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1 Executive Summary 
We present results from 360 high-resolution numerical simulations in 2D and 240 high-resolution 
simulations in 3D that investigate under which circumstances anomalous pressure diffusion could 
occur in heterogeneous geological formations. To mimic geological heterogeneity, we have 
generated multiple realisations of random fields in 2D and 3D with varying degrees of heterogeneity. 
We used fractional Brownian motion (in 2D) and exponential covariances (in 2D and 3D) to generate 
the random fields. Breakthrough curves of normalised pressure vs. normalised time were recorded 
in the numerical simulations. These breakthrough curves often show early breakthrough and late-
time tailing if there is sufficient heterogeneity in the random fields; both are strong evidence of 
anomalous pressure diffusion. Early breakthrough and late-time tailing in the breakthrough curves 
are generated by areas in the model where the pressure diffuses significantly faster, respectively 
significantly slower, compared to model predictions that assume a uniform hydraulic diffusivity that 
is equal to the mean of the random field. These regions could possibly correspond to areas where 
the reservoir compacts faster or slower than what would be expected from traditional reservoir 
simulations that employ average permeabilities at the scale of a reservoir simulation grid-block. 

2 Anomalous Diffusion 

2.1 Principles and Characteristics  
The transport of particles and heat during single-phase miscible flow is commonly described by an 
advection-dispersion equation 

𝜕𝜕𝜕𝜕(𝒙𝒙)
𝜕𝜕𝜕𝜕

+ 𝛻𝛻 ∙ �𝒗𝒗(𝒙𝒙)𝜶𝜶(𝒙𝒙) + 𝜂𝜂(𝒙𝒙)𝛻𝛻𝛻𝛻(𝒙𝒙)� = 0 with 𝛼𝛼 ∈ {𝑐𝑐, 𝑇𝑇},      (1) 

where 𝛼𝛼 is the transported quantity (e.g. concentration 𝑐𝑐 or temperature 𝑇𝑇, 𝒗𝒗 is the Darcy velocity, 
𝜂𝜂 the diffusion coefficient and 𝒙𝒙 a vector of spatial coordinates. Note that Equation (1) reduced to 
the diffusivity equation if 𝒗𝒗(𝒙𝒙) = 0 and 𝛼𝛼 = 𝑝𝑝  

𝜕𝜕𝜕𝜕(𝒙𝒙)
𝜕𝜕𝜕𝜕

+ 𝛻𝛻 ∙ �𝜂𝜂(𝒙𝒙)𝛻𝛻𝛻𝛻(𝒙𝒙)� = 0 with 𝜂𝜂 = 𝑘𝑘
𝜇𝜇𝑐𝑐𝑡𝑡

.         (2) 
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Equation (1) predicts that the first spatial moment is proportional to time, i.e. distance 𝑙𝑙 that the 
peak of 𝛼𝛼 has moved along the velocity field 𝒗𝒗(𝒙𝒙) is 𝑙𝑙(𝑡𝑡) ∝ 𝑡𝑡. Similarly, the second spatial moment, 
i.e. the rate at which the peak of 𝛼𝛼 decays and the variance 𝜎𝜎 of 𝛼𝛼 grows due to diffusion, has the 
relation 𝜎𝜎(𝑡𝑡) ∝ √𝑡𝑡 (Figure 1). 

However, it has been widely observed that transport in (even relatively homogeneous) geological 
formations does not follow the behaviour described in Equation (1) and illustrated Figure 1. Instead, 
it is normally characterised by long tails (slow breakthrough) and fast leading edges (early 
breakthrough) (Figure 2). Hence the first and second spatial moments exhibit a scaling that is very 
different from 𝑡𝑡 and √𝑡𝑡, respectively. This type of behaviour is normally described as anomalous 
diffusion or transport and also known as non-Fickian transport and indeed appears to be the 
“normal” transport behaviour in geological formations (c.f. Berkowitz et al. 2006).   

 

 

Figure 1. Spatial profiles of a concentration plume at three different times (t1, t2, t3). The plume travels from left to 
right in a 1D porous media due to advection and diffusion. Transport is assumed to be of classical (Fickian) nature, i.e. 
can be described macroscopically by Equation (1). Note that the centre of the plume (peak of 𝜶𝜶) moves proportional to 
time 𝒕𝒕, that the  peak of 𝜶𝜶 decays proprotial to √𝒕𝒕 and the variance of the plume grows proportional to √𝒕𝒕. Adapted 
from Berkowitz et al. (2006). 
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Figure 2. Spatial profiles of a concentration plume at three different times (t1, t2, t3). The plume travels from left to 
right in a 1D porous media due to advection and diffusion. Transport is assumed to be of anomalous (non-Fickian) 
nature, i.e. cannot be described macroscopically by Equation (1). Note that, compared to Figure 1, the centre of the 
plume (i.e. peak of 𝜶𝜶) moves no longer proportional to time 𝒕𝒕, the  peak of 𝜶𝜶 decays no longer proportionally to √𝒕𝒕, and 
the variance of the plume grows no longer proportionally to √𝒕𝒕. Instead, one can observe fast leading edges in the 
concentration plumes and long tails, i.e. fast breakthrough and slow breakthrough, respectively. Figure modified from 
Berkowitz et al. (2006). 

 

Anomalous transport is widely observed for single-phase miscible flow, from the pore- to the 
reservoir scale and in both, fractured and unfractured geological formations (e.g.,  Di Donato et al., 
2003; Cortis and Berkowitz, 2004; Cortis et al., 2004; Bijeljic and Blunt, 2006; Geiger et al., 2010). An 
interesting observation in anomalous diffusion is that small-scale heterogeneities do not average out 
at larger scales (Rhodes et al., 2009). Instead, small-scale (core, plug, outcrop) heterogeneities 
accumulate to yield anomalous transport at the large (e.g. reservoir scale). However, anomalous 
transport transitions to normal (Fickian) transport at sufficiently long times-scales, that is if transport 
has experienced, on average, all of the heterogeneity of the geological formation (Dentz et al., 
2004).  

While anomalous diffusion is common in solute transport processes and has been also observed for 
heat transport (Geiger and Emmanuel, 2010) and pressure diffusion (Cortis and Knudby, 2006; see 
Figure 3), it is less common for the latter two applications. This is because solute transport is 
dominated by advective processes while diffusive processes dominate heat transport and pressure 
diffusion. Hence solute, heat transport, and pressure diffusion average at different time- and length-
scales, i.e. the transition to normal diffusion occurs at significantly shorter time- and length-scales 
for heat transport and pressure diffusion compared to solute transport. Hence anomalous diffusion 
appears to be less common during heat transport and pressure diffusion. 
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Figure 3. Example of anomalous pressure diffusion in a 2D geological domain. The inset shows the heterogeneity in the 
permeability field. A numerical simulation models the movement of a pressure front from left to right through this 
permeability field. The average and normalised flow velocity 𝒒𝒒 is monitored at the right model boundary. Initially 𝒒𝒒 is 
zero as the pressure gradient at the right model boundary is zero. 𝒒𝒒 then increases with time as the pressure front 
reaches the model boundary. The numerically generated data (denoted as “observed” in the figure legend) shows clear 
indication of early breakthrough and tailing that cannot be captured by classical diffusion and Equation (1) (denoted as 
eq. 11 in the figure legend). The more general Continuous Time Random Walk  (CTRW) approach, however, enables us to 
capture anomalous pressure diffusion by resolving the full spectrum of transition times which can be modelled through 
a truncated power-law (denoted as eq. 12 in the figure legend) or a modified exponential (denoted as eq. 13 in the 
figure legend). See Section 2.2 for a discussion of CTRW. Figure modified from Cortis and Knudby (2006). 

2.2 Mathematical Models for Anomalous Transport 
A number of mathematical approaches have been developed to model anomalous transport, 
including but not limited to fractional advection dispersion equations (Benson et al., 2000), multi-
rate mass transfer models (Haggerty and Gorelick, 1995), or continuous time random walks 
(Berkowitz et al., 2006). However, it has now been suggested that the former two approaches are 
special cases of the more general continuous time random walk (CTRW) approach (Berkowitz et al., 
2006). 

The central idea of the CTRW is not to describe macroscopic transport at the reservoir or grid-block 
scale by the averaged parameters inherent to Equation (1) but to capture the full spectrum of 
transition times inherent to the geological formation, i.e. the time it takes for the dissolved particles 
in a concentration plume to migrate through a geological formation. Short transition times 
correspond to regions in the reservoir where flow is fast while long transition times correspond to 
regions where flow is slow or stagnant.  

