 1016 Pa s to 7 x 1017 Pa s, the latter being the one that is comparable to what is used 

in the Geomec calculations above. Judging from Figure 51, which shows the subsidence normalized 

to its deepest point, the steepness of the bowl as obtained by the Geomec model is reproduced using 

AEsubs with a viscosity within the range mentioned above. Models with a salt viscosity exceeding 3 x 

1017 Pa s, in combination with the other layer properties generate a slope that is slightly less steep, 

whereas a viscosity lower than 3 x 1017 Pa s results in a very similar gradient of the flanks of the bowl 
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when compared to Geomec. These models however produce a bulge at the edges of the subsidence 

bowl that should be regarded as a model artefact because heave has not been observed by the 

geodetic measurements. 

 

Figure 50: Calculated subsidence in 2016 across the subsidence bowl for a range of viscosity values (Cm factor is kept at 
1.8). 

 

Figure 51: Same as Figure 50 but now showing the subsidence normalized to the deepest point, to allow better 
comparison of the shape of the bowl. 
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In summary, we demonstrated here that the subsidence as calculated by the complex Geomec model 

can be approached with a much simpler AEsubs calculation, even within the restrictions encountered 

by the inclusion of a viscous layer in AEsubs. When using Geomec-derived parameters, and altering 

the Cm value to compensate for the restrictions imposed on the reservoir depth and stiffness 

contrast in AEsubs, we obtain subsidence results very much alike those in Geomec in both the 

temporal and spatial response. By changing the viscosity and Cm by a small fraction well within the 

parameter uncertainties, we can obtain an even closer resemblance to the Geomec output. These 

results demonstrate that, within a reasonable range of parameters around those of their 

counterparts in the Geomec model, a subsidence bowl very similar in both time and shape are 

generated within the ESIP workflow. 

 

7.8 The effect of the Ameland salt dome on the position the point of 

maximum subsidence with time. 
A concern was raised during a meeting on 24-11-2016 with the steering committee that the structure 

of the salt dome above the Ameland would have a significant impact on the subsidence bowl position 

with time, which cannot be addressed by the layer cake model in AEsubs. If this would be the case, 

the chosen semi-analytical approach could be regarded as not adequate enough. These concerns 

were based on conclusions made in the report by TNO (TNO, 2011). 

A further investigation with the Ameland Geomec model demonstrates however that a finite 

element model scenario that allows for viscous flow of the salt will produce similar results for the 

position of the deepest point of the subsidence model through time as a scenario with only an elastic 

behavior. Figure 52  shows the results of the two scenarios for the simulated year 2016 and Figure 53 

shows the position of the point of maximum subsidence through time. The figure demonstrates that 

the location of the deepest points of the two scenarios are similar. Still, the bowl shape and 

therefore also the value for the maximum subsidence is affected by the deformation of the viscous 

salt resulting in narrower and steeper subsidence bowl when compared to a full elastic model. 

Depletion increases to the NW giving an explanation for the shift in the deepest of the subsidence 

bowl with time. 
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Figure 52: Comparison of results for a FE model scenario with an elastic behaviour for salt (top picture) and model 
scenario implying a viscous behaviour for salt (bottom picture). Ameland model with 2016 model results. 
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Figure 53: Location of the deepest points with time. Comparison between a full elastic model and a model with a viscous 
behaviour for the salt layer. 

An explanation of the approximate shift of 1 km to the west and 400m to the north can be found in 

the development of the pressures with time. Figure 54 shows the area that is affected by the 

pressure evolution. 
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Figure 54: Depletion maps from the history matched Mores model. Top picture shows the pressure for 1992 while the 
bottom picture shows the results for the year 2050. 
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8 Results of the confrontation 
This chapter describes the results of the confrontation of the selected reservoir scenarios and 

geomechanical models and members with the geodetic data. Based on discussions with the steering 

committee it has been decided to present the results in a format as close as possible to the results 

presented in the measurement and control documents (e.g. NAM 2016a) for the Waddenzee area. 

Rather than presenting subsidence bowls and profiles, average subsidence rates will be presented 

generated from calculated subsidence volumes. Each model member will give a forecast and from 

the confrontation with the geodetic data we can infer the likelihood of that specific member 

depending on the mismatch with the data. Knowing the likelihood, a cumulative probability density 

plot can be made and P50 and confidence bounds can be inferred from it. These values provide a 

description of the quality of model predictions. 

The layout of this chapter is structured around the different influence functions (AEsubs, Knothe) and 

different assumptions for the behavior of the overburden (elastic vs viscous salt). The first part of this 

chapter is a description of the used geodetic data, reservoir scenarios and geomechanical parameters 

in these calculations. 

8.1 Selection of benchmarks 
The benchmarks selected for the confrontation between modelled and measured double differences 

is based on a polygon which covers the influence area of the Ameland subsidence bowl. The geodetic 

data that can be affected by the production from the Nes field (SE corner) have been excluded 

(Figure 55). All red dots in the figure contain data that is being processed by the CUPiDO tool in ESIP. 

 

Figure 55: Selected benchmarks with in the selection polygon (black line). 

  

Nes 
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8.2 Selection of reservoir scenarios 
Around 200 reservoir scenarios resulted from the automated history match workflow with Mores. 

The main parameters that were varied are fault transmissivity, permeability, and residual gas. A 

scenario selection procedure was required to limit the amount of scenario’s and as well calculation 

time. This procedure is acceptable because many scenarios are more or less alike. The selection of 

scenarios is mainly based on the transmissivity of the faults because this parameter determines 

which block is able to deplete and can cause subsidence. For each fault configuration, scenarios were 

selected that represent the depletion ranges within that configuration. This procedure resulted in the 

selection of 13 reservoir scenarios that are a good representation of the total temporal and spatial 

depletion span given by the total set of 193 scenarios.  The selected models are shown in Figure 56.  
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Figure 56: Selected reservoir models for the ESIP calculation The top figure shows the lateral depletion for the year 2040, 
the bottom the figure show the pressure vs time for the four points shown in the top figure (last plot). 

1 2 

3 4 
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8.3 Selection of area of interest for subsidence rate calculation 
As mentioned in the introduction of this chapter the output is presented as subsidence rate. The 

subsidence rate is calculated from the modelled subsidence volume generated per year in a specific 

area of interest and divided by the surface area. For all the models the subsidence rate vs. time is 

calculated for the selected area presented in Figure 57. 

 

Figure 57: Area for which the subsidence rate is calculated. 

Rather than presenting the subsidence rate for each year, also here we decided to stay as close as 

possible to the calculation schemes as defined for the Waddenzee. This calculation scheme provides 

a 6 years moving average. The average rate (rate (Y)) for each year is calculated from subsidence 

rates 3 years before and 2 years after that specific year. 

rate (Y) = [S(Y-3) + S(Y-2) + S(Y-1) + S(Y) + S(Y+1) + S(Y+2)] / 6  [mm/year]. 

For all the members the goodness of fit (𝜒2/𝑁) and the probability of each member has been 

calculated. The expectation weighted model case has been calculated by: 

𝑅𝑒𝑥𝑝 = ∑ 𝑃𝑖𝑅𝑖

𝑛𝑚𝑒𝑚𝑏𝑒𝑟

𝑖=0

 

Where R is the rate per member, P the probability of that member and 𝑅𝑒𝑥𝑝 is the weighted model 

rate. Note that the sum of the probabilities is 1. An example of the rate distribution is shown in 

Figure 58. 
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Figure 58: Example of the PDF for the subsidence rate, the green area shows the area within the 2.5 and 97.5% 
probability. 

 

8.4 Selection of reservoir and overburden parameters 
The elastic overburden and its properties is compiled following the Ameland Geomec model, which 

contains 7 layers with different stiffness properties. The Geomec stiffness values are used to define 

the mean of the input distributions of which the ranges are presented in Table 7. The range for the 

stiffness of the reservoir rock is defined by the measured laboratory data from Ameland. First cycle 

tests on core plugs show a stiffness that correlates with porosity using a fixed value of 0.2 for the 

Poisson’s ratio to convert the measured uni-axial compressibility values to a Young’s modulus (Figure 

59a). A better approach for getting values for both Young’s modulus and Poisson’s ratio is to invert to 

these parameters via a numerical model using the available stress-strain curves. Results from this 

inversion are presented in Figure 59b. 

 

Figure 59: a) Estimated E modulus for all Ameland core plug data b) Inverted elasticity data from available stress strain 
curves. 

