
Maximum power for monitoring programmes 

 

 

 

 

 

 

Texel, April 2009 

NIOZ Royal Netherlands Institute for Sea Research 



 2 



 3 

 

Contents 

 

Summary 6 

 

1. Introduction 8 

2. Methods 10 

3. Results 16 

4. Discussion 20 

5. References 24 

6. Tables 31 

7. Figures 33 

 

8. Appendix: reply to Audit Cie 40 



 4 

 

 

 



 5 

Maximum power for monitoring programmes: optimising sampling 

designs for multiple monitoring objectives 

 

Allert I. Bijleveld1*, Jan A. van Gils1, Jaap van der Meer1, Anne Dekinga1, Casper Kraan1, Henk 

W. van der Veer1 & Theunis Piersma1,2 

 

1. Department of Marine Ecology, Royal Netherlands Institute for Sea Research (NIOZ), 

P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands 

2. Animal Ecology Group, Centre for Ecological and Evolutionary Studies, University of 

Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands 

 

* Correspondence author. allert@nioz.nl, tel.: +31 (0) 222 369382 and fax: +31 (0) 222 319674 

  

Running title: maximum power for monitoring programmes 

Word count: 7,076



 6 

Summary 

1. Spatial data on animal abundance underpin sound conservation and management advice. The 

expense of monitoring programs to determine species distributions and estimates of population 

sizes often limits sample size. For maximum effectiveness at minimal costs, optimisations of 

such monitoring efforts are critical. A monitoring programme can have multiple objectives with 

conflicting demands on the optimal sampling design. Here we develop an optimal sampling 

design for monitoring programmes with such conflicting objectives.  

2. We distinguished three possible objectives: (1) estimation of temporal changes and spatial 

differences in abundance and (2) mapping, i.e. prediction of abundances at unsampled locations. 

Mapping abundances requires model-based analyses using autocorrelation models. Such analyses 

are as good as the model fits the data, therefore, an additional objective was (3) accurately 

estimating autocorrelation model parameters.  

3. To compare sampling designs we used the following criteria: (1) the minimum detectable 

difference in mean between two time periods or two areas, (2) the mean prediction error, and (3) 

the estimation bias of autocorrelation parameters. Using Monte Carlo simulations we compared 

five common sampling designs with respect to these criteria at four levels of – naturally 

occurring – spatial autocorrelation. 

4. The optimal sampling designs for objectives (1) and (2) was grid sampling and for objective 

(3) transect sampling with multiple samples per station and grid sampling with random 

replacements. The optimal sampling design that catered best for all three objectives combined 

was grid sampling with a number of random samples placed on gridlines. This, at 0.5 km 

intervals between grid sampling-stations, is the optimal sampling design we recommend for the 

Wadden Sea intertidal flats.  



 7 

5. Syntheses and applications. Grid sampling with additional random sampling is considered an 

accurate and powerful tool with the largest effectiveness/cost-ratio for monitoring programmes 

that allows for: (1) estimates of population sizes, (2) monitoring of population trends, (3) 

comparisons of populations/trends between years or areas, (4) modelling autocorrelation, (5) 

mapping of species distributions and (6) further understanding of species distribution processes.  

 

Key-words: macrobenthic invertebrates, intertidal, model-based inference, design-based 

inference, spatial autocorrelation, generalised least squares, power analysis, landscape ecology
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Introduction 

Spatially explicit data on animal abundances comprise key data for ecologists and are essential 

for a sound underpinning of conservation and management plans (Underwood, 1997;Krebs, 

2001). Often, spatial data are collected with monitoring programmes in which the abundances of 

one or several species are obtained according to specific sampling designs (Thompson, 1992). 

Monitoring programmes can have one or more objectives such as monitoring population trends, 

impact assessment and mapping of species distributions. Being expensive and labour intensive, 

monitoring programmes are practically constrained by the number of sampling units. With 

smaller sample sizes the accuracy of the estimates (e.g., population size), and thus the power to 

detect significant changes, is reduced (Quinn and Keough, 2005).  