CTRW is the general form of a random walk and encapsulates a distribution of transition times 𝜓𝜓(𝑡𝑡) 
that quantifies the distribution of time-steps Δ𝑡𝑡 that a particle needs to move a certain distance 𝑥𝑥 
through the geological formation. Long time-steps (i.e. large transition times) are encountered when 
the particle travels through low-permeability regions while short time-steps (i.e. short transition 
times) are encountered when the particle travels through high-permeability regions. 
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When accounting for the full spectrum of transition times 𝜓𝜓(𝑡𝑡) in a mathematical model such as 
CTRW, the statistically rate fast and/or slow events that lead to early breakthrough and long tails, 
and subsequently to anomalous diffusion, are intrinsically captured. It should be noted, however, 
that anomalous transport would always emerge if we were able to simulate flow and transport in a 
geological formation using grids that have centimetre-scale (or even higher) resolution. Such grids 
would resolve all small-scale heterogeneities and the fast/slow transport of particles through them, 
i.e. capture the statistically rate fast and/or slow events that lead to anomalous diffusion.  

The CTRW equivalent of Equation (1) in Laplace space is given by 

 𝑢𝑢𝛼𝛼�(𝒔𝒔, 𝑢𝑢) − 𝛼𝛼0(𝒔𝒔) = −𝑀𝑀�(𝑢𝑢)[𝒗𝒗 ∙ 𝛻𝛻𝛼𝛼�(𝒔𝒔, 𝑢𝑢) + 𝜂𝜂𝛻𝛻2𝛼𝛼�(𝒔𝒔, 𝑢𝑢)],     (3) 

where the tilde indicates a property in Laplace space, 𝑢𝑢 is equivalent to time in Laplace space and 𝒔𝒔 
to 𝒙𝒙 in Laplace space. 𝑀𝑀�(𝑢𝑢) is a memory function that encapsulates the distribution of transition 
times transition times 𝜓𝜓(𝑡𝑡).  

 

Figure 4. Breakthrough curves (𝜶𝜶 vs. 𝒕𝒕) showing the relationship between 𝜷𝜷 and anomalous diffusion for linear time (a) 
and log10 time (b). Anomalous diffusion emerges if 𝟎𝟎 ≤ 𝜷𝜷 ≤ 𝟐𝟐 and the smaller 𝜷𝜷, the more anomalous diffusion 
becomes, i.e. the more tailing at late time and early breakthrough can be observed in the breakthrough curves. Modified 
from Geiger and Emmanuel (2010). 

For anomalous diffusion, it was demonstrated that 𝜓𝜓(𝑡𝑡) can be readily modelled by a truncated 
power-law for a wide range of geological formations (cf. Berkowitz et al., 2006). The truncated 
power-law contains three parameters, the most important one being an exponent 𝛽𝛽 that indicates 
the heterogeneity of the geological formation and relates to 𝜓𝜓(𝑡𝑡) as 𝜓𝜓(𝑡𝑡)~𝑡𝑡−1−𝛽𝛽. For values of 𝛽𝛽 
between 0 ≤ 𝛽𝛽 ≤ 2, diffusion is anomalous and generally, the smaller 𝛽𝛽, the more anomalous 
diffusion is (Figure 4).  

Using CTRW with a truncated power-law to model 𝜓𝜓(𝑡𝑡) enables the straightforward detection and 
robust quantification of anomalous diffusion in breakthrough curves by fitting the parameters of the 
truncated power-law, most notably 𝛽𝛽, to the experimentally or numerically derived breakthrough 
curves. If 𝛽𝛽 < 2, diffusion is anomalous. The relevant fitting routines are available in the CTRW 
Toolbox (Cortis and Berkowitz, 2005).  
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3 Random Field Generation 
In order to test if and when pressure diffusion can be anomalous, we solve Equation (2) on 2D and 
3D domains where the hydraulic diffusivity 𝜂𝜂(𝒙𝒙) is randomly distributed. To achieve this we 
generate random fields 𝑢𝑢(𝒙𝒙) with 𝒙𝒙 ∈ 𝑅𝑅2 (2D) or 𝒙𝒙 ∈ 𝑅𝑅3 (3D) and then exponentiate. Hence we 
compute with 𝑣𝑣(𝒙𝒙) = exp (𝑢𝑢(𝒙𝒙)) which ensures that 𝜂𝜂(𝒙𝒙) is always positive. We note that the 
resulting random fields are purely synthetic and not related to a particular subsurface reservoir, as 
discussed in the meeting in Assen on May 1, 2015. 

We characterise the random field 𝑢𝑢(𝒙𝒙) with a covariance 𝐶𝐶(𝒙𝒙, 𝒚𝒚) given by 

𝐶𝐶(𝒙𝒙, 𝒚𝒚) = Cov�𝑢𝑢(𝒙𝒙), 𝑢𝑢(𝒚𝒚)� = 𝐸𝐸[(𝑢𝑢(𝒙𝒙) − 𝐸𝐸[𝑢𝑢(𝒙𝒙)])(𝑢𝑢(𝒚𝒚) − 𝐸𝐸[𝑢𝑢(𝒚𝒚)])𝑇𝑇].   (4) 

𝑢𝑢(𝒙𝒙)  is said to be a stationary random field if it is invariant to translations, the mean is constant, so 
that 𝐸𝐸�𝑢𝑢(𝑥𝑥)� = 𝜇𝜇 and 𝐶𝐶(𝒙𝒙, 𝒚𝒚) = 𝑐𝑐(𝒙𝒙 − 𝒚𝒚). 𝑢𝑢(𝒙𝒙)  is said to be isotropic if it is invariant to rotations, 
that is the covariance function is stationary and 𝑐𝑐(𝒙𝒙) = 𝑐𝑐(𝒓𝒓), where 𝒓𝒓 = ‖𝒙𝒙‖. Essentially the 
random field looks (on average) the same in every direction with no special features built in. Thus, 
any anomalous diffusion has not been inserted, from the choice of features in the random field. 

In particular we consider two types of isotropic fields:  

1. An exponential covariance where the covariance function satisfies 𝑐𝑐(𝒓𝒓) = exp (−𝒓𝒓/ℓ) for a 
given correlation length-scale ℓ for both, 𝒙𝒙 ∈ 𝑅𝑅2 and 𝒙𝒙 ∈ 𝑅𝑅3. We take ℓ =
0.1, 0.01, and 0.001 on the domain [0,1] × [0,1] and ℓ = 0.1 and 0.01 on the domain 
[0,1] × [0,1] × [0,1]. This ensures we can resolve the length-scales over which 
heterogeneity occurs with our spatial discretisation. 

2. A Fractional Brownian field with covariance 𝐸𝐸 �𝐵𝐵ℋ(𝑡𝑡)𝐵𝐵ℋ(𝑠𝑠)� = 0.5�‖𝑡𝑡‖2ℋ + ‖𝑠𝑠‖2ℋ −
‖𝑡𝑡 − 𝑠𝑠‖ℋ�. The parameter ℋ determines the smoothness of the field. With ℋ = 0.5 the 
field is a Brownian field (and 1D increments are independent). For ℋ > 0.5 increments are 
positively correlated and for ℋ < 0.5 negatively correlated. We consider ℋ =
0.25, 0.5 and 0.75. 

Random fields with exponential covariance are approximated by using a Turning Bands approach. 
This idea is based on a sequence of 1D simulations and the central limit theorem (Montogolou and 
Wilson, 1982; Gneiting, 1998; Lord et al., 2014) and is an effective method for producing fields in 3D. 
The fractional Brownian field is constructed using a circulent embedding approach which is better 
suited to 2D problems (Dietrich and Newsam, 1997; Lord et al., 2014; Kroese and Botev, 2014).  

   
Figure 5. Exemplary random fields with 𝒙𝒙 ∈ 𝑹𝑹𝟐𝟐 for fractional Brownian motion with 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) ∈ [−𝟒𝟒, 𝟒𝟒] and 𝓗𝓗 =
𝟎𝟎. 𝟐𝟐𝟐𝟐, 𝟎𝟎. 𝟓𝟓 𝐚𝐚𝐚𝐚𝐚𝐚 𝟎𝟎. 𝟕𝟕𝟕𝟕 (from left to right). 
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Figure 6. Exemplary random fields with 𝒙𝒙 ∈ 𝑹𝑹𝟐𝟐 for an exponential covariance with 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) ∈ [−𝟒𝟒, 𝟒𝟒] and 𝓵𝓵 =
𝟎𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎, 𝟎𝟎. 𝟎𝟎𝟎𝟎 𝐚𝐚𝐚𝐚𝐚𝐚 𝟎𝟎. 𝟏𝟏 (from left to right). 

  
Figure 7. Two-dimensional cross-sections through exemplary random fields with 𝒙𝒙 ∈ 𝑹𝑹𝟑𝟑 for an exponential covariance 
with 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) ∈ [−𝟒𝟒, 𝟒𝟒] and 𝓵𝓵 = 𝟎𝟎. 𝟎𝟎𝟎𝟎 𝐚𝐚𝐚𝐚𝐚𝐚 𝟎𝟎. 𝟏𝟏 (from left to right). 