From Figure 59b a relation between the porosity 𝝋 and 𝑪𝒎 has been derived which has been used in 

ESIP. This equation of this regression line is:  

𝑪𝒎 = 𝟕𝟓𝟒 ∙ 𝝋𝟑 − 𝟏𝟒𝟐. 𝟖 ∙ 𝝋𝟐 + 𝟏𝟎. 𝟏 ∙ 𝝋 + 𝟎. 𝟏𝟖      
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This line is shown in Figure 60 as the blue solid line. The range for the 𝑪𝒎 values in ESIP is based on 

all available core plug experiments from the Rotliegendes formation in the North Netherlands, 

(Figure 60, grey dots). The dashed lines are the result of multiplication factors (𝑪𝒎 factor) of 0.3 and 

4 to the 𝑪𝒎, 𝝋 relation (blue solid line).  

 

 

Figure 60: Ameland (blue dots) and other Rotliegendes Elasticity Moduli (grey dots)  (converted from Cm core plug 
experiments).  

The upscaled porosities in ESIP range from 8% to 17% (Figure 61). 

 

Figure 61: Upscaled porosities from the Mores model. 

There are no NAM or Shell laboratory data available for geomechanical units other than the 

reservoir. Stiffness properties for the other layers are based on sonic data. The direct dynamic values 

are used in the derivation of the stiffness profile in Geomec that has been used to provide the mean 
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values in Table 7. The dynamic values of the stiffness are closest to an undrained stiffness that best 

represents the mechanical behaviour of the rock regarding the low permeability of the rocks and the 

small strains and stresses that are induced by the compaction of the reservoir on these over- and 

under burden. The ranges are chosen arbitrarily, making sure that a wide enough range is used in the 

prior ensemble.  

Table 7 Layer properties of the under- and over burden in the geomechanical model. 

Layer name Top layer 
[m] 

Mean E 
[GPa] 

Range E  
[GPa] 

Mean  Range ( ) 

North Sea  0 2 1 – 7 0.3 0.2 – 0.4 

Chalk  1000 10 5 – 15 0.25 0.15 – 0.35 

Cretaceous/Jurassic 1500 16 6 -26 0.25 0.15 – 0.35 

Zechstein 2000 30 20 - 40 0.35 0.25 – 0.45 

Ten Boer Claystone 3200 40 20 - 60 0.2 0.1 – 0.3 

Rotliegendes 
Sandstone (reservoir) 

3600 Provided by compaction grid (Cm,  relation) 

Limburg 3700 40 20 - 60 0.2 0.1 – 0.3 

 

For each compaction and over- and underburden parameter, a parameter distribution is given and 

from this a range of models is generated to be confronted with the data. To generate the parameter 

distribution a Latin Hypercube Monte Carlo sampling has been used (TNO, 2016). The input 

parameters for the different compaction models are: Linear(Cm), Timedecay (Cm, Time constant), Bi-

linear (Cm,pre, Cm,post, Ptrans) and RTCiM(Cm,d, Cm,ref, b, �̇�𝑟𝑒𝑓
′ ). For each over- and underburden layer the 

Young’s modulus (E) and Poisson’s ratio () is sampled. In case of the inclusion of a linear viscous salt 

layer, the Maxwell viscosity is sampled as well. 

Table 8 Compaction model parameter ranges for uniform distributions. 

Model Parameter (unit) Minimum Maximum source 

Linear Cm factor  0.3 4 Core plugs 

Bilinear 

Cm,pre   0.3 1.7 Observation of subsidence data (Ameland) 
and core plugs 

Cm,post  1 4 Observation of subsidence data (Ameland) 
and core plugs 

Ptrans (bar) 150 350 Observation of subsidence data (Ameland) 
and core plugs 

Time decay 
Cm factor 0.3 4 Core plugs 

Time constant 
(years) 

2 20 Inversion of Wadden subsidence data 
(NAM, 2016a) 

Rate type 

Cm, d 0.3 1.2 Inversion of subsidence data (Wadden and 
Groningen, NAM, 2015c) and core plugs  

Cm,ref  1.3 4 Inversion of subsidence data (Wadden and 
Groningen, NAM, 2015c) and core plugs  

𝑙𝑜𝑔(�̇�𝑟𝑒𝑓
′ ) -4 -2.5 Inversion of subsidence data (Wadden and 

Groningen, NAM, 2015c) and core plugs  

b 0.01 0.1 Inversion of subsidence data (Wadden and 
Groningen, NAM, 2015c) and core plugs  
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For each compaction and over- and underburden parameter a parameter distribution is given and 

from this a range of models are generated to be confronted with the data. To generate the 

parameter distribution a Latin Hypercube Monte Carlo sampling has been used.  

 

8.5 Results for the compaction models using an elastic heterogeneous 

overburden 
In this paragraph the results of the ESIP calculation is described for the case with a heterogeneous 

elastic overburden using the elastic influence function in AEsubs. Calculations are performed for 4 

compaction models.  For each of the 13 reservoir scenarios and each compaction model 200 draws 

with the Monte Carlo simulation were executed (e.g. this results in 200*13*4 = 10400 calculations). 

Figure 62 presents for each compaction model the member probability corresponding to the values 

of the chosen compaction parameters. Maximum values of the distribution are found within the 

range of the chosen input distribution (Table 8). This is however less well defined for the Cm,post of the 

Bi-linear and Cm,ref of the RTCiM, where values appear to have the highest probability close to the end 

points of the distributions.  

 

Figure 62: probability per member, the colors indicate the different reservoir models. 

Both the Time-Decay and linear model members show that the highest probability members have a 

Cm factor in the range of 2-2.5. This is not consistent with the factor of 1.2 applied in the Geomec 

model and is the result of the wider subsidence bowl arising from the elastic overburden and the 
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deeper position of the reservoir at the location of the gas field. Within the range of possible 

realizations, it was not possible to find a specific member that matches all data points within a 

bandwidth of 2 cm. This is illustrated in Figure 63 for the members of each compaction model having 

the highest probability after the confrontation with the geodetic data. This figure presents a cross-

plot of the model double differences (y-axis) versus the measured double-difference (x-axis). The 

plots demonstrate that especially the higher measured double differences are not matched by the 

modeled values, in particular when the linear compaction model is used. The Time-Decay model does 

a reasonable job matching most of the data within the bandwidth of ±2 cm indicated by the black 

lines around the red line. 

 

Figure 63 : Measured vs modelled subsidence for the best member per compaction model, the model parameters used 
are shown in each graph. 



81 
 

 

Figure 64 : Subsidence (cm) between start of production and 2014 for the best Time decay model. 

  

This fit can be illustrated as well by comparing the contour lines with the measured data (MOVE3 

data). This is done for the Time Decay member having the highest probability and for the year of 

2014 (Figure 64). The model shows a good match with the data in the center of the bowl, but the fit 

is less good going towards the edges of the bowl. The fact that higher model values do not show up 

in the cross-plot is because of the difference between the double differences in the ESIP workflow 

versus the maximum absolute subsidence since 1986 used in Figure 64. 

Figure 65 shows the results for several benchmarks in time. For each compaction model the 

modelled results for the members with the highest probability are presented .  
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Figure 65 : Subsidence vs time at certain benchmark locations(bottom) for the model members having the highest 
probability and for the reservoir scenario with the least aquifer depletion. 

 

The results above indicate that in general the best model members overestimate the measured 

subsidence. Again this is likely to be the result of the elastic boundary conditions. It illustrates 

moreover that the actual bowl is narrower and therefore an additional condition should be found 

that could influence the shape of the bowls. The LTS-1 study already showed that the viscous 

behavior of the salt is the prime candidate (e.g.  Marketos et al. 2016), but LTS II now also provides 

the opportunity to study the impact of different reservoir scenarios and to address the impact of 

depleting aquifer blocks on the bowl shape. Therefore, an assessment was made of the likelihood of 

the various reservoir scenarios by summing all member probabilities per reservoir model. Ranking of 

the reservoir models is shown in Figure 66. Not surprisingly the reservoir scenario with the highest 

probability is the scenario with least amount of depletion in the aquifers (top left scenario in Figure 

66). This result confirms the conclusion of NAM (2011) and TNO (2011) stating that the models 

without aquifer depletion fit best to the observed data. In the last 5 years some signs of aquifer 

depletion were detected by the GPS benchmarks in the Waddenzee and new reservoir scenarios 

including moderate aquifer depletion in the blocks south and southwest of the gas field are seen as 

the most probable scenarios. The challenge is now whether this conclusion can be confirmed by 

further calculations in this study when a viscous salt layer or the Knothe influence function are added 

in the calculations.  
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Figure 66 : Ranking of the scenarios based on the sum of all member probabilities per scenario. Best scenario is the top 
left scenario. Going from left to right and top to bottom the least probable scenario can be found in the bottom left 
corner of the picture. 