Sampling units from monitoring programmes and field surveys are separated in space, 

and such data typically exhibit a degree of spatial autocorrelation, e.g., sampling units closer 

together are more alike than sampling units further apart (Tobler, 1970;Sokal and Oden, 

1978a;Legendre and Fortin, 1989;Legendre et al., 2002). For the analysis of spatially 

autocorrelated data two statistical frameworks exist: design-based and model-based inference 

(Gregoire, 1998;Little, 2004). In design-based inference one considers the sampled population as 

fixed which makes this framework descriptive and useful for estimating quantities from the 

sample such as the population mean. A requirement for design-based inference is that the 

sampling units are obtained using a sampling design of probabilistic nature such as simple 

random sampling. Model-based inference is independent of the sampling design and – contrary 

to the design-based framework – the population sampled is not regarded as fixed, but as one of 

many possible realisations of an underlying process. Using the model-based framework one tries 

to describe an underlying process which additionally allows for predictions at unsampled 
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locations (Ripley, 1981;Cressie, 1993). The results generated with the two frameworks can 

differ, but – depending on the sampling design – both can be appropriate for analysing 

autocorrelated data (Brus and de Gruijter, 1997;Gregoire, 1998;Haining, 2003;Little, 2004). Here 

we adopted a model-based framework using a spatial autocorrelation model, because we are also 

interested in predicting species abundance at unsampled locations. Moreover, a model-based 

approach has the advantage that the focus is on the underlying process instead of on a single 

realisation of that process. 

Spatial autocorrelation is generally modelled as a declining function of Euclidean 

distance between sampling units (Cliff and Ord, 1981;Upton and Fingleton, 1985). Such 

autocorrelation functions are fitted to field data and can be used to estimate covariance between 

sampling units. In ecology one most often observes positive spatial autocorrelation (Legendre 

and Fortin, 1989) and accounting for positive autocorrelation (i.e. positive covariances) increases 

variance. An increased variance reduces statistical power for comparisons in, for instance, mean 

abundance between two populations. On the other hand, autocorrelation is necessary for accurate 

interpolation of abundances at unsampled locations i.e. mapping (e.g., Koubbi et al., 2006).  

The amount of autocorrelation in the data is partly determined by the sampling design, 

because autocorrelation is a function of distance between sampling units. The optimal distance 

between sampling units is determined by the objective of the monitoring programme, e.g., small 

distance between sampling units for mapping species abundances or large for comparisons of 

abundances between two populations. Some monitoring programmes have multiple and 

conflicting objectives regarding the distance between sampling units. In this case the distance 

between sampling units needs to be optimised between objectives.  
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The Royal Netherlands Institute for Sea Research (NIOZ) has a long term benthic 

monitoring program of which the objective is the detection of temporal and spatial changes in 

abundance from either natural or anthropogenic causes (Piersma et al., 2001;Beukema and 

Dekker, 2006;van Gils et al., 2006a;Dekker and Beukema, 2007;Kraan et al., 2007;van Gils et 

al., 2008). In addition, the mapping of macrobenthic invertebrates should allow predictions on 

the spatial distribution of their predators such as birds, fish and crustaceans (van Gils et al., 

2005;van Gils et al., 2006b). In this study, building on the existing benthic monitoring efforts at 

the NIOZ, we aimed to determine an optimal sampling design for monitoring programmes that 

have multiple objectives with conflicting ideal sampling designs. Comparisons between years or 

areas depend on similar principles of analyses and can be combined into one objective. 

Therefore, we focus on the following objectives: (1) estimation of temporal change and spatial 

differences in abundance, e.g., the difference in abundance between year or area A and B, and 

(2) mapping of abundances. Model-based inference is as good as the model fits the data and 

therefore an additional objective was (3) accurately estimating autocorrelation parameters. 