The random fields 𝑢𝑢(𝒙𝒙) were generated using these two techniques and then rescaled to set the 
maximum and minimum values in the field and hence variation in 𝜂𝜂(𝒙𝒙). We consider variations in 
log10(𝜂𝜂) between [−2,2], [−4,4] and [−6,6] for both 2D and 3D. For all fields we set the mean of 
log10(𝜂𝜂) = 0. We generated ten different realisations for each combination of [𝜂𝜂min, 𝜂𝜂max] and ℓ 
(for the exponential covariance), respectively ℋ (for the fractional Brownian fields). Hence in total 
we obtained 90 random fields in 2D using an exponential covariance, 90 random fields in 2D using 
fractional Brownian motion, and two sets of 60 random fields in 3D using an exponential covariance, 
one for a grid of 100 × 100 × 100 and one for a grid of 200 × 200 × 200 to test the impact of grid 
refinement on anomalous diffusion in 3D. Simulations were carried out for all fields with two 
different set of boundary conditions (see below). Exemplary random fields are shown in Figure 5 
(fractional Brownian motion in 2D), Figure 6 (exponential covariance in 2D) and Figure 7 (exponential 
covariance in 3D). 

4 Numerical Simulations 

4.1 Discretisation of Governing Equations and Simulation Setup 
We used our in-house simulation software CSMP++ (Matthäi et al., 2007) to solve Equation (2) 
numerically with a standard Galerkin finite element method. The 2D domains were hence discretised 
by uniform quadrilateral finite elements, the 3D domains by uniform hexahedral finite elements. An 
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algebraic multigrid solver (Stüben, 2007) was used for the efficient inversion of the resulting linear 
system, providing optimal, i.e. 𝑛𝑛log(𝑛𝑛), scaling.  

The 2D domain was a square with dimensions [𝐿𝐿 × 𝐿𝐿]. It was discretised by 1000 × 1000 finite 
elements. The 3D domain was a square with dimensions [𝐿𝐿 × 𝐿𝐿 × 𝐿𝐿]. It was discretised by 100 ×
100 × 100 finite elements and 200 × 200 × 200 to test the impact of grid refinement on 
anomalous diffusion in 3D. Random fields were generated at the same resolution as the simulation 
grid, using the methods discussed in Section 3 above for the exponential covariance and fractional 
Brownian motion.  

 

Figure 8. Simulation setup showing initial and boundary conditions in 2D. Note that the same initial and boundary 
conditions are applied in 3D. Left: Diffusion from left to right due to a fixed pressure drop that is applied along the entire 
left model boundary (for both, 2D and 3D). Right: Radial diffusion towards due to a fixed pressure drop located at a 
single point located in the centre of the model (for both, 2D and 3D). Initially, the normalised reservoir pressure 
𝒑𝒑𝒑𝒑(𝟎𝟎, 𝒙𝒙) is set to 1 everywhere in the domain. Note that all model boundaries in the radial diffusion scenario are no-
flow boundaries. In the left-to-right diffusion scenario, all model boundaries with exception of the boundary where the 
pressure drop is applied were no-flow boundaries. The dashed lines denote lines (in 2D) and surfaces (in 3D) where the 
average pressure is recorded as a function of time. For the left-to-right diffusion simulations, they are located at a non-
dimensional distance 𝝃𝝃 = 𝒙𝒙 𝑳𝑳⁄ ∈ [𝟎𝟎. 𝟐𝟐𝟐𝟐, 𝟎𝟎. 𝟓𝟓, 𝟎𝟎. 𝟕𝟕𝟕𝟕]. For the radial diffusion simulations, they are located at a non-
dimensional radial distance 𝝆𝝆 = 𝒓𝒓 𝑹𝑹⁄ ∈ [𝟎𝟎. 𝟐𝟐𝟐𝟐, 𝟎𝟎. 𝟓𝟓, 𝟎𝟎. 𝟕𝟕𝟕𝟕]. Note that 𝑳𝑳 is the total length of the model and the same in 
the x, y and z-direction. In other words, the 2D domains are squares and the 3D domains cubes and the average pressure 
is always recorded as a function of time at one quarter, one half, and three quarters away from the location where the 
pressure is initially perturbed. 

Implicit time-stepping was used in all simulations. The initial time-step was set to ∆𝑡𝑡 = 10−4𝑡𝑡𝑡𝑡 
where 𝑡𝑡𝑡𝑡 is the non-dimensional time defined as 𝑡𝑡𝑡𝑡 = 𝜂𝜂𝜂𝜂 𝑑𝑑2⁄  where 𝑡𝑡 is time and 𝑑𝑑 is the distance 
between the location where the pressure is perturbed and the nearest reservoir boundary. The ∆𝑡𝑡 
then increased by 10% during each time-step to find a good compromise between computational 
efficiency and resolving the early-time behaviour appropriately, i.e. when pressure gradients are 
steep and change rapidly.  

The initial conditions are the same for all 2D and 3D simulations and all 180 random fields in 2D and 
the two sets of 60 random fields with different levels of grid refinement in 3D. However, two 
different set of initial conditions were applied (Figure 8). The first initial condition caused a pressure 
wave to travel from left to right through the domain. The second initial condition caused radial 
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diffusion away from a single point. Both set of boundary conditions were applied to all random fields 
in 2D and 3D. Hence in total 360 simulations were run in 2D and 240 simulations were run in 3D.  

4.2 Presentation of Results and Analysis of Anomalous Diffusion 
Throughout the simulations, physically realistic values for fluid pressure, permeability, 
compressibility, fluid viscosity, and model domain size were used, although these are not related to 
a particular subsurface reservoir. However, we non-dimensionalised all variables when presenting 
the results. This enables us to study anomalous diffusion independently of a given time- or length-
scale. In other words, the results presented below can be interpreted with respect to the length- and 
time-scales pertinent to a reservoir simulation grid block or an entire geological formations. To this 
end, we use the following non-dimensional variables: 

• Non-dimensional time is 𝑡𝑡𝑡𝑡 = 𝜂𝜂𝜂𝜂 𝑑𝑑2⁄ . Note that 𝑑𝑑 is the distance between the nearest 
reservoir boundary and the location where the pressure is perturbed, i.e. 𝑑𝑑 = 𝐿𝐿 for the case 
where the pressure diffuses from left to right and 𝑑𝑑 = 𝐿𝐿/2 for the case where pressure 
diffuses radially towards a single point. 

• Non-dimensional pressure is 𝑝𝑝𝑝𝑝 = (𝑝𝑝 − 𝑝𝑝𝑏𝑏𝑏𝑏) (𝑝𝑝0 − 𝑝𝑝𝑏𝑏𝑏𝑏)⁄ , where 𝑝𝑝 is the fluid pressure at a 
given grid point in the simulation model, 𝑝𝑝𝑏𝑏𝑏𝑏 is the pressure applied as a boundary condition 
(either along the left model boundary for the left-to-right diffusion case or at the central 
point in the model domain for the radial diffusion case), and 𝑝𝑝0 is the fluid pressure in the 
reservoir at 𝑡𝑡 = 0. 

• Non-dimensional distance is 𝜉𝜉 = 𝑥𝑥/𝐿𝐿 and non-dimensional radius is 𝜌𝜌 = 𝑟𝑟/𝑅𝑅 with 𝑅𝑅 = 𝐿𝐿/2. 

While surface plots showing the distribution of 𝑝𝑝𝑝𝑝 in the model domain at different times are highly 
informative and will be presented below, the key property to assess if diffusion is anomalous are 
breakthrough curves (see Section 2.2). We therefore recorded breakthrough curves, i.e. 𝑝𝑝𝑝𝑝 as a 
function of non-dimensional time 𝑡𝑡𝑡𝑡, at three different locations in the model, for both, the left-to-
right and the radial diffusion cases, in all 2D and 3D simulations. Breakthrough curves for 𝑝𝑝𝑝𝑝 for the 
diffusion from left to right were recorded along lines (in 2D) and surfaces (in 3D) for normalised 
distances 𝜉𝜉 = 𝑥𝑥 𝐿𝐿⁄ ∈ [0.25, 0.5, 0.75] away from the right of the left model boundary (Figure 8). For 
the radial diffusion simulations, breakthrough curves were recorded along lines (in 2D) and surfaces 
(in 3D) located at non-dimensional radial distances 𝜌𝜌 = 𝑟𝑟 𝑅𝑅⁄ ∈ [0.25, 0.5, 0.75] away from the 
centre point (Figure 8). The average 𝑝𝑝𝑝𝑝� (𝑡𝑡) was measured for each time-step for each node 𝑖𝑖 that is 
located along these lines/surfaces as 𝑝𝑝𝑝𝑝� (𝑡𝑡) = ∑𝑝𝑝𝑝𝑝𝑖𝑖(𝑡𝑡) 𝑁𝑁⁄  where 𝑁𝑁 is the total number of nodes at 
the given line/surface.  