 

8.5.1 Subsidence rates for the calculated volumes 

For all members of the Monte Carlo simulation the subsidence volume versus time is calculated in a 

large area around the field (Figure 57) according to the method described in paragraph 8.3. This 

calculation results in Figure 67 that is similar to figures used in the measure and control documents 

(NAM, 2016a) for the Waddenzee. The area selected for the calculation of the rates is however 

different. The 6-year averaged subsidence rates are presented for all 10400 members. From the 

probability density function (Figure 68) and cumulative density function the expectation case (solid 

black line) and the 95% confidence bound are calculated and presented by the dotted black lines. The 

figure illustrates that 95% of all scenarios can be found within a relatively narrow range.  
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Figure 67 : Subsidence rate vs time, the black line is the expected subsidence rate, the dotted lines are at 2.5 and 97.5% 
cumulative probability. Colours represent different compaction models (Time decay=blue, RTCiM=red and Linear=green 
and  Bi-linear=purple. 

 

Figure 68: Probability density function for subsidence rates of certain years. The green area are the rates within the 2.5 - 
97.5 % probability range (dotted lines of previous graph). 

 

8.6 Results for the compaction models using a viscous salt 
AEsubs is used to generate the functions to translate compaction to subsidence when including a 

viscous salt layer. Due to restrictions, discussed in Section 7.7, we limit the AEsubs model to four 

subsurface layers, to guarantee stable influence functions. The parameter ranges are presented in 

Table 9. The ranges for the compaction model parameters are the same as those used in the 

simulations of the elastic heterogeneous overburden in Table 8. The only difference here is that we 

did not run the rate type compaction model, because of time restrictions. Where it is technically 
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possible to run the rate type compaction model in combination with a viscous layer in AEsubs, the 

testing of one member took about 30 min (due to necessary refinement of the time steps), compared 

to ‘only’ 7 min when confining the runs to just linear, bilinear and time decay compaction models. 

Finishing the workflow for as many members as was done in the elastic runs in the previous section 

would have taken more than a month. Even without the rate type model, the duration is still 

significant, hence we also restricted the run to 50 members per compaction model, per reservoir 

scenario (in total testing 1950 members; factor of 5 fewer than in the elastic runs) 

Both the Poisson’s ratio and Young’s modulus are taken from a uniform distribution with the limits as 

given in Table 9. The narrow ranges are necessary to prevent AEsubs from generating unrealistic 

influence functions where subsidence volumes are no longer preserved. A similar contrast between 

Layers 1, 2 and Layers 3, 4 was used in the comparison of AEsubs results with Geomec (see Section 

7.7). For the salt layer, a Poisson’s ratio of 0.35 is assumed, in line with data (Fokker, 1995), around 

which we allow a small distribution. For other layers, we restricted the Poisson’s ratio to the realistic 

range of 0.2 to 0.3.  

Although the lack of variability in stiffness contrast in the restricted salt models can, to some extent, 

be compensated for in the compaction model parameters, it means that only those model 

parameters that form a particularly good combination with the particular set of stiffness parameters 

used will gain a higher probability in the ESIP workflow. If, for example, it was possible to increase 

the stiffness contrast, then generally models that generate a lower compaction would gain some 

likelihood, whereas the stiffness contrast can be lowered, models would require a higher compaction 

to describe the data (see discussion around Figure 45). Ideally, one would want to probe a larger 

range of models, including a range of stiffness contrasts as well as salt viscosity, such that no 

particular compaction model or pressure scenario gains any preference. Unfortunately, as discussed, 

this is currently not possible with AEsubs, so for now we restrict the layer properties to those in Table 

9.  

Since realistic values for salt viscosity span several orders of magnitude [Marketos et al, 2016], we 

use a log-uniform distribution for the viscosity of Layer 2, with the upper and lower limits as in Table 

9.  

Table 9: Elastic parameter ranges used in ESIP workflow when including a viscous layer. 

Layer Top 
depth, 
fixed (m) 

Poisson 
ratio min 

Poisson 
ratio max 

Young’s 
modulus 
min (GPa) 

Young’s 
modulus 
max (GPa) 

Viscosity 
min (Pa s) 

Viscosity 
max (Pa s) 

Layer 1 0 0.2 0.3 7.5 8.5 - - 

Layer 2 2000 0.34 0.36 7.5 8.5 1 x 1016 1 x 1019 

Layer 3 3100 0.2 0.3 19.5 20.5 - - 

Layer 4 4200 0.2 0.3 19.5 20.5 - - 
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The weights for all the members, normalised per compaction model, are plotted in Figure 69 against 

the compaction model parameters. Like the output for elastic models presented in Figure 62, the 

maxima of the prior distributions lie within the ranges for the input parameters, see Table 8, for the 

linear and time decay models. Compared to the elastic heterogeneous models, the centre of the 

distributions for the compaction coefficients appear to have shifted to slightly lower values when 

using the layer properties in Table 9, but also the distributions have become narrower.  

Note that, as discussed above, the salt runs presented here had to be limited over the ranges of the 

elastic properties in the model. Had it been possible to run the workflow also including a higher 

stiffness in the underburden, then models combining those higher stiffnesses with a lower 

compaction coefficient would have had some reasonable probability, higher than for similar Cm 

factors in Figure 69, and the resulting distributions would have been wider. Following the same logic, 

if the model parameters had been limited to only higher stiffnesses then used now, then the 

distribution of the Cm factors would shift to a lower value. This illustrates that, at the moment, the 

parameter distributions are to some extent dependent on the limited layer properties used. 

 

Figure 69: Probabilities (normalized per compaction model) for the compaction model parameters. Each colour 
represents a different reservoir pressure scenario. 
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A similar plot is made for the member weights, now presented as a function of the viscosity of the 

salt layer, in Figure 70. The members with the highest weights all use a viscosity in the range 1x1017-

1x1018 Pa s, which agrees well with the value of 6.7x1017 Pa s used in the Geomec model. Both the 

linear and bilinear members show a narrower distribution than those from the time decay model, 

likely resulting from the additional time dependency; models with faster salt but slower time decay 

may give a similar time dependence for the subsidence as those with slower salt but faster time 

decay, widening the range of viscosities. 

 

Figure 70: Model probability plotted versus the viscosity of the salt layer. 
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Figure 71 compares the measured and modelled double differences for the member with the highest 

weight for each of the three compaction models tested. The red lines are y=x, and the grey lines 

show the +/- 2cm bandwidth. The linear compaction model seems to show the largest differences 

between model and data. The bilinear and time decay models perform better in the sense that the 

modelled data lie closer to the measurements in the cross plots, also reflected by the lower values of 

𝜒2/𝑁. 

 

Figure 71: Measured versus modelled double differences for the members with the highest weight for each compaction 
model. 
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Figure 72: Subsidence (cm) between start of production and 2014 for the best Time decay model. 

The fit of the best salt influence function member is illustrated by comparing the contour lines with 

the measured data. This is done for the Time Decay member having the highest probability and for 

the year of 2014 (Figure 71). The model shows a good match to the data in the center of the bowl but 

the fit is less good going towards the edges of the bowl. The fact that higher model values do not 

show up in the cross-plot is because of the difference between the double differences in the ESIP 

workflow versus the maximum absolute subsidence since 1986 used in Figure 71. 

Figure 73 presents the results for several benchmarks in time presenting the model results for the 

members of each compaction model having the highest probability.  
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Figure 73: Subsidence vs time at certain benchmark locations(bottom) for the model members having the highest 
probability and for the reservoir scenario with the least aquifer depletion. 

8.6.1 Subsidence rates for the calculated volumes 

The subsidence volume over the area defined in Figure 57 was determined for all the members using 

the viscous layer, which was converted to an average subsidence rate. The results are shown in 

Figure 74. Using the individual member’s weights, a weighted average in subsidence rate is plotted in 

black, with a 95% confidence interval marked by the dash-dot lines. The transparency of the rates 

from each member is dependent on the member’s weight, making the least likely model the most 

transparent. Although some of the members result in very high average subsidence rates, the 95% 

confidence bound defines a relatively narrow range. Figure 75 shows the probability distributions of 

the subsidence rates for a number of years.  
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Figure 74: Subsidence volumes in the area defined in Figure 57, converted to subsidence rates, resulting from ESIP with a 
viscous salt layer. Colours represent different compaction models (Time decay=blue, linear=red and bilinear=green ), the 
transparency reflects the member probability. 