Comparisons between sampling designs were based on: (1) the minimum detectable difference in 

mean between two time periods or areas, (2) the mean prediction error and (3) the estimation 

bias, i.e. the difference in simulated and estimated autocorrelation parameters. With respect to 

these criteria we compared five sampling designs which are regularly used.  

 

Methods 

GENERAL APPROACH 

Using field data, realistic autocorrelation model parameters were estimated and four extreme 

autocorrelation models selected. These autocorrelation models were then used to simulate 
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autocorrelated data according to different sampling designs and compared regarding the above 

criteria.  

 

FIELD DATA 

From 1996, building on a tradition of station-intensive and transect-based monitoring (Beukema, 

1976;Beukema and Dekker, 2006;Dekker and Beukema, 2007), the Royal Netherlands Institute 

for Sea Research (NIOZ) has monitored population densities of macrobenthic invertebrates 

across 225 km2 of intertidal mudflats in the western Dutch Wadden Sea (Piersma et al., 2001). 

Between July and September each year, one sample was taken at between 1807 and 2762 stations 

in order to achieve large statistical power (van der Meer, 1997). The sample stations were 

arranged according to a grid sampling design with 0.25 km inter-sample distance. Sampling 

stations were located by handheld GPS. At each station a core with a surface area of 1/56 m² to a 

depth of 20-25 cm was collected, washed over a 1 mm mesh sieve and numbers of each species 

were counted. To allow for a comparison between two groups (objectives 1 and 2), the analyses 

were based on the difference in (numerical) densities between two successive years (2005 and 

2006) and restricted to the five most abundant bivalve (Cerastoderma edule, Macoma balthica, 

Mya arenaria, Abra tenuis and Ensis americanus) and worm species (Scoloplos armiger, 

Heteromastus filiformis, Nereis diversicolor, Nephtys hombergii and Lanice conchilega).  

 

STATISTICAL FRAMEWORK  

The Generalised Least Squares (GLS) method is a model-based analysis for spatially 

autocorrelated data as well as for spatial predictions necessary for the three objectives. GLS is 

widely used in spatial statistics (Cressie, 1993) and spatial ecology (see Dormann et al., 2007). 
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Spatial GLS assumes that autocorrelation (i.e. covariance) is a function of Euclidean distance 

between sampling units (Cliff and Ord, 1981;Upton and Fingleton, 1985) and fits such a spatial 

autocorrelation function (SAF) to field data in order to estimate covariance between sampling 

units.  

Autocorrelation, expressed as the commonly used Moran’s I, was calculated for discrete 

distance classes into a correlogram (Sokal and Oden, 1978a;Cliff and Ord, 1981;Legendre and 

Fortin, 1989). A SAF was fitted to the correlogram according to van der Meer & Leopold (1995):  
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Autocorrelation AC was fitted as a continuous function of distance h with b0 being the 

autocorrelation for distances close to zero (local autocorrelation) and b1 denoting the decline in 

autocorrelation with distance (inversely related to the range of autocorrelation). Autocorrelation 

at distance zero is 1 by definition and therefore omitted for estimation of b0 and b1. The 

autocorrelation model was fitted to the distance matrix – which gives pair wise distances 

between all sampling units – and multiplied by the variance of the response variable σ2 to obtain 

an estimate of the variance-covariance matrix Σ (e.g., van der Meer and Leopold, 1995). 

 

SAMPLING DESIGNS 

Five designs were compared: (1) simple random sampling, (2) grid sampling, (3, 4) transect 

sampling (with one or with five sampling units per station respectively) and (5) grid sampling 

with random replacements. (1) Simple random sampling is the most common sampling method 

in ecology (Fig. 1a) and often combined with stratified sampling (e.g., Armonies and Reise, 

2003). (2) For grid sampling, sampling stations are usually equally spaced in a lattice (e.g., 
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Herman et al., 2001) and, in this study,  located in the centre of a grid cell (Fig. 1b). (3) The 

transect sampling design (Fig. 1c) consisted of transects with random starting locations and a 

random heading in which 9 additional stations were equally spaced (comparable to Beukema, 

1976;Yates et al., 1993). (4) Transect sampling with multiple sampling units is a design similar 

to transect sampling, but at each of 10 transect sampling stations an additional four sampling 

units were taken within 400 m2 (comparable to Beukema, 1974). (5) Grid sampling with random 

replacements is based on the “lattice plus closed pair design” by Diggle & Lophaven (2006). 