An exemplary breakthrough curve for left-to-right diffusion case and uniform 𝜂𝜂 (i.e. for classical, 
“normal” diffusion) is shown in Figure 9. To detect anomalous diffusion rigorously from these 
breakthrough curves, one would use CTRW and attempt to model the corresponding 𝜓𝜓(𝑡𝑡) with a 
truncated power-law. If the resulting parameters for the truncated power-law indicate that 0 ≤ 𝛽𝛽 ≤
2, diffusion is anomalous.  
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Figure 9. Exemplary breakthrough curves measured at three different distances for diffusion from left to right where 𝜼𝜼 is 
uniform in the entire domain, i.e. for normal pressure diffusion. Deviations from these curves due to early breakthrough 
(i.e. 𝒑𝒑𝒑𝒑 decreases faster than average) or long tails (i.e. 𝒑𝒑𝒑𝒑 decreases slower than average) would indicate anomalous 
pressure diffusion. See also Figure 4 for reference. 

However, as discussed in the meeting in Assen on May 1, 2015, this more rigorous quantification of 
anomalous diffusion is not yet followed. Hence we use the following approach to obtain semi-
quantitative insights into the diffusion behaviour. We plot the resulting breakthrough curves for 
each of the 10 realisations for a given random field at a single normalised distance (e.g., 𝜉𝜉 = 0.5) 
along with the breakthrough curve recorded the same distance but for a model where 𝜂𝜂 is uniform 
and equal to the mean of the field, i.e. for log10𝜂𝜂 = 0. We then shift all breakthrough curves that we 
generated for the random fields such that they are centred at 𝑝𝑝𝑝𝑝 = 0.5 for the breakthrough curve 
of the uniform field. If diffusion is normal, all breakthrough curves should overlay each other. If 
some or all of the breakthrough curves for anomalous diffusion show early breakthrough and/or 
late-time tailing (which are indicative of anomalous diffusion), this is now clearly distinguishable. In 
addition, we count the number breakthrough curves where 𝑝𝑝𝑝𝑝 = 0.95 was reached earlier than for 
the breakthrough curve with the uniform log10(𝜂𝜂) = 0 and the number of breakthrough curves 
where 𝑝𝑝𝑝𝑝 = 0.05  was reached later than for the breakthrough curve with the uniform log10(𝜂𝜂) =
0. We then measure the mean Δ𝑡𝑡𝑡𝑡 for these cases, i.e. the average difference in 𝑡𝑡𝑡𝑡 at which 
breakthrough occurs earlier or later than for a model where 𝜂𝜂 is uniform. A large number of 
breakthrough curves in the ensemble that have early breakthrough and/or late-time tailing and a 
sufficiently large Δ𝑡𝑡𝑡𝑡 are strong qualitative indicators, but not quantitative mathematical evidence, 
for anomalous diffusion. Exemplary breakthrough curves that illustrate this concept are shown in 
Figure 10. In the following, only the shifted breakthrough curves will be reported.  
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Figure 10. Examples of breakthrough curves before (left column) and after (right column) shifting, showing early 
breakthrough and late-time tailing, which is evidence for anomalous diffusion, (top row) and normal diffusion (bottom 
row). Breakthrough curves in the right column are shifted such that they centre at 𝒑𝒑𝒑𝒑 = 𝟎𝟎. 𝟓𝟓. All breakthrough are 
recorded 𝝃𝝃 = 𝟎𝟎. 𝟓𝟓 for diffusion from left-to-right. The top row shows breakthrough curves for 2D random fields 
generated by fractional Brownian with 𝓗𝓗 = 𝟎𝟎. 𝟓𝟓 𝐚𝐚𝐚𝐚𝐚𝐚 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) ∈ [−𝟒𝟒, 𝟒𝟒], the bottom row for 2D random fields that use 
an exponential covariance with 𝓵𝓵 = 𝟎𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎 𝐚𝐚𝐚𝐚𝐚𝐚 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) ∈ [−𝟐𝟐, 𝟐𝟐]. The red line indicates the breakthrough curve for a 
uniform field using the mean of the random field, i.e. 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) = 𝟎𝟎. The grey lines are the breakthrough curves for each 
individual realisation of the random field. Note how all breakthrough curves for the exponential covariance fields 
overlay each other after shifting, which indicates that pressure diffusion is normal and can readily be modelled by the 
mean hydraulic diffusivity of the random field. Although 9 curves appear to show early breakthrough (EB) and 7 late-
time tailing (LT) in this scenario, breakthrough is, on average, earlier by only 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝒕𝒕𝒕𝒕) = 𝟎𝟎. 𝟎𝟎𝟎𝟎, respectively is delayed 
by the same small time difference as well. In contrast the breakthrough curves for the fractional Brownian motion fields 
show clear indication of early breakthrough (all 10 breakthrough curves reach 𝒑𝒑𝒑𝒑 = 𝟎𝟎. 𝟗𝟗𝟗𝟗 earlier than the uniform case, 
on average, by 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝒕𝒕𝒕𝒕) = 𝟎𝟎. 𝟐𝟐𝟐𝟐) and late-time tailing (7 out of the 10 breakthrough reach 𝒑𝒑𝒑𝒑 = 𝟎𝟎. 𝟎𝟎𝟎𝟎 later than the 
uniform case, on average by 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝒕𝒕𝒕𝒕) = 𝟎𝟎. 𝟓𝟓𝟓𝟓). Hence it is very likely that diffusion is anomalous in these particular 
random fields generated and therefore pressure diffusion through them should not be modelled with the mean 
hydraulic diffusivity of the random field.    
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5 Results 

5.1 General Observations 
The key observations, using the approach depicted in Figure 10 to analyse the occurrence of early 
breakthrough and late-time tailing in the breakthrough curves are presented in Table 1 (for 2D fields 
generated with fractional Brownian motion), Table 2 (for 2D fields generated with exponential 
covariance), and Table 3 (for 3D fields generates with exponential covariance). The observation that 
early breakthrough and late-time tailing is frequently occurring suggests that anomalous pressure 
diffusion could be possible if the following holds: 

1. The random field has sufficient degrees of heterogeneity, either in terms of variance in 
hydraulic diffusivity 𝜂𝜂(𝒙𝒙), large correlation length ℓ (for random fields with exponential 
covariance) or large ℋ (for random fields generated with fractional Brownian motion). 

2. Early breakthrough and late-time tailing are more likely to occur in 2D random fields 
generated with fractional Brownian motion, particularly for low variances in 𝜂𝜂(𝒙𝒙). 

3. Early breakthrough and late-time tailing are more apparent closer to the location where the 
pressure is perturbed (e.g. near a well). With increasing distance away from the pressure 
disturbance, the pressure front (i.e. fluid flow) has sampled more of the heterogeneity in the 
random field and approaches normal diffusion, in agreement with the general 
understanding that anomalous diffusion becomes normal at late time. However, Early 
breakthrough and late-time tailing can still occur at large distances away from the pressure 
disturbance, especially if the variance in 𝜂𝜂(𝒙𝒙) is large.  There are some instances were Early 
breakthrough and late-time tailing appear to become even more obvious with increasing 
distance (e.g. there is no clear tailing at 𝜉𝜉 = 0.25 for log10(∆𝜂𝜂) = 8 and ℋ = 0.5 but tailing 
is strongly evident at 𝜉𝜉 = 0.5 and 𝜉𝜉 = 0.75). 

4. Early breakthrough and late-time tailing are less obvious if diffusion occurs radially towards 
a single point. Here, only early breakthrough is observed clearly in the 2D simulations at 𝜌𝜌 =
0.75 for cases where the variance in 𝜂𝜂 is large. 

 𝝃𝝃 = 𝟎𝟎. 𝟐𝟐𝟐𝟐 𝝃𝝃 = 𝟎𝟎. 𝟓𝟓 𝝃𝝃 = 𝟎𝟎. 𝟕𝟕𝟕𝟕 𝝆𝝆 = 𝟎𝟎. 𝟐𝟐𝟐𝟐 𝝆𝝆 = 𝟎𝟎. 𝟓𝟓 𝝆𝝆 = 𝟎𝟎. 𝟕𝟕𝟓𝟓 
𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟒𝟒 
𝓗𝓗 = 𝟎𝟎.𝟐𝟐𝟐𝟐 

E(10,-0.14) e(10,-0.05) 
 

U U U U 

𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟒𝟒 
𝓗𝓗 = 𝟎𝟎.𝟓𝟓 

E(10,-0.17) 
t(5,0.25) 

e(8,-0.08) 
t(6,0.27) 

E(10,-0.11) 
 

 
T(8,0.20) 

 
t(9,0.09) 

U 

𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟒𝟒 
𝓗𝓗 = 𝟎𝟎.𝟕𝟕𝟕𝟕 

E(9,-0.47) 
t(5,0.43) 

E(9,-0.20) 
T(8,0.29) 

E(10,-0.19) 
T(10,0.18) 

 
T(8,0.12) 

 
t(8,0.09) 

 
t(9,0.06) 

𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟖𝟖 
𝓗𝓗 = 𝟎𝟎.𝟐𝟐𝟐𝟐 

E(10,-0.29) E(10,-0.14) 
T(8,0.13) 