 

Figure 75: Probability density plots of the subsidence rate for certain set of years. Green data lies within the 95% 
confidence interval, data in blue are the 2.5% on either side of the distribution. 

 

8.7 Results for the compaction models using the Knothe influence function 
The Knothe influence function uses the influence angle  to calculate the subsidence from a 

compaction source. This angle is varied between 30 and 70 degrees where a smaller angle results in a 

narrower subsidence bowl.  Figure 76 shows the results for the probability of this range for the most 

likely reservoir scenario according to the previous elastic calculations. Members having an influence 

function of around 55° show the highest probability. Note that the influence angle in the Knothe 
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function cannot be varied with time while an influence angle that results from the viscous salt does 

vary with time. The angle of 55° can therefore only be regarded as an average optimum angle.  

 

Figure 76: Knothe influence angle versus model probability. 

150 members for each of the thirteen reservoir scenarios were generated using Knothe’s influence 

function. The uncertainty ranges used for the compaction model parameters are the same as for the 

elastic influence function (paragraph 8.5). The probability for each member per compaction model is 

shown in Figure 77, which can be compared to Figure 62. In general, the most probable Cm factors 

have lower values when compared to the elastic case. This is expected because the levelling points in 

the center of the bowl can be matched by the narrower shape of the bowl with Cm factors closer to 

the laboratory measurements.   
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Figure 77: Probability per member for each parameter per compaction model for the Knothe influence function. 

Within the range of possible realizations, it is not possible to find a specific member that matches all 

data points within a bandwidth of 2 cm. This is illustrated for each compaction model in Figure 78 for 

the members with the highest probability after the confrontation with all geodetic data. This figure 

presents a cross-plot of the model double-difference on the y-axis versus the measured double 

differences on the x-axis. Also this figure can be compared to the elastic case and it is observed that 

the Knothe influence function leads to a slightly better fit to the data expressed by both the narrower 

ranges as well as the lower values for the 𝜒2/𝑁 values. 
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Figure 78: Measured vs Modelled double differences for the best member per compaction model, the model parameters 
used are shown in each graph. 

The fit to the data can be illustrated as well by comparing the 2014 contour lines of the modelled 

results with the measured data. This is done for the RTCiM member having the highest probability 

(Figure 79). When compared to the elastic case (Figure 63), the model results for the Knothe 

influence function show a better match to all data, an observation that results directly from having 

the possibility to narrow the bowl. The fact that higher model double difference values do not show 

up in the cross-plot (Figure 78) is because of the difference between the double difference values 

used in the ESIP workflow versus the maximum absolute values for the measured subsidence since 

1986 used in Figure 79. 

Figure 80 presents the results for several benchmarks in time presenting the model results for the 

members of each compaction model having the highest probability. Also this figure shows that the 

model results are closer to the data when compared with the results presented in Figure 65. 
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Figure 79: Subsidence (cm) between 1986 and 2014, modelled( contours) and meausered (points). 

 

Figure 80 : Subsidence vs time for the best compaction models. 
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For all members of the Knothe influence function the subsidence rate is calculated for the same area 

as for the AEsubs elastic influence function and viscous salt. The subsidence rate is calculated for a 6 

yearly average and shown in Figure 81. Comparing the subsidence rate with the rates that result 

from the elastic AEsubs model we conclude that on average the subsidence rates are lower for the 

Knothe influence function. 

 

Figure 81: Subsidence rate vs time for the Knothe influence function, the black line is the expected subsidence rate, the 
dotted lines are at 2.5 and 97.5% cumulative probability. 

 

Figure 82: Probability density function for subsidence rates of certain years. The green area are the rates within the 2.5 - 
97.5 % probability range (dotted lines of previous graph). 
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8.8 Emergency stop scenarios 
The hand-on-the-tap procedure relies on the mechanism that when production is stopped the 

subsidence rate will decrease. The ESIP tool can be used to investigate whether this assumption is 

correct. Therefore, the years 1996 and 2016 have been selected to simulate a full production stop in 

Ameland while the model allows further pressure equilibration in time.  The effect of the emergency 

stop in 1996 on the reservoir pressures is shown in Figure 83 and in Figure 84 . Location 1 presents 

the response of the gas field, with increasing pressures for those scenarios with active aquifers. 

Active aquifers (location 2,3,4) will continue to deplete (to equilibrium) also after the production stop 

because of the pressure difference with the gas field.  

Emergency stop in 1996 

The impact of the production stop in 1996 on the subsidence rates for all members is visualized in 

Figure 85. The black line in this figure is the expectation subsidence rate, the dotted lines are at 2.5% 

and 97.5% probability defining the 95% confidence bound. When compared to the normal 

production scenario we can observe a clear distinction of the expected rate that results from the 

emergency stop scenarios when compared to the normal production cases. It can be observed that 

the deviation with the normal production scenario occurs earlier then 1996. This is explained by the 6 

year moving average that is used in the definition of the subsidence rate to mimic the conditions of 

the measurement and control cycle for the “Waddenzee”. 

 

Figure 83: Lateral pressure depletion distribution for the selected reservoir models for the emergency stop in 1996 case 
for 2040. 
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Figure 84: Pressure vs time for the emergency stop 1996 scenario at the location specified in previous graph. 

 

Figure 85: Subsidence rate vs time, the black line is the expectation subsidence rate, the dotted lines are at 2.5 and 97.5% 
probability. The blue lines are showing the weighted average and confidence bounds for the elastic model with no 
emergency stop. Red dashed line indicates the timing of the emergency stop. 
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A similar exercise has been executed for the Knothe influence function (Figure 86). Both the 

subsidence rates and the conclusions based on the deviation with the normal production situation 

are similar to that what has been stated for the elastic AEsubs influence function. 

 

Figure 86: Subsidence rate vs time, the black line is the expectation subsidence rate, the dotted lines are at 2.5 and 97.5% 
probability. The blue lines are showing the weighted average and confidence bounds for the Knothe model with no 
emergency stop. Red dashed line indicates the timing of the emergency stop. 

A similar exercise was performed for the Salt influence function (Figure 87). Both the subsidence 

rates and the conclusions based on the deviation with the normal production situation are similar to 

that what has been stated for the elastic AEsubs  and Knothe influence functions.  
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Figure 87: Subsidence rate vs time, the black line is the expectation subsidence rate, the dotted lines are at 2.5 and 97.5% 
probability. The blue lines are showing the weighted average and confidence bounds for the viscous salt model with no 
emergency stop. Red dashed line indicates the timing of the emergency stop. 

 

Emergency stop in 2016 

The effect of an emergency stop in 2016 on the reservoir pressures is shown in Figure 88 and Figure 

89. The effect of this hypothetical stop on depletion compared to the original production scenario is 

small as the field has already produced the majority of all the gas (Figure 90). The small deviation is 

mainly caused by pressure equilibration of the aquifers with the gas field. This small effect is also 

visible in the small deviation of the subsidence rates when compared to the cases without a 

production stop. We only show the results for the elastic case. 
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Figure 88: Lateral pressure depletion distribution for the selected reservoir models for the emergency stop in 2016 case 
for 2040. 

 

Figure 89: Pressure vs time for the emergency stop 2016  scenario at the location specified in previous graph. 
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Figure 90: Subsidence rate vs time, the black line is the expectation subsidence rate, the dotted lines are at 2.5 and 97.5% 
probability. The blue lines are showing the expected case and confidence bounds for the elastic model with no 
emergency stop. Red dashed line indicates the timing of the emergency stop. 

In conclusion: the emergency stop scenarios show a clear response to a hypothetical stop of the 

Ameland gas production in 1996. This provides confidence in the application of the hand-on-the-tap 

procedure as defined for the production of gas from the ‘young’ Waddenzee fields (Nes, Moddergat, 

Lauwersoog-C, -West and -Oost and Vierhuizen-Oost). 