Similar to grid sampling, sampling units are equally spaced on a grid, but 10% of these stations 

were replaced to a random position on both a vertical and horizontal gridline (Fig. 1d). Replaced 

instead of added to maintain equal sample sizes for between sampling design comparison, and 

replaced onto gridlines, because sampling stations are hereby more easily located in the field 

than is the case for completely random locations, while maintaining some of the statistical 

advantages of random sampling (Diggle and Lophaven, 2006).  

 

DATA SIMULATION 

On a 10 x 10 km surface area, sampling stations were selected according to the different 

sampling designs. The distance between sampling stations (inter-sample distance) was 0.25, 0.5, 

0.75 and 1 km, leading to sample sizes of 1681, 441, 196 and 121 respectively. This coincided 

with an expected averaged distance between sampling units of 0.12, 0.24, 0.36 and 0.45 km for 

simple random sampling (Clarke and Evans, 1954). At a given inter-sample distance, designs 

have different sample sizes. To compare power of sampling designs for each inter-sample 

distance, sampling designs were restrained to the sample size of grid sampling. For example, at 

an inter-sample distance of 1 km the sample size of grid sampling consisted of 11 · 11 = 121 
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sampling units. The sample size of transect sampling is a multiple of the length of one transect 

(i.e. 10 sampling units). To maintain equal sample sizes we truncated the last transect so the total 

sample size equalled that of grid sampling. Sample stations were simulated on the 100 km2 

surface area + 0.5 · inter-sample distances, wherefore the grid sampling stations were located in 

the centre of a grid cell. Sample stations were restricted to this surface area, e.g., starting 

locations of transects were reassigned if any sample station would reach beyond this surface 

area. Therefore, diagonal transects are more likely to occur than transects parallel to the gridlines 

(Fig. 1c). This sampling bias will be large if the surface area is small relative to the inter-sample 

distance (Thompson, 1992). With an inter-sample distance of 1 km, for instance, the length of 

transects would measure the entire 10 km width or length of the surface area. In the field this 

bias also occurs, and as we were interested in field implications of different sampling designs, it 

was accepted as realistic.  

The variance-covariance matrix Σ was calculated with distance between sampling units 

using four extreme, but naturally occurring, levels of autocorrelation, i.e. spatial autocorrelation 

functions. Based on field data estimates of autocorrelation parameters, we modelled either weak 

or strong local autocorrelation (b0) together with either a shallow or steep decline in 

autocorrelation with distance (b1). Each of the four possible combinations of b0 and b1 were 

examined. Spatially autocorrelated response variables were simulated for each sampling design 

and inter-sample distance using Choleski decomposition (Cressie, 1993;Dormann et al., 2007). A 

weight matrix W was derived from the variance-covariance matrix Σ = WT
W, and normally 

distributed, spatially autocorrelated response variables were then calculated by ε = WTξ with ξ 

drawn from the standard normal distribution (µ = 0 and σ2 = 1).  
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COMPARISON CRITERIA OF SAMPLING DESIGNS  

The minimum detectable difference (MDD) between two populations (objective 1) was 

calculated with the variance of the mean se: MDD=√se · (tα,df + tγ,df) and α = 0.05 and γ = 0.20, 

i.e. the minimum detectable difference 80% of the time at a significance level of 0.05 (Quinn and 

Keough, 2005). The mean and variance of the mean were calculated with GLS following Cliff & 

Ord (1981). For detailed calculations see appendix (Appendix S1 in Supplementary Material). 