E(10,-0.18) 
t(10,0.07) 

 
t*(4,0.31) 

 
t*(5,0.18) 

e(10,-0.09) 
t*(10,0.08) 

𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟖𝟖 
𝓗𝓗 = 𝟎𝟎.𝟓𝟓 

E(10,-0.64) 
t(5,0.49) 

E(10,-0.25) 
T(7,0.51) 

E(10,-0.31) 
T(10,0.34) 

 
t*(6,0.49) 

 
t*(7,0.31) 

E(8,-0.13) 
t*(10,0.24) 

𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟖𝟖 
𝓗𝓗 = 𝟎𝟎.𝟕𝟕𝟕𝟕 

E(9,-1.00) 
T(9,0.79) 

E(10,-0.46) 
T(10,0.54) 

E(10,-0.45) 
T(10,0.68) 

 
t*(7,0.18) 

 
t*(6,0.22) 

 
t*(10,0.26) 

𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟏𝟏𝟏𝟏 
𝓗𝓗 = 𝟎𝟎.𝟐𝟐𝟐𝟐 

E(10,-0.45) 
t(3,0.54) 

E(10,-0.22) 
T(10,0.30) 

E(10,-0.20) 
T(10,0.19) 

 
t*(6,0.46) 

 
t*(7,0.28) 

E(9,-0.18) 
t*(10,0.29) 

𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟏𝟏𝟏𝟏 
𝓗𝓗 = 𝟎𝟎.𝟓𝟓 

E(10,-1.02) 
T(7,1.06) 

E(10,-0.45) 
T(8,0.99) 

E(10,-0.40) 
T(10,0.64) 

 
t*(7,0.58) 

 
t*(7,0.66) 

E(10,-0.29) 
t*(9,1.76) 

𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟏𝟏𝟏𝟏 
𝓗𝓗 = 𝟎𝟎.𝟕𝟕𝟕𝟕 

E(10,-0.75) 
T(8,1.14) 

E(10,-0.55) 
T(10,0.98) 

E(10,-0.72) 
T(10,1.17) 

 
t*(7,0.19) 

 
t*(7,0.52) 

E(8,-0.15) 
t*(9,1.02) 
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Table 1 (previous page). Analysis of early breakthrough and late-time tailing as indicators for anomalous diffusion for all 
breakthrough curves recorded in all the 2D random fields that were generated using fractional Brownian motion. 
𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) indicates the variance in hydraulic diffusivity (e.g. 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟖𝟖 refers to the case where 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) ∈
[−𝟒𝟒, 𝟒𝟒]).  Note that breakthrough curves recorded at a given distance 𝝃𝝃 are for diffusion from left to right while 
breakthrough curves recorded at a given radial distance 𝝆𝝆 are for radial diffusion away from a central point. E and T 
indicate clear early breakthrough and/or late-time tailing in that more than 50% of the breakthrough curve show early 
breakthrough and/or late-time tailing and 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝒕𝒕𝒕𝒕) is sufficiently large. We interpret this as strong indication for 
anomalous diffusion. e and t indicate possible early breakthrough and/or late-time tailing in that more approximately 
50% of the breakthrough curve show early breakthrough and/or late-time tailing and 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝒕𝒕𝒕𝒕) is comparatively 
small. t* indicates possible tailing in the radial diffusion simulations but tailing may be exaggerated because the central 
point is located in a zone with very low hydraulic diffusivity and hence diffusion towards this point is very slow (see 
discussion below). U denotes that early breakthrough and long tailing are absent and diffusion is uniform, i.e. normal, 
such that it can readily be modelled with the mean hydraulic diffusivity of the random field. The first number in the 
parenthesis denotes the number of breakthrough curves showing early breakthrough (EB in Figure 10), respectively late-
time tailing (LT in Figure 10), the second number shows the average 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝒕𝒕𝒕𝒕) for these curves. Refer to Figure 10 for 
the analysis of early and late breakthrough from the breakthrough curves. 

 𝝃𝝃 = 𝟎𝟎. 𝟐𝟐𝟐𝟐 𝝃𝝃 = 𝟎𝟎. 𝟓𝟓 𝝃𝝃 = 𝟎𝟎. 𝟕𝟕𝟕𝟕 𝝆𝝆 = 𝟎𝟎. 𝟐𝟐𝟐𝟐 𝝆𝝆 = 𝟎𝟎. 𝟓𝟓 𝝆𝝆 = 𝟎𝟎. 𝟕𝟕𝟕𝟕 
𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟒𝟒 
𝓵𝓵 = 𝟎𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎 

 
t(8,0.08) 

U U  
t*(7,0.12) 

U U 

𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟒𝟒 
𝓵𝓵 = 𝟎𝟎. 𝟎𝟎𝟎𝟎 

e(10,-0.09) U U U U U 

𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟒𝟒 
𝓵𝓵 = 𝟎𝟎. 𝟏𝟏 

E(10,-0.21) 
t(6,0.11) 

e(7,-0.10) 
t(6,0.15) 

e(10,-0.10)  
t*(5,0.30) 

 
t*(6,0.09) 

U 

𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟖𝟖 
𝓵𝓵 = 𝟎𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎 

E(10,-0.17) 
t(6,0.16) 

e(10,-0.08) 
t(7,0.07) 

e(10,-0.06) 
 

 
t*(6,0.22) 

U U 

𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟖𝟖 
𝓵𝓵 = 𝟎𝟎. 𝟎𝟎𝟎𝟎 

E(10,-0.29) 
t(4,0.21) 

E(9,-0.15) 
t(9,0.07) 

e(10,-0.09)  
t*(5,0.41) 

U U 

𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟖𝟖 
𝓵𝓵 = 𝟎𝟎. 𝟏𝟏 

E(9,-0.64) 
t(5,0.40) 

E(10,-0.29) 
t(6,0.36) 

E(10,-0.25) 
T(10,0.12) 

 
t*(4,0.57) 

 
t*(7,0.19) 

e(10,-0.13) 
t(10,0.09) 

𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟏𝟏𝟏𝟏 
𝓵𝓵 = 𝟎𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎 

E(10,-0.35) 
T(7,0.20) 

E(10,-0.18) 
T(7,0.15) 

E(10,-0.14) 
t(9,0.05) 

 
t*(7,0.34) 

e(6,-0.21) 
t*(7,0.15) 

e(9,-0.10) 

𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟏𝟏𝟏𝟏 
𝓵𝓵 = 𝟎𝟎. 𝟎𝟎𝟎𝟎 

E(10,-0.52) 
T(8,0.27) 

E(10,-0.28) 
T(8,0.14) 

E(10,-0.19) 
t(10,0.08) 

 
t*(5,0.67) 

e(5,-0.16) 
t(6,0.11) 

e(10,-0.09) 

𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟏𝟏𝟏𝟏 
𝓵𝓵 = 𝟎𝟎. 𝟏𝟏 

E(8,-0.92) 
t(5,0.65) 

E(10,-0.40) 
T(8,0.61) 

E(10,-0.43) 
T(10,0.40) 

 
t*(6,0.59) 

 
t*(7,0.50) 

E(10,-0.22) 
t(10,0.22) 

 

Table 2. Analysis of early breakthrough and late-time tailing for all breakthrough curves recorded in all the 2D random 
fields that were generated for an exponential covariance. Refer to Figure 10 for the analysis of early and late 
breakthrough from the breakthrough curves and Table 1 for the definitions of E, T, e, t, and t* as well as the numbers in 
the parenthesis. 

 𝝃𝝃 = 𝟎𝟎. 𝟐𝟐𝟓𝟓 𝝃𝝃 = 𝟎𝟎. 𝟓𝟓 𝝃𝝃 = 𝟎𝟎. 𝟕𝟕𝟕𝟕 𝝆𝝆 = 𝟎𝟎. 𝟐𝟐𝟐𝟐 𝝆𝝆 = 𝟎𝟎. 𝟓𝟓 𝝆𝝆 = 𝟎𝟎. 𝟕𝟕𝟕𝟕 
𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟒𝟒 
𝓵𝓵 = 𝟎𝟎. 𝟎𝟎𝟎𝟎 

U U U e(8,-0.53) U U 

𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟒𝟒 
𝓵𝓵 = 𝟎𝟎. 𝟏𝟏 

E(10,-0.13) 
 

e(9,-0.07) e(10,-0.05) e(5,-0.53) e(6,-0.16) U 

𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟖𝟖 
𝓵𝓵 = 𝟎𝟎. 𝟎𝟎𝟎𝟎 

e(10,-0.10) 
t(6,0.06) 

e(9,-0.05) U e(6,-0.58) 
t*(6,0.09) 

e(6,-0.28) U 

𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟖𝟖 
𝓵𝓵 = 𝟎𝟎. 𝟏𝟏 

E(10,-0.45) 
t(6,0.10) 

E(9,-0.23) 
t(7,0.15) 