 

8.9 Discussion of the results 
The ESIP workflow has been used to confront model results with data. Besides parameter 

uncertainty, also compaction model uncertainty and reservoir (including aquifer) pressure 

uncertainty is introduced in the setup of the prior ensembles. In the previous paragraphs the results 

show clear differences between the controlling factors: the influence functions, reservoir scenarios 

and compaction models. This paragraph discusses the impact of the uncertainty per factor. We 

reflect at the end of this paragraph on the high 𝜒2 values that result from the confrontation. 

8.9.1 The impact of influence functions 

To illustrate further the impact of the influence functions on the results we plotted the weighted 

mean of the modelled double differences against the measured double difference in one cross plot 

(Figure 91).  This figure is compiled using the results for only the Time-decay model, but similar 

results can be produced for the other compaction models, leading to the same conclusion. The RMS  

values, shown in the legend are a measure of the mismatch between data and model and show a 
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lower value for the salt influence function and the lowest value for the Knothe influence function. 

Purely based on the measures for the mismatch like the 𝜒2 and RMS one would conclude that the 

Knothe influence function would be the best choice. The drawback of this function is however the 

lack of a physical underlying basis. As described earlier, the combination of a stiff burden around the 

reservoir and a layer of viscous salt would in our opinion lead to similar results, but at this moment 

AEsubs faces some restrictions for this combination and for one the Knothe influence would be the 

best influence function to be used in further calculations. 

 

Figure 91: mean model double differences vs data double differences for the Time-decay model for each influence 
function. 

 

8.9.2 The impact of compaction models on the results 

Four compaction models are used in the confrontation with the data. The number of parameters is 

part of the definition for the 𝜒2/𝑁 but has a negligible impact if the number of double differences is 

large like in our case. It is therefore likely that a more complex model like the RTCiM model should 

honor the data better and return lower values for the 𝜒2/𝑁 than simpler models like a linear and 

Time decay compaction model. From the models result we conclude that both the Time decay and 

RTCiM model return similar values for the 𝜒2/𝑁 . The Bi-linear model also shows a relative low value 

for the  𝜒2/𝑁 , but we know from its definition that this model is not able to physically match 

compaction without depletion, a mechanism that is likely to occur in the Ameland field. Therefore, 

we recommend to use RTCiM and Time-decay compaction models in follow-up studies.  

The impact of both the different compaction model and the elastic, viscous salt and Knothe influence 

function is visualized in Figure 92. This figure shows the probability of the total subsidence volume 

after total production of the gas in the Ameland field. Overall we observe that the Knothe influence 

function on average leads to lower volumes for the subsidence with the lowest volumes for the bi-
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linear model. The figure shows as well that the probability density functions of both the Time-decay 

and RTCiM are quite comparable. Larger volumes are predicted for the elastic influence function in 

AEsubs reflecting the wider subsidence bowls that arise from this influence function.   

The calculated subsidence rate for the Knothe influence function is in general lower than found with 

the AESubs models. Also the subsidence volume calculated with the Knothe influence function is 

lower (Figure 92). This can be explained by the fact that the subsidence bowl using the Knothe 

influence function is steeper, this is shown in Figure 93 where an east-west subsidence profile over 

the Ameland Island is plotted for the best RTCiM model using resp. the Knothe and AEsubs influence 

functions for the viscous salt influence function the Time decay compaction is used. The subsidence 

bowl of the AESubs model is wider and results in a higher compaction and subsidence volume.  In 

general, the Cm values for the AEsubs elastic influence function are higher than the members using 

other influence functions. 

 

Figure 92: Volume distribution plot for the different influence functions. 
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Figure 93: W-E subsidence profile over the island (Y=609000) for the best RTCiM model using the different influence 
functions. 

The combined effect of the Time decay compaction model parameter variation, reservoir pressures 

and the different influence functions is shown in Figure 94. Significant impact on the rates results 

from the Knothe influence function. The salt and elastic influence functions are giving more or less 

similar results as the effect of a stiff underburden or a viscous salt on the rate is more or less the 

same.  

 

Figure 94: Subsidence rate including uncertainty for the Time-decay for the different influence function. 
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8.9.3 The impact of reservoir scenario on the results 

Thirteen reservoir scenarios were selected to be used in the ESIP calculation. Table 10 shows the 

𝜒2/𝑁 values for each reservoir model and influence function. In this table the results for the different 

compaction models were aggregated (excluding the RTCiM as this model was not run with the 

viscous salt influence function). The RE models are sorted starting with the best model (C8_I3).   

Table 11 shows the 𝜒2/𝑁 values per compaction model and influence function pointing out that the 

RTCiM and Timedecay have better (lower) 𝜒2/𝑁 values.  

Table 10: Overview of all 𝝌𝟐/𝑵 values per influence function and reservoir model. 

Re Model 
Elastic Knothe Viscous salt Average 

 'C8_I3' 16.3 15.9 15.6 15.9 

 'C20_I4' 16.5 16.0 
 

16.1 16.2 

 'C19_I4' 17.4 16.8 16.9 17.0 

 'C79_I3' 17.7 16.5 17.4 17.2 

 'C18_I2' 17.8 17.2 17.4 17.5 

 'C101_I3' 18.8 16.8 18.3 18.0 

 'C24_I2' 18.4 17.7 17.9 18.0 

 'C30_I3' 18.7 16.8 18.4 18.0 

 'C24_I3' 18.8 16.8 18.5 18.0 

 'C11_I4' 20.3 17.6 19.7 19.2 

 'C84_I3' 20.4 17.7 19.7 19.3 

 'C74_I3' 20.8 18.0 20.1 19.7 

 'C20_I2' 22.5 21.1 21.6 21.7 

  18.80 17.30 18.28 
  

 

Table 11: Overview of all 𝝌𝟐/𝑵 values per compaction model and influence function. 

Compaction model / 
Influence function 

Bi-
linear 

Linear RTCiM 
Time-
decay 

Elastic 20.5 25.5 20.7 17.3 

Knothe 20.3 25.5 18.7 16.5 

Viscous salt 18.2 21.1 
 

16.6 
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8.9.4 Discussing the 𝝌𝟐/𝑵 values 

We have shown a relative good match of the AEsubs models with the Geomec model and as well we 

observe from the cross plots, presented earlier in this chapter the reasonable match with the data. 

Still the values for the 𝜒2/𝑁 for even the best member are around 15, implying a “mismatch” of the 

model result of around 4 times the standard deviation of the data. Besides the goodness of fit, the 

𝜒2/𝑁 values for the various scenario-model combinations only vary over a small range. This 

influences the power to make a distinction between the scenarios. The high values were discussed in 

the December progress meeting with the technical steering committee and it was assumed that the 

precise measurements could explain the poor goodness of fit. It was proposed to include the 

variance/covariance matrix of the models in the equation but the result was not as expected. Indeed, 

the absolute values were reduced with some 10% but not to the expected value of around 1. Also, 

posterior probability of the possible scenario-model combinations showed even less variation. 

Subsequent multiple meetings and discussions between TNO, NAM and TU-Delft did not lead to a 

clear explanation and understanding of the observation described above. 

Nevertheless, 4 reasons were identified to possibly explain the high values of 𝜒2/𝑁: 

1. Behavior of the covariance. 

2. Outliers having a large effect on the values.  

3. Uncertainty of the models. 

4. Models unable to describe the measurements. 

A mixture of these reasons would explain the behavior as well. Each of the identified reasons will be 

discussed in more detail in the paragraphs below. 

8.9.4.1 Behavior of the covariance. 

As a result of the redistribution of the differences between data and model through the covariance 

matrix, it is difficult to visualize if there are any specific double differences, areas or epochs that add 

to the high 𝜒2/𝑁 value. In an attempt to somehow dissect the matrix and allow some form of visual 

inspection, we do a rough verification of the influence of covariance matrix by looking at the 

variances (values on the diagonal of the covariance matrix) and the covariance separately.  