For comparison with design-based inference (where the existence of auto-correlation is basically 

irrelevant), we additionally calculated the mean and variance of the mean using ordinary least 

squares (OLS). This corresponds to a GLS analyses with b0 = 0 and b1 = 0. Additionally, the 

relative number of independent data points in the autocorrelated sample (i.e. percentage effective 

sample size n*, Griffith, 2005) was estimated by dividing OLS- through GLS-variance. 

A common method for spatial predictions at unsampled locations is kriging (see Ripley, 

1981;Upton and Fingleton, 1985;Cressie, 1993;Haining, 2003). For objective (2) we calculated 

the mean prediction error using ordinary kriging with Y = µ + Z(h) + ε where Y is the interpolated 

response variable, µ is the overall mean, Z(h) is a Gaussian stochastic process with mean zero 

and estimated variance-covariance Σ, and residual variance ε. In effect, the kriging interpolation 

Y is equal to the mean plus a value weighed by Σ. Details on the kriging calculations are 

available elsewhere (Ripley, 1981;Cressie, 1993;Fortin and Dale, 2005;Nychka, 2007).  

For objective (3) we simulated autocorrelated data at the four autocorrelation levels and 

calculated the difference with the estimated autocorrelation parameter values after fitting the 

SAF i.e. estimation bias. The SAF was fitted over 2/3 of the maximum distance between pairs of 

sample units and the width of the distance classes was 1/3 of the inter-sample distance, hereby, 
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the sample size per distance class was at least 10. Autocorrelation parameters were not estimable 

when the SAF could not be fitted or estimates of b0 > 2, b1 > 0 and b1 < −10.  

All analyses followed Monte Carlo simulations in which the above criteria were averaged 

over 1,000 runs. The estimation of the mean prediction error was calculated based on 200 rather 

than 1,000 runs, because of time consuming calculations and small Monte Carlo variance in the 

mean prediction error. For each run we calculated the mean prediction error from 100 randomly 

chosen locations on the 100 km2 simulated surface area.  

 

SOFTWARE 

All calculations and simulations were performed with R v2.6 (R-Development-Core-Team, 

2008). Conversion of longitude and latitude to UTM coordinates were done with the package 

PBSmapping (Schnute et al., 2008), the analysis of spatial data with ncf (Bjornstad, 2006) and 

spatstat (Baddeley and Turner, 2005) and kriging with fields (Nychka, 2007). See Appendix for 

the R calculations (Appendix S1). 

 

Results 

On the basis of 2,695 sampling stations covered both in 2005 and 2006, (numerical) density 

differences between years could be calculated. The data consisted of many zeros and were 

therefore not normally distributed. There are no transformation routines that adequately 

normalize the data, but sample sizes were large enough for the effect of non-normality to be 

small. Moreover, many zero counts do not change the pattern of the correlogram (Bergström et 

al., 2002). 
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FIELD DATA 

For each species, σ2 was estimated and b0 and b1 were estimated from a correlogram (Fig. 2a). 

Parameter estimates for b0 ranged from 0.03 to 0.66 and for b1 from –3.12 to –0.34 (Table 1). The 

mean density differences between 2005 and 2006 for design-based (where the analysis is 

numerically equivalent to OLS) and model-based inference (GLS) were similar, but as predicted, 

SE’s were smaller for OLS than GLS (Table 1). Depending on the level of autocorrelation, the 

relative effective sample size (percentage of independent data points, n*) ranged from 3% to 

28% (Table 1). MDD for OLS varied from 0.9 to 18.8 m–2 compared to 2.0 to 62.7 m–2 for GLS. 

Seven out of ten species showed a significant difference in densities between years for OLS 

compared to two out of ten for GLS (i.e. N. hombergii and L. Conchilega, Table 1).  

 

SIMULATED DATA  

Based on field estimates (Table 1), we used b0 = 0.1 or b0 = 0.5 and b1 = –0.5 or b1 = –3 (Fig. 2b) 

to simulate different levels of spatially autocorrelated data. The combinations of autocorrelation 

parameters approximated C. edule (b0 = 0.32, b1 = –0.76; strong local autocorrelation, long range 

of autocorrelation), A. tenuis (b0 = 0.66, b1 = –3.12; strong local autocorrelation, short range), H. 

filiformis (b0 = 0.13, b1 = –0.58; weak local autocorrelation, long range). None of the selected 

species showed the combination of weak local autocorrelation and a short range.  