E(10,-0.17) 
t(10,0.08) 

e(4,-0.57) 
t*(5,0.12) 

e(6,-0.21) U 

𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟏𝟏𝟏𝟏 
𝓵𝓵 = 𝟎𝟎. 𝟎𝟎𝟎𝟎 

E(10,-0.23) 
t(6,0.08) 

e(9,-0.10) 
t(7,0.06) 

e(10,-0.07) e(6,-0.52) 
t*(6,0.18) 

e(6,-0.33) U 

𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟏𝟏𝟏𝟏 
𝓵𝓵 = 𝟎𝟎. 𝟏𝟏 

E(10,-0.77) 
T(8,0.27) 

E(10,-0.38) 
T(10,0.31) 

E(10,-0.33) 
T(10,0.25) 

e(4,-0.34) 
t*(6,0.22) 

e(6,-0.19) 
t*(6,0.08) 

 
t*(6,0.06) 

 

Table 3. Analysis of early breakthrough and late-time tailing for all breakthrough curves recorded in all the 3D random 
fields that were generated for an exponential covariance on a grid of 𝟏𝟏𝟏𝟏𝟏𝟏 × 𝟏𝟏𝟏𝟏𝟏𝟏 × 𝟏𝟏𝟏𝟏𝟏𝟏. Refer to Figure 10 for the 
analysis of early and late breakthrough from the breakthrough curves and Table 1 for the definitions of E, T, e, t, and t* 
as well as the numbers in the parenthesis. 
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5.2 Examples of Pressure Evolution 
In this section, selected but representative examples are shown that depict the pressure evolution in 
the random fields at different times. These examples serve to explain the nature of early 
breakthrough and late-time tailing and hence the possible origin of anomalous pressure diffusion. 
They also highlight why late-time tailing may be overestimated in the radial diffusion simulations. 

5.2.1 Fractional Brownian Motion with 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) ∈ [−𝟐𝟐, 𝟐𝟐],𝓗𝓗 = 𝟎𝟎. 𝟐𝟐𝟐𝟐   
Early breakthrough is observed in these random fields for simulations where the pressure front 
travels from left to right through the random field (Figure 11). Early breakthrough is caused by areas 
where the hydraulic diffusivity is higher (up to two orders of magnitude) than the mean hydraulic 
diffusivity of log10(𝜂𝜂) = 0. The pressure front advances faster in these areas and hence 𝑝𝑝𝑝𝑝 declines 
at a faster rate compared to the prediction of 𝑝𝑝𝑝𝑝 in a model that assume a uniform hydraulic 
diffusivity (Figure 12). As a result, a large “island”, measuring approximately 25% of the entire model 
domain, emerges where 𝑝𝑝𝑝𝑝 is lower than 𝑝𝑝𝑝𝑝 expected from a model that assumes a uniform 
average hydraulic diffusivity. This low-pressure area is clearly observable until 𝑡𝑡𝑡𝑡~0.5 but the 
difference between 𝑝𝑝𝑝𝑝 and 𝑝𝑝𝑝𝑝uniform, i.e. the pressure predict for a uniform model with log10(𝜂𝜂) =
0, vanishes once the pressure front has reached the right model boundary and  𝑡𝑡𝑡𝑡~1. 

  
Figure 11. Example of a fractional Brownian motion random field with 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) ∈ [−𝟐𝟐, 𝟐𝟐],𝓗𝓗 = 𝟎𝟎. 𝟐𝟐𝟐𝟐  and shifted 
breakthrough curves at 𝝃𝝃 = 𝟎𝟎. 𝟐𝟐𝟐𝟐 for the left-to-right diffusion case. 
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Figure 12. Evolution of 𝒑𝒑𝒑𝒑 (top row) and the difference between 𝒑𝒑𝒑𝒑 in the random field and 𝒑𝒑𝒑𝒑𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮 in a model with 
uniform hydraulic diffusivity of 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) = 𝟎𝟎 (bottom row) at three different times 𝒕𝒕𝒕𝒕 = 𝟎𝟎. 𝟏𝟏, 𝟎𝟎. 𝟔𝟔𝟔𝟔, 𝐚𝐚𝐚𝐚𝐚𝐚 𝟏𝟏. 𝟔𝟔𝟔𝟔 (from left 
to right). Note the different scales. Simulations are for left-to-right diffusion using the random field shown in Figure 11. 

In contrast, simulations that use the same field but model pressure diffusion radially away from a 
single point show no obvious breakthrough and the breakthrough curves (Figure 13). We conjecture 
that this is because of the radially divergent flow where more of the heterogeneity has been 
sampled. However, the variations in hydraulic diffusivity lead, like in the left-to-right diffusion case, 
to large areas where 𝑝𝑝𝑝𝑝 decreases faster than what would be expected from a model that has a 
uniform log10(𝜂𝜂) = 0. Hence large islands emerge where 𝑝𝑝𝑝𝑝 is significantly lower than 𝑝𝑝𝑝𝑝uniform 
(Figure 14). 

  
Figure 13. Example of a fractional Brownian motion random field with 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) ∈ [−𝟐𝟐, 𝟐𝟐],𝓗𝓗 = 𝟎𝟎. 𝟐𝟐𝟐𝟐  and shifted 
breakthrough curves at 𝝆𝝆 = 𝟎𝟎. 𝟐𝟐𝟐𝟐 for the radial diffusion case. 
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Figure 14. Evolution of 𝒑𝒑𝒑𝒑 (top row) and the difference between 𝒑𝒑𝒑𝒑 in the random field and 𝒑𝒑𝒑𝒑𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮 in a model with 
uniform hydraulic diffusivity of 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) = 𝟎𝟎 (bottom row) at three different times 𝒕𝒕𝒕𝒕 = 𝟎𝟎. 𝟏𝟏, 𝟎𝟎. 𝟔𝟔𝟔𝟔, 𝐚𝐚𝐚𝐚𝐚𝐚 𝟏𝟏. 𝟕𝟕 (from left 
to right). Note the different scales. Simulations are for radial diffusion using the random field shown in Figure 13. 

5.2.2 Fractional Brownian Motion with 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) ∈ [−𝟔𝟔, 𝟔𝟔],𝓗𝓗 = 𝟎𝟎. 𝟓𝟓   
To contrast the results from Section 5.2.1, we now show results for a random field with extreme 
heterogeneity. The breakthrough curves for the left-to-right-diffusion case show clear indications of 
early breakthrough and tailing, even at 𝜉𝜉 = 0.75, that is far away from the pressure disturbance 
(Figure 15). As in Section 5.2.1, early breakthrough is due to fast pressure diffusion in areas where 
hydraulic diffusivity is higher than average. This causes regions where 𝑝𝑝𝑝𝑝 decreases faster than what 
would be expected from a model that has a uniform log10(𝜂𝜂) = 0. In addition, the areas with low 
hydraulic diffusivity create islands where 𝑝𝑝𝑝𝑝 is significantly higher than 𝑝𝑝𝑝𝑝uniform. These areas 
cause the late-time tailing in the breakthrough curve as the pressure decreases only slowly in them. 
Due to the low hydraulic diffusivity in this random field, and large areas where hydraulic diffusivity is 
low as ℋ = 0.5, these islands of high pressure persists until 𝑡𝑡𝑡𝑡 ≫ 1 (Figure 16). These areas, 
together with the areas where 𝑝𝑝𝑝𝑝 decreases more rapidly than expected, cause the pressure 
evolution deviates significantly, and for long times, compared to what would be expected from a 
model that has a uniform log10(𝜂𝜂) = 0. Combined with the early breakthrough at late-time tailing, 
the heterogeneous pressure evolution comprise strong evidence that pressure diffusion is 
anomalous in these random fields. 
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Figure 15. Example of a fractional Brownian motion random field with 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) ∈ [−𝟔𝟔, 𝟔𝟔],𝓗𝓗 = 𝟎𝟎. 𝟓𝟓  and shifted 
breakthrough curves at 𝝃𝝃 = 𝟎𝟎. 𝟕𝟕𝟕𝟕 for the left-to-right diffusion case. 

   

   
Figure 16. Evolution of 𝒑𝒑𝒑𝒑 (top row) and the difference between 𝒑𝒑𝒑𝒑 in the random field and 𝒑𝒑𝒑𝒑𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮 in a model with 
uniform hydraulic diffusivity of 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) = 𝟎𝟎 (bottom row) at three different times 𝒕𝒕𝒕𝒕 = 𝟎𝟎. 𝟏𝟏, 𝟎𝟎. 𝟔𝟔𝟔𝟔, 𝐚𝐚𝐚𝐚𝐚𝐚 𝟏𝟏. 𝟔𝟔𝟔𝟔 (from left 
to right). Note the different scales. Simulations are for left-to-right diffusion using the random field shown in Figure 15. 