The weighted covariance matrix for the posterior model ensemble is calculated by: 

𝐶𝑗𝑘
𝑝𝑜𝑠𝑡

=  
1

1 − ∑ 𝑤𝑖
2𝑁𝑒

𝑖=1

∑ 𝑤𝑖(
𝑁𝑒

𝑖=1
𝑑𝑑𝑖𝑗

𝑝𝑟𝑖𝑜𝑟
− 𝜇[𝑑𝑑𝑗

𝑝𝑜𝑠𝑡
])(𝑑𝑑𝑖𝑘

𝑝𝑟𝑖𝑜𝑟
− 𝜇[𝑑𝑑𝑘

𝑝𝑜𝑠𝑡
]) 

𝐶𝑗𝑘
𝑝𝑜𝑠𝑡

 is the posterior covariance between the jth location and the kth location with the weighted 

mean for the posterior double differences calculated by the sum of the weighted (𝑤𝑖) prior modelled 

double differences for each member of the ensemble 𝑁𝑒: 

𝜇[𝑑𝑑𝑝𝑜𝑠𝑡] = ∑ 𝑤𝑖𝑑𝑑𝑖
𝑝𝑟𝑖𝑜𝑟

𝑁𝑒

𝑖=1
 

In Figure 95 we plotted for a set of models (salt in AEsubs with time decay compaction) compared to 

the data. In the top graph, the absolute difference between the posterior weighted average of the 

models and the data is plotted in black. A dashed blue line can be seen, having values typically 

around 3mm, being the standard deviation of the data (see also Figure 16). These standard 
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deviations are taken as the square root of the values on the diagonal of the covariance matrix of the 

data, which are the data variances. The same is done for the model covariance matrix, from which 

the standard deviations are shown in the dashed red lines. By using the diagonal values only, we are 

ignoring the covariance intensities for now.  

It is clear by comparing the black and the blue lines that the model is frequently a multiple of data-

standard deviations away from the data. When including the uncertainty of the model, and 

combining the two standard deviations (of data and model), the green line suggests that given the 

data and model uncertainty (and ignoring the covariance), the two agree reasonably well. 

The bottom graph illustrates the effect of including the model uncertainty. The data plotted is the 

absolute difference between data and model (black line in top graph), divided by the standard 

deviation. The red data uses only the data standard deviation here, while the blue data includes both 

the data and model standard deviations. Where the red dots occasionally reach a value of 10, the 

blue data are consistently lower, lying within two data+model-standard deviations. 

 

Figure 95: Comparing data with the weighted average of a set of models. Top graph shows the absolute difference 
between data and model in black. The blue dashed line is the standard deviation of the data, i.e. using the values on the 
diagonal of the covariance matrix of the data. The red dashed line is the standard deviation from the models (i.e. from 
diagonal values of the covariance matrix of the models). Green is the combined standard deviation. Bottom graph is the 
normalised differences of the data. The red dots are the absolute differences divided by the standard deviation of the 
data, the blue are the absolute differences divided by the combined standard deviation of data and model.  

Figure 96 illustrates the reduction of the normalised differences, by presenting the data in histogram 

form. In red, the differences between data and model are normalised using the standard deviation 

from the data covariance matrix only, while the blue data applies the combined standard deviation of 

data and model. The inclusion of the model uncertainty clearly reduces the bandwidth. The data is 

measured very accurately, reflected in the low standard deviation of the data only, but adding the 
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larger uncertainty from the model shows a reasonable match between the data and model, 

considering the individual variances (still not including the covariance). Using the averages of the 

squared normalised differences as a test statistic, T2/N, we obtain T2/N = 11.9 when including only 

the data uncertainty, and T2/N = 1.6 when also considering the model uncertainty. In other words, 

when, in the crude investigation to the effect of the covariance performed here, only the variances 

are considered, a low test statistic and equally good match to the data within uncertainty is obtained. 

 

Figure 96: Histogram of the normalised differences between data and model. In red, the normalised differences are 
generated using only the variance of the data, while in blue the variance of both data and model are used. 

However, when now using the full covariance matrix, the effect of the addition of the model 

uncertainty becomes much less pronounced. To be able to do a similar visualization as above but also 

including the off-diagonal components, we diagonalise the covariance matrix in order to decorrelate 

the double differences. We use the eigenvalue decomposition of the inverse of the covariance 

matrix, using Λ = VT . C-1 . V, where V contains the eigenvectors of C-1, and Λ is a diagonal matrix 

where the diagonal is populated with the eigenvalues of C-1. This way, all information from the 

covariance matrix is contained, and the resulting χ2 values would be the same as when using the full 

matrix calculations. The only difference is that the intensity is rotated to a space that is made up out 

of linear combinations of double differences, and not the actually observed double differences 

anymore, making a link to the individual data impossible. For the resulting test statistic, however, it is 

all the same. 
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The results are shown in Figure 97, where now the difference between data and model is rotated 

using the eigenvectors, and the variance (Var) is taken from the diagonals of the diagonalised matrix 

Λ (σi = 1/√Λi,i), which are the eigenvalues of C-1. The effect on the distribution when incorporating 

the model variances is now much smaller, and accordingly the total test values are also similar. 

Calculating the test statistic in the same way as above for the variances (being the averages of the 

squared normalised differences, or the x-values of the histogram), will in the case of the diagonalised 

matrix be the actual χ2/N values, since the full covariance information is included. The values 

obtained are now χ2/N = 16.6 when only using the covariance matrix of the data, and χ2/N = 14.53 

when also including the covariance of the models. Comparing these test statistics to those calculated 

in the same way but excluding the covariance information (the T2/N values), it seems the covariance 

has a very large impact on the values of the test statistic. Moreover, it seems that when using the full 

covariance matrix, the inclusion of the covariance of the model has a reduced impact. 

Because further visualization of the covariance matrix is difficult, it is not possible to attribute the 

differences to any particular double differences, or to determine what particular aspect of the 

covariance causes this distinct increase in test value. 

 

Figure 97: Similar histograms as in Figure 96, but now produced using the full covariance matrix through decomposition 
to the eigenvalues. The variances used are now taken from the values on the diagonal matrix Λ. 

The different test parameters, based on only the variances as well as on the full covariance matrix, 

are listed in Table 12 for three different subsets of members, being ones that used an influence 

function that included a salt layer, split into three different compaction models (time decay, linear 

and bilinear). The three models all have a different test value based on the variances only (the values 
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on the diagonals of the covariance matrix), however when including the full covariance matrix, all 

models seem to be of equal probability. Additionally, the test statistic changes from a reasonably low 

value (close to one) when not including the covariances, and increases to large values when the 

covariance is included. While such a large effect is not immediately obvious when comparing the 

measured and modelled double differences, we cannot exclude that some issues exist within the 

covariance matrices, either the data covariance or the model, or both. 

Table 12: Values of test statistics based on the variances only (T2/N) and total covariance (χ2/N ). Covariance matrices 
used are the combination of the covariance of the data and the covariance of the model.  

 T2/N (based on variances) χ2/N (based on full covariance 
matrix) 

Time decay 1.56 14.53 

Linear 3.77 14.66 

Bilinear 2.67 14.42 

 

8.9.4.2 Outliers having a large effect on the values.  

Because of the square of the error in the test statistic, single outliers can make up a large portion of 

the total test statistic. In this section, we apply a simple test to verify if (a small set of) outliers could 

account for the high values of the test statistics observed. It cannot be considered a statistically 

rigorous quality assessment, because it does not take the correlation structure into account. It will 

therefore not be used in the actual workflow for removing outliers, but this test is suitable to provide 

a first insight into the contribution of outliers towards the test statistic. 

The left histogram of Figure 98 shows the distribution of the normalized differences between data 

and model, where the normalization is made by their combined standard deviations. This simplified, 

variance-only based distribution has an acceptable width where most data is contained within two 

standard deviations. The average of the differences-squared divided by their variance (which is same 

as a χ2/N when all off-diagonal values of covariance are zero, i.e. the T2/N test in the previous 

section), is 1.56, which would suggest a reasonable agreement between data and model if 

covariances were indeed zero. Outside the 5-standard deviation boundaries (red dashed lines in the 

histogram), we find only three out of the 1624 double differences, which we will consider as outliers 

in this test. 

The graph on the right in Figure 98 shows effectively the same, but now including the full covariance 

information. To obtain the histogram, we again first diagonalise the covariance matrix to its 

eigenvalues and transform the differences accordingly, such that all information is preserved (similar 

to what was done in Figure 97). A direct comparison between individual double differences is no 

longer possible, but the distribution should give an impression of the level of resemblance of the 

data to the model, only in a rotated space. The χ2/N value of the data set can now also be calculated 

by taking the average of the normalized differences in the transformed space (on the x-axis), which is 

the same as calculating the full covariance multiplication with the differences between data and 

model, but easier to visualize.  