 

SIMULATED DATA: MDD 

The level of autocorrelation decreased with increased inter-sample distance, because sampling 

units were increasingly outside each other’s autocorrelation range. Nonetheless, the decrease in 

MDD (i.e. increased power) with inter-sample distance was outweighed by the increase in MDD 
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caused by reduced sample sizes. Therefore, MDD increased for all sampling designs as inter-

sample distance increased (Fig. 3). Grid sampling allowed the smallest MDD for most inter-

sample distances. Simple random and grid sampling with random replacements also provided 

relatively small MDD. Transect sampling and especially transect sampling with multiple 

sampling units consistently showed a larger MDD compared with the other sampling designs. 

Between autocorrelation levels, strong local autocorrelation (Fig. 3a-b) resulted in a large MDD 

compared to weak local autocorrelation (Fig. 3c-d). Additionally, a long range of autocorrelation 

(Fig. 3a and 3c) resulted in a large MDD compared to a short range (Fig. 3b and 3d). The 

differences in MDD between sampling designs were more pronounced for strong local 

autocorrelation over a short range (Fig. 3b).  

 

SIMULATED DATA: KRIGING 

Sample size and the level of autocorrelated data were reduced with an increase in inter-sample 

distance, and therefore, the prediction error increased with inter-sample distance (Fig. 4). With 

decreased autocorrelation, kriging interpolations became less accurate and the prediction error 

more or less approached the simulated variance of 1 (Fig. 4c-d). Grid sampling allowed smallest 

prediction errors for all inter-sample distances (Fig. 4a-d), followed by respectively grid 

sampling with random replacements, simple random sampling, transect sampling and transect 

sampling with multiple sampling units. Between autocorrelation levels, strong local 

autocorrelation (Fig. 4a-b) resulted in small prediction errors compared to weak local 

autocorrelation (Fig. 4c-d). Additionally, a long range of autocorrelation (Fig. 4a and 4c) resulted 

in small prediction errors compared to a short range of autocorrelation (Fig. 4b and 4d). 
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SIMULATED DATA: AUTOCORRELATION PARAMETER ESTIMATES 

The smaller the level of autocorrelated data the less often the autocorrelation parameters were 

estimable (Fig. 5). Moreover, with an increase in inter-sample distance (i.e. reduced levels of 

autocorrelated data) the autocorrelation parameters were more often inestimable than with small 

inter-sample distances (Fig. 5).  

In case the SAF was fitted, the estimate of local autocorrelation (b0) was more accurate 

the smaller the sampling distance (Fig. 6). As inter-sample distance increased b0 was 

overestimated using most sampling designs. Transect sampling with multiple sampling units was 

the most accurate for estimating b0 (which was more pronounced for small b0, Fig. 6 and Table 

2), because multiple sampling units were taken within a small range. Transect sampling with one 

sample, random sampling and grid sampling with random replacements also showed small 

estimation bias (Fig 6 and Table 2). This was especially so for small inter-sample distances and 

large b0. Grid sampling showed the largest bias, because the smallest distance over which b0 can 

be estimated is the inter-sample distance (Fig. 6 and Table 2). Between autocorrelation levels, 

large b0 (Fig. 6a-b and Table 2a-b) resulted in more accurate estimates compared to small b0 

(Fig. 6c-d and Table 2c-d). The steepness of the decline in autocorrelation with distance 

appeared to have little effect on the estimation of b0 (Fig. 6 and Table 2). However, with a small 

range the SAF was less often fitted (Fig. 5). 

With smaller inter-sample distances the estimation bias of the decline in autocorrelation 

with distance (b1) was smaller (Fig. 7 and Table 2). Grid sampling with random replacements