Early breakthrough appears to be present in the radial diffusion case for these random fields as well 
(Figure 17) and, as in the left-to-right diffusion case, 𝑝𝑝𝑝𝑝 decreases much faster in regions with high 
hydraulic diffusivity but remains high and above 𝑝𝑝𝑝𝑝uniform in regions with low hydraulic diffusivity 
until 𝑡𝑡𝑡𝑡 ≫ 1 (Figure 18). These are strong evidence for anomalous diffusion. Although late-time 
tailing is also apparent in Figure 17, tailing in some random field is caused if the centre point, where 
the pressure is perturbed, is located in a region with very low hydraulic permeability (Figure 19). In 
this case, pressure diffuses radially outwards are a very slow rate, leading to significantly later 
breakthrough in the un-shifted breakthrough curves (Figure 19 and Figure 20) but breakthrough 
curves in these cases appear to be parallel to the breakthrough curve with uniform hydraulic 
diffusivity of log10(𝜂𝜂) = 0. Anomalous diffusion may be absent in these cases. We also note that 
such situations are unrealistic from a production point of view, as wells would not be drilled and 
completed parts of a reservoir where permeability and hydraulic diffusivity are very low. Hence we 
denoted this kind of late-time tailing as t* in Table 1, Table 2, and Table 3 above. 
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Figure 17. Example of a fractional Brownian motion random field with 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) ∈ [−𝟔𝟔, 𝟔𝟔],𝓗𝓗 = 𝟎𝟎. 𝟓𝟓  and shifted 
breakthrough curves at 𝝆𝝆 = 𝟎𝟎. 𝟕𝟕𝟕𝟕 for the radial diffusion case. 

   

   
Figure 18. Evolution of 𝒑𝒑𝒑𝒑 (top row) and the difference between 𝒑𝒑𝒑𝒑 in the random field and 𝒑𝒑𝒑𝒑𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮 in a model with 
uniform hydraulic diffusivity of 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) = 𝟎𝟎 (bottom row) at three different times 𝒕𝒕𝒕𝒕 = 𝟎𝟎. 𝟏𝟏, 𝟎𝟎. 𝟔𝟔𝟔𝟔, 𝐚𝐚𝐚𝐚𝐚𝐚 𝟏𝟏. 𝟕𝟕 (from left 
to right). Note the different scales. Simulations are for radial diffusion using the random field shown in Figure 17. 

  
Figure 19. Example of a fractional Brownian motion random field with 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) ∈ [−𝟔𝟔, 𝟔𝟔],𝓗𝓗 = 𝟎𝟎. 𝟓𝟓  and un-shifted 
breakthrough curves at 𝝆𝝆 = 𝟎𝟎. 𝟕𝟕𝟕𝟕 for the radial diffusion case. Note that in the centre point where the pressure drop is 
applied is located in a region with very low hydraulic diffusivity. Hence pressure will diffuse radially outwards very 
slowly, causing the significantly later breakthrough, and apparent late-time tailing in Figure 17. 
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Figure 20. Evolution of 𝒑𝒑𝒑𝒑 (top row) and the difference between 𝒑𝒑𝒑𝒑 in the random field and 𝒑𝒑𝒑𝒑𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮 in a model with 
uniform hydraulic diffusivity of 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) = 𝟎𝟎 (bottom row) at three different times 𝒕𝒕𝒕𝒕 = 𝟎𝟎. 𝟏𝟏, 𝟎𝟎. 𝟔𝟔𝟔𝟔, 𝐚𝐚𝐚𝐚𝐚𝐚 𝟏𝟏. 𝟕𝟕 (from left 
to right). Note how slow the pressure diffuses radially outwards because the centre point where the pressure drop is 
applied is located in a region with very low hydraulic diffusivity. Simulations are for radial diffusion using the random 
field shown in Figure 19. 

5.2.3 2D Exponential Covariance with 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) ∈ [−𝟒𝟒, 𝟒𝟒], 𝓵𝓵 = 𝟎𝟎. 𝟎𝟎𝟎𝟎   
As an example with intermediate heterogeneity, we present results for random fields with an 
exponential covariance and log10(𝜂𝜂) ∈ [−4,4], ℓ = 0.01. Breakthrough curves for the left-to-right 
diffusion in these fields show some indication of early breakthrough and tailing in the left-to-right 
and radial diffusion cases (Figure 21 and Figure 23), but significantly less compared to the 
breakthrough curves discussed in Section 5.2.2. If these breakthrough curves were to exhibit 
anomalous diffusion could only be quantified rigorously using a CTRW analysis. However, maps 
showing the evolution in 𝑝𝑝𝑝𝑝 in comparison to 𝑝𝑝𝑝𝑝uniform show distinct areas where the pressure 
declines faster or stays compared to what would be expected from a model with uniform hydraulic 
diffusivity of log10(𝜂𝜂) = 0, both for the left-to-right (Figure 20) and radial diffusion case (Figure 22). 
Due to the comparatively short correlation length and the exponential rate at which hydraulic 
diffusivity changed from low to high values, the regions where 𝑝𝑝𝑝𝑝 deviates from 𝑝𝑝𝑝𝑝uniform are small 
and these deviations are short-lived compared to the more heterogeneous random fields discussed 
above. Hence less late-time tailing and early breakthrough is observed. 
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Figure 21. Example of a 2D random field with exponential covariance and 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) ∈ [−𝟒𝟒, 𝟒𝟒], 𝓵𝓵 = 𝟎𝟎. 𝟎𝟎𝟎𝟎  and shifted 
breakthrough curves at 𝝃𝝃 = 𝟎𝟎. 𝟓𝟓 for the left-to-right diffusion case. 

   

   
Figure 22. Evolution of 𝒑𝒑𝒑𝒑 (top row) and the difference between 𝒑𝒑𝒑𝒑 in the random field and 𝒑𝒑𝒑𝒑𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮 in a model with 
uniform hydraulic diffusivity of 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) = 𝟎𝟎 (bottom row) at three different times 𝒕𝒕𝒕𝒕 = 𝟎𝟎. 𝟏𝟏, 𝟎𝟎. 𝟔𝟔𝟔𝟔, 𝐚𝐚𝐚𝐚𝐚𝐚 𝟏𝟏. 𝟔𝟔𝟔𝟔 (from left 
to right). Note the different scales. Simulations are for left-to-right diffusion using the random field shown in Figure 21. 

  
Figure 23. Example of a 2D random field with exponential covariance and 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) ∈ [−𝟒𝟒, 𝟒𝟒], 𝓵𝓵 = 𝟎𝟎. 𝟎𝟎𝟎𝟎  and shifted 
breakthrough curves at 𝝆𝝆 = 𝟎𝟎. 𝟓𝟓 for the radial diffusion case. 
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Figure 24 (Previous page). Evolution of 𝒑𝒑𝒑𝒑 (top row) and the difference between 𝒑𝒑𝒑𝒑 in the random field and 𝒑𝒑𝒑𝒑𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮 
in a model with uniform hydraulic diffusivity of 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) = 𝟎𝟎 (bottom row) at three different times 𝒕𝒕𝒕𝒕 =
𝟎𝟎. 𝟏𝟏, 𝟎𝟎. 𝟔𝟔𝟔𝟔, 𝐚𝐚𝐚𝐚𝐚𝐚 𝟏𝟏. 𝟕𝟕 (from left to right). Note the different scales. Simulations are for radial diffusion using the random 
field shown in Figure 23. 

5.2.4 3D Exponential Covariance with 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) ∈ [−𝟒𝟒, 𝟒𝟒], 𝓵𝓵 = 𝟎𝟎. 𝟏𝟏  
This section illustrates that early breakthrough and late-time tailing also occur, and hence 
anomalous pressure diffusion could be present, in 3D models, given sufficient degrees of 
heterogeneity (Figure 25). As in the 2D cases discussed above, regions emerge where the pressure 
advances faster or slower, depending on the hydraulic diffusivity, compared to what would be 
expected in from a model that has uniform hydraulic diffusivity of log10(𝜂𝜂) = 0. These deviations 
are apparent in both, the left-to-right (Figure 26) and radial (Figure 27) diffusion cases. However, as 
the in the examples above, the breakthrough curves for the radial diffusion case do not show clear 
evidence for early breakthrough or late-time tailing (Figure 27).  

  
Figure 25. Example of a 3D random field with exponential covariance and 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) ∈ [−𝟒𝟒, 𝟒𝟒], 𝓵𝓵 = 𝟎𝟎. 𝟏𝟏  and shifted 
breakthrough curves at 𝝃𝝃 = 𝟎𝟎. 𝟓𝟓 for the left-to-right diffusion case. 
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Figure 26. Evolution of 𝒑𝒑𝒑𝒑 (top row) and the difference between 𝒑𝒑𝒑𝒑 in the random field and 𝒑𝒑𝒑𝒑𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮 in a model with 
uniform hydraulic diffusivity of 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) = 𝟎𝟎 (bottom row) at three different times 𝒕𝒕𝒕𝒕 = 𝟎𝟎. 𝟏𝟏, 𝟎𝟎. 𝟔𝟔𝟔𝟔, 𝐚𝐚𝐚𝐚𝐚𝐚 𝟏𝟏. 𝟔𝟔𝟔𝟔 (from left 
to right). Note the different scales. Simulations are for left-to-right diffusion using the random field shown in Figure 25. 