For the full data set, the χ2/N = 14.53, which suggests that, even though the data seems to be in good 

agreement if only variances could be considered, the resemblance between data and model appears 

worse when including all covariances. After removing the three double differences identified in the 
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variance-based histogram on the left of Figure 98, the effect after re-diagonalising the covariance 

matrix after removal of the three double differences, is significant but not very large, as the χ2/N 

value drops from 14.53 to 10.40. So excluding some potential outliers does not take the χ2/N value 

considerably closer to one. Removing more points does not result in a fast further reduction of the 

test value.  

 

Figure 98: Normalised difference data (left), where �̅� is difference between data and (weighted average of ) model, C is 
the covariance matrix of data and model. The figure on the right shows the same, but now after diagonalising the 
covariance matrix to make visualisation possible. The normalised difference data after diagonalising the covariance 
matrix to its eigenvalues are then such that all covariances are also accounted for.  

The effect of the outlier removal is listed for three different compaction models in Table 13. The test 

values shown are after the removal of the three outliers. The same outliers (double differences) were 

removed in all three data sets for fair comparison. In fact, the three outliers that were removed 

appeared outside the 5-standard deviation mark for all three sets, so could equally be classified as an 

outlier in all sets. Comparing the data to that for the full sets in Table 12, there is only a bulk shift in 

the χ2/N, without increasing any distinction between the three compaction models. In all three cases, 

the outlier removal does not result in a χ2/N much closer to one, indicating that outliers alone cannot 

explain the high test values observed here. 
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Table 13: Values of test statistics based on the variances only (T2/N) and total covariance (χ2/N ). Covariance matrices 
used are the combination of the covariance of the data and the covariance of the model. Data used is the same as in 
Table 12, but now after outlier removal. 

 T2/N (based on variances) χ2/N (based on full covariance 
matrix) 

Time decay 1.40 10.40 

Linear 3.58 10.51 

Bilinear 2.48 10.29 

8.9.4.3 Uncertainty of the models. 

In the December progress meeting, it was discussed that the covariance/variance of the model 

results should be included as well in the 𝜒2/𝑁 definition.  The recommendation was implemented 

but did only manage to reduce the 𝜒2/𝑁 values by a small amount. The explanation of this 

unexpected result is still lacking and should be investigated before any further implementation of 

this workflow with the aim to assess subsidence rates in the Waddenzee.  

The test statistics shown above in Table 12 and Table 13 already include the covariance matrix of the 

models as well as those of the data, and still have high χ2/N values. We did the same as above in 

Table 12, but now excluding the covariance of the models, to illustrate the effect of the addition of 

the model uncertainty. The results are listed in Table 14, showing higher values for both the variance-

only based test statistic (T2/N) and for the full-covariance based test statistic (χ2/N). The effect of the 

reduction of the T2/N (test statistic without covariance information) is illustrated in Figure 96: since 

the uncertainty on the data (ignoring the covariance) is very small, the difference between data and 

model is relatively large in terms of the number of standard deviations. Including the uncertainty of 

the models, which is larger than that of the data, the normalised difference between data and model 

becomes a narrower distribution around zero. The reduction of the distribution of the normalised 

differences based on the total covariance, like in Figure 97, is however much less well pronounced.  

What can further be noted when comparing Table 14 with Table 12, is that the spread in χ2/N values 

is reduced when including the covariance of the models. Such a reduction in the spread would imply 

a loss of differentiation between the models.  

The changes in the χ2/N values for the different setups (covariance of data only, covariance of model 

and data, covariance of model and data and three outliers removed) are summarized in Table 15  

Table 14: Values of test statistics based on the variances only (T2/N) and total covariance (χ2/N). Data used is the same 
as in Table 12, but now only using the covariance matrix of the data, and not including the covariance matrix of the 
models. 

 T2/N (based on variances) χ2/N (based on full covariance 
matrix) 

Time decay 11.9 16.6 

Linear 31.5 21.1 

Bilinear 19.4 18.1 

 

 



114 
 

Table 15: Summary of χ2/N values for the different cases tested, for three different compaction models. 

 Cov = CovD Cov = CovD + CovM Cov = CovD + CovM, DD 
removed (3 out of 1624) 

Time decay 16.6 14.5 10.4 

Linear 21.1 14.6 10.5 

Bilinear 18.1 14.4 10.3 

 

8.9.4.4 Models unable to describe the measurements. 

It can be questioned whether the models used can adequately fit the data. A total mismatch of the 

models with the data would explain a high value for the test statistic. From the cross-plots presented 

in this chapter we already concluded that the members having lowest 𝜒2/𝑁  values fit with the data 

within a 2 cm range. An alternative visualization is presented by Figure 99, where a histogram of the 

data-model differences is presented for the scenario with low aquifer depletion and a combination of 

Time decay compaction and viscous salt above the reservoir. The standard deviation from this 

distribution is close to 11 mm. 

 

Figure 99: Histogram of the measured - modelled subsidence of the best salt model. The empirical standard deviation 
from this histogram is 11 mm, which is where the red lines are placed. 

The results of the Geomec model used in the measurement and control cycle, based on a similar 

reservoir scenario have been processed as well to make a double-difference comparison possible. 

The histogram of that result is presented in Figure 100. This figure closely resembles Figure 99 and 

shows actually a larger standard deviation for the Geomec model. We conclude therefore that the 

AEsubs results are close to the Geomec model and even closer to the data. To reduce the 𝜒2/𝑁 from 
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a model perspective would require an alternative model that needs to perform better than a finite 

element model. 

 

 

 

Figure 100: Histogram of the measured - modelled subsidence of the Geomec model. The empirical standard deviation 
from this histogram is 11 mm, which is where the red lines are placed. 

To demonstrate the clear differences in results using the 13 different reservoir scenarios and the 

ability of some members to match the measured subsidence, we selected a number of benchmarks 

and for these benchmarks we choose a double difference that covers the youngest period over a 

reasonable time span. The period of 2007-2014 is in that sense a logic choice as the measurements in 

the Waddenzee started around the year of 2007. The model results are visualized (Figure 101) for the 

best member (lowest 𝜒2/𝑁, blue dots), the weighted average of the ensemble for the individual 

reservoir scenarios (green dots) and the 95% confidence range. The top 4 graphs represent 

benchmarks located in the Waddenzee that are more indicative for the differences in aquifer 

depletion of the 13 reservoir scenarios. The bottom 4 graphs show the results for benchmarks 

selected on the island, note that the models with the least aquifer depletion (C8_I3 and C20_I4) fits 

best to the data. The bottom 4 graphs represent the values for model and data on benchmarks 

located on the island of Ameland. The results from the different scenarios show less variation in the 

subsidence at these locations, which is expected. These benchmarks reflect the pressure behavior in 

the gas part that is better constrained by the well data and therefore surrounded by less uncertainty. 
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Figure 101: Double differences (top figure) for the Time decay compaction model using viscous salt per reservoir scenario 
at a selection of benchmarks (see bottom map for the location of the bench marks) for the period 2007 – 2014. The red 
line indicates the double difference of the observation, the blue dot the double difference of the best model and the 
green dot representing the weighted average of the individual ensembles. Grey vertical lines represent a 95% uncertainty 
band. 



117 
 

9 Implications of the LTS II results on subsidence forecasts for the 

“Wadden fields” 
One of the main objectives of the LTS II study is to test a stochastic workflow that can be applied to 

the measurement and control cycle for the Waddenzee. We conclude that, rather than providing a 

deterministic expected scenario (NAM, 2016b), we are now able to demonstrate the capability to 

provide a weighted distribution with only the data deciding on the outcome. This statement is maybe 

too bold, as some subjective choices will always have an effect on the outcome. Parameter ranges 

can be different than assumed in the LTS II calculations, compaction models may be improved or new 

models and influence function may be identified and selected in future applications of the workflow. 

In LTS II we conservatively used an equal probability for all scenarios whereas it is noted that all the 

reservoir scenarios have a history match RMS themselves when comparing Mores model results to 

the production and pressure data. This RMS could be used as a priori knowledge, redefining prior 

distribution and also impacting the posterior distributions. 

From the discussion in the previous paragraph we concluded as well that the values for the test 

statistic are high and show a small variation amongst the different scenario-model combinations. This 

implies that also less probable reservoir scenarios will have a large impact on the weighing of the 

results. For the possible subsidence rates this implies a large uncertainty bandwidth and relative high 

subsidence rates for the statistical expectation case.  