  
Figure 27. Example of a 2D random field with exponential covariance and 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) ∈ [−𝟒𝟒, 𝟒𝟒], 𝓵𝓵 = 𝟎𝟎. 𝟏𝟏 and shifted 
breakthrough curves at 𝝆𝝆 = 𝟎𝟎. 𝟓𝟓 for the radial diffusion case. 
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Figure 28. Evolution of 𝒑𝒑𝒑𝒑 (top row) and the difference between 𝒑𝒑𝒑𝒑 in the random field and 𝒑𝒑𝒑𝒑𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮 in a model with 
uniform hydraulic diffusivity of 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) = 𝟎𝟎 (bottom row) at three different times 𝒕𝒕𝒕𝒕 = 𝟎𝟎. 𝟏𝟏, 𝟎𝟎. 𝟔𝟔𝟔𝟔, 𝐚𝐚𝐚𝐚𝐚𝐚 𝟏𝟏. 𝟕𝟕 (from left 
to right). Note the different scales. Simulations are for radial diffusion using the random field shown in Figure 27. 

5.2.5 Impact of Grid Refinement in 3D 
To test the impact on grid refinement on anomalous diffusion in 3D, we generated random fields 
using the same parameters, i.e. with ℓ = 0.1 and 0.001 and variations in log10(𝜂𝜂) between [−2,2],
[−4,4] and [−6,6] on a grid of 200 × 200 × 200. Although changes in the shape of the 
breakthrough curves are visible for grids of 100 × 100 × 100 and 200 × 200 × 200 (Figure 29), the 
statistical analysis of the breakthrough curves shows that additional grid refinement has negligible 
impact on anomalous diffusion in 3D (Table 4) when compared to the statistical analysis of the 
simulation results for a grid of 100 × 100 × 100 (Table 3). The variations in early breakthrough and 
late tailing can probably be explained by the differences in the random fields, which were created 
using different seeds (but the same parameters) for both levels of grid refinement. 

 𝝃𝝃 = 𝟎𝟎. 𝟐𝟐𝟐𝟐 𝝃𝝃 = 𝟎𝟎. 𝟓𝟓 𝝃𝝃 = 𝟎𝟎. 𝟕𝟕𝟕𝟕 𝝆𝝆 = 𝟎𝟎. 𝟐𝟐𝟐𝟐 𝝆𝝆 = 𝟎𝟎. 𝟓𝟓 𝝆𝝆 = 𝟎𝟎. 𝟕𝟕𝟕𝟕 
𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟒𝟒 
𝓵𝓵 = 𝟎𝟎. 𝟎𝟎𝟎𝟎 

U U U e(8,-0.29) U U 

𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟒𝟒 
𝓵𝓵 = 𝟎𝟎. 𝟏𝟏 

e(9,-0.11) 
t(7,0.10) 

e(10,-0.06) 
t(6,0.05) 

e(10,-0.05) e(5,-0.55) e(5,-0.09) U 

𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟖𝟖 
𝓵𝓵 = 𝟎𝟎. 𝟎𝟎𝟎𝟎 

e(10,-0.08) 
 

U U e(7,-0.69) 
 

e(7,-0.11) U 

𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟖𝟖 
𝓵𝓵 = 𝟎𝟎. 𝟏𝟏 

E(10,-0.36) 
T(7,0.16) 

E(10,-0.20) 
t(6,0.14) 

E(10,-0.18) 
t(10,0.06) 

e(4,-0.66) 
t*(6,0.11) 

e(5,-0.16) U 

𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟏𝟏𝟏𝟏 
𝓵𝓵 = 𝟎𝟎. 𝟎𝟎𝟎𝟎 

E(10,-0.20) 
 

e(9,-0.10) 
 

e(10,-0.06) e(7,-0.80) 
 

e(7,-0.16) U 

𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(∆𝜼𝜼) = 𝟏𝟏𝟏𝟏 
𝓵𝓵 = 𝟎𝟎. 𝟏𝟏 

E(9,-0.54) 
T(8,0.39) 

E(10,-0.35) 
T(10,0.31) 

E(10,-0.31) 
T(10,0.20) 

e(6,-0.53) 
t*(6,0.32) 

e(6,-0.27) 
t*(7,0.10) 

e(7,-0.07) 
 

 

Table 4. Analysis of early breakthrough and late-time tailing for all breakthrough curves recorded in all the 3D random 
fields and a grid of 𝟐𝟐𝟐𝟐𝟐𝟐 × 𝟐𝟐𝟐𝟐𝟐𝟐 × 𝟐𝟐𝟐𝟐𝟐𝟐 that were generated for an exponential covariance. Refer to Figure 10 for the 
analysis of early and late breakthrough from the breakthrough curves and Table 1 for the definitions of E, T, e, t, and t* 
as well as the numbers in the parenthesis. See Table 3 for comparison with a grid of 1𝟎𝟎𝟎𝟎 × 𝟏𝟏𝟏𝟏𝟏𝟏 × 𝟏𝟏𝟏𝟏𝟏𝟏. 
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Figure 29. Comparison of the shifted breakthrough curve for the radial diffusion case at 𝝆𝝆 = 𝟎𝟎. 𝟓𝟓 with 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝜼𝜼) ∈
[−𝟒𝟒, 𝟒𝟒], 𝓵𝓵 = 𝟎𝟎. 𝟏𝟏 on a grid of 𝟏𝟏𝟏𝟏𝟏𝟏 × 𝟏𝟏𝟏𝟏𝟏𝟏 × 𝟏𝟏𝟏𝟏𝟏𝟏 (left) and 𝟐𝟐𝟐𝟐𝟐𝟐 × 𝟐𝟐𝟐𝟐𝟐𝟐 × 𝟐𝟐𝟐𝟐𝟐𝟐 (right). 

6 Concluding Remarks  
Results from 360 high-resolution simulations (in 2D) and 240 high-resolution simulations (in 3D) that 
model pressure diffusion through random fields with different degrees of heterogeneity show that 
early breakthrough and late-time tailing can be significant if the heterogeneity is large, i.e. if the 
correlation length of the heterogeneity variations is large and/or the variance in hydraulic diffusivity 
is large. Early breakthrough and late-time tailing are strong evidence of anomalous diffusion but a 
unambiguous answer if anomalous diffusion is prevalent is only possible if the breakthrough curves 
are analysed rigorously and quantitatively using CTRW.  

Although breakthrough curves for radial diffusion (i.e. pressure diffusion away from a single point) 
exhibit less early breakthrough and tailing compared to breakthrough curves where the pressure 
diffuses from left to right through the model, both diffusion scenarios can lead to regions of 
significant size in the model where the pressure decreases faster or slower than what would be 
predicted from a model that assumes a uniform hydraulic diffusivity that is equal to the mean of the 
random field. Such regions could correspond to areas where the reservoir compacts faster, 
respectively slower, than what would be expected from a reservoir simulation that uses averaged 
properties (e.g. permeability) at the scale of a reservoir simulation grid block.  

We note that the random fields that have been generated are not using data from a real subsurface 
reservoir and, as a consequence, some of the random fields have up to 12 orders magnitude in 
variation in hydraulic diffusivity. While these variations are larger than the permeability variations 
observed in typical reservoir facies, they may not be unrealistic once the hydraulic diffusivity of non-
reservoir facies (e.g. shales, mudstones) is considered. Although the non-reservoir facies may not 
impact depletion and production directly and may hence be excluded (e.g. in the form of inactive 
cells) in a reservoir simulation model, they will still be affected by changes in reservoir pressure: Our 
simulation results show that the pressure decreases noticeably slower in regions of low hydraulic 
diffusivity while early breakthrough is caused by the regions where hydraulic diffusivity is high.  

Hence both cases, early breakthrough and late-time tailing, could explain why reservoir simulation 
models with average grid block properties may not predict compaction and subsidence at late time 
adequately. When a simulation model is calibrated to production data such that the onset in 
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variations in bottom-hole pressure (and flow rate) is modelled adequately, the simulation model 
could predict that compaction and subsidence occurs on average too fast as either the grid-block 
properties have been increased to capture the early breakthrough or the late-time tailing is 
neglected in the simulation altogether. On the other hand, if the simulation model excludes regions 
with non-reservoir facies that have low hydraulic diffusivity, the slow decrease in reservoir pressure 
in these regions is not captured. Reservoir simulation models that do not represent early 
breakthrough and/or late-time tailing correctly could therefore fail to model that there are regions 
in the reservoir, which as our simulations indicate could potentially be large, where the pressure 
remains high for an extended period. In these regions compaction would always occur at a slower 
rate than what is predicted by a simulation model with (adjusted) average grid-block property, 
especially if the size of the simulation grid blocks is large.  
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