This is illustrated by Figure 102 where the upper bound of the blue surfaces represents the 

expectation case that follows from the total distribution arising from all reservoir scenarios using a 

Time decay compaction model and an elastic influence function. The differentiation in colors 

represents the relative contribution of each reservoir scenario to the expectation case. The M&R 

report concluded that the deterministic model based on low aquifer depletion reservoir scenario fits 

the data best. This conclusion is confirmed by the LTS II workflow with C8_I3 and C20_I4 having the 

highest probability (Figure 103) but the other reservoir scenarios still have a relative large impact on 

the total weighted average leading to higher values for the stochastic expectation case when 

compared to M&R expectation case. 

The main issue with this conclusion is that the derived stochastic expectation case is not close to 

scenario-model combination that fits best to the data. Also in the discussion paragraph we showed 

that different definitions of the test statistic would lead to very different results. Without a satisfying 

explanation on the role of the covariance matrix of data and model on the test statistic, the 

conclusion is that it is too early to make a direct comparison with the measurement and control cycle 

prediction possible nor we can make a firm statement on the impact of this workflow on the Wadden 

Fields. There are however clear differences in the structural setting of the Wadden Fields like Nes 

and Moddergat. The Wadden Fields are bounded by large faults that prevent a connection to large 

lateral aquifers. Therefore, we expect less uncertainty arising from the possible reservoir scenarios 

for these fields. However, the constraint of possible scenarios by the data is poorer because of the 

lifetime of these fields. The last observation probably results in a larger uncertainty of the subsidence 

forecasts.  
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Figure 102: Subsidence rate, with the contribution per reservoir model.

Figure 103: Subsidence rates for the Time decay model per reservoir scenario and using the elastic influence function, the 
percentage in the title is the part which this reservoir model contributes to the total.  
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10 Conclusions 
In the LTS II study a workflow was created to allow confrontation of model results with 

measurements in an objective way. This workflow incorporates the findings of the LTS I study and is 

able to identify the most likely model factors like reservoir scenarios, compaction models and 

influence functions. Moreover, posterior (after confrontation with the data) probability distributions 

for the input data show redefined distributions for the input values of the data, demonstrating the 

effect of the confrontation on the probability of certain input values.  

Multiple tests between NAM and TNO ensured the consistent usage of the workflow software code 

(ESIP) and proved the capability to produce meaningful results. A special synthetic “dummy” model 

was created to better understand the findings. Comparison between the semi-analytical approach of 

AEsubs including a viscous salt layer with the finite element results from Geomec shows only small 

differences between the two approaches. The use of geodetic data is characterized by several 

significant innovations. Observations from levelling and GPS techniques have been used in form of 

spatio-temporal double differences. Outlier removal follows a more formal and less subjective 

approach. Uncertainties are described by a fully populated covariance matrix, that also takes shallow 

movements into account. All these measures help getting the modelling closer to reality by reducing 

previously adopted assumptions and idealizations. 

To describe the uncertainty in possible pressure scenarios for Ameland, 193 reservoir scenarios for 

Ameland were created. Thirteen of these scenarios were selected with the aim that this selection 

represents the full bandwidth of the possible 193 scenarios. It is assumed in the confrontation with 

the data that the prior (prior to confrontation) probability is the same for all scenarios.  

On top of the pressure variation we also varied compaction models and influence functions. Each of 

these factors has its own parameter uncertainty distribution of which the values are probed by the 

Monte Carlo calculation.  

Each parameter pick by the Monte Carlo procedure results in a geomechanical model member with a 

group of members defining the ensemble. For presentation purposes we choose to mimic the 

“Waddenzee” measurement and control cycle (e.g. NAM 2016a) by calculating the 6 year averages of 

the subsidence rate for a given area. Rather than deterministic scenarios we are now able to provide 

the expected weighted average case including confidence bounds for the ensemble to express the 

uncertainty.  

The same workflow was applied on the emergency stop scenarios, resulting in a clear expression on 

the subsidence rates following a hypothetical stop in 1996 and a less clear expression if the stop was 

made in 2016. The latter can be explained by the small response of the pressures as the gas field has 

produced most of the gas at this time. We therefore conclude that an emergency stop scenario in the 

Waddenzee for the “younger” fields like Nes and Moddergat would result in a significant reduction of 

the subsidence rate in the Waddenzee.  

As described in the work plan (NAM, 2016) we selected TNO’s Red Flag methodology (Nepveu et al., 

2010) to confront model results with data. This methodology is transparent because it will not 

change the input parameters that defined the prior ensemble. Most likely reservoir scenarios are the 

scenarios that show no or low depletion in the aquifers. The most likely compaction model is the 

Time decay and RTCiM model.  
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At present the Knothe influence function describes the data best, but it should be noted that the 

AEsubs simulator that is used for the elastic and salt influence does not allow for combinations 

between salt and elastic layers having large contrasts in the values of the stiffness parameters. When 

this is corrected, we expect this combination to give lower values of the test statistic because it 

should match the spatial-temporal behavior of the subsidence better. The Knothe function allows for 

a fit to a steeper subsidence bowl but lacks a temporal component that can describe a possible 

change in steepness of the bowl. 

The ability of the workflow to differentiate the various scenario-model combinations appears to be 

low for the actual Ameland model. However, on a synthetic model the process is capable to 

differentiate the original input model. Further discussion and investigation is required to understand 

why the process is not capable of differentiating between the real scenario-model combinations 

before this can be implemented in in the official measurement and control cycle. 

Reflecting on the objectives as defined in the workplan we conclude the following: 

1. A workflow that can test the probability of possible subsidence models in an objective way, 

with the possible hypotheses resulting from the LTS I study taken into account 

We have demonstrated a workflow capable of testing the probability of subsidence models 

incorporating the possible factors of influence as defined by LTS I. 

2. To provide an ensemble of likely subsidence forecasts, each member with a different effect 

on the future subsidence above the Ameland field. A P50 should be presented from the total 

distribution.  

An ensemble of results has been presented in this report. All statistical values can be derived from 

the probability distribution of the ensemble like confidence bonds, expectation case and P50 

values. 

3. An analysis comparing the new distribution of subsidence forecasts with the Ameland 

forecasts selected in the M&R cycle report over 2015 along with a description of the 

discrepancies and the possible consequences this may have for M&R 2016 cycle. 

Selected geomechanical members based on the salt influence function were compared to the 

Geomec M&R 2015 results and we concluded that a good match between these models is found. 

However, the results obtained so far of the stochastic expectation case are very different from the 

results that follow from the deterministic expected case as presented in NAM (2016a). We have 

confirmed in LTS II that the reservoir scenario and compaction model used in the M&R cycle 2015 

are the most likely reservoir scenario and compaction model. We therefore conclude that 

expected case for Ameland will remain the same for M&R 2016. 

4. The impact of this result on the other gas fields that are part of the M&R cycle will be made 

clear in a qualitative sense and based on analogies. (Within the given LTS II time schedule it 

will be not possible to set up a similar project for the remaining fields.)  
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There are clear differences in the structural setting of the Wadden Fields like Nes and Moddergat. 

The Wadden Fields are bounded by large faults that prevent a connection to large lateral 

aquifers. Therefore, we expect less uncertainty arising from the possible reservoir scenarios for 

these fields. However, the constraint of possible scenarios by the data is poorer because of the 

lifetime of these fields. The last observation probably results in a larger uncertainty of the 

subsidence forecast.  

Therefore, at present it is difficult to make a strong conclusion on the impact of the LTS II results 

on subsidence prediction in the Waddenzee arising from the Wadden Fields. We firstly need to 

decide on certain conditions e.g. do we use all compaction models for the Waddenzee or only one 

or two; certain methods for the confrontation e.g. Red Flag versus Ensemble Smoother and 

certain definitions for e.g. the test statistic. 

5. NAM will start with the application of the LTS II workflow to the other Wadden Fields. The 

first results will be expected to appear in M&R report over the year 2017. 

This will be executed under the premise that the LTS II workflow is accepted by the stakeholders.  

6. An analysis of the effect of a hypothetical stop of production of the Ameland gas field at 

specific point(s) in time, including a statement on the analogy with the other Wadden Fields 

and the effectiveness of the “hand on the tap” principle. 

The hand on the tap principle has been demonstrated for different ensembles. A production stop 

in the “Wadden Fields” would have an even more profound effect because these fields connect to 

a lesser extend to lateral aquifers. 

7. A report that clarifies the effect of an overlying salt layer on the subsidence with a 

comparison between the results from the analytical AEsubs geomechanical model and the 

results from the Ameland Geomec model. 

Agreement between the models was found. A chapter is included in this document that covers 

this comparison. 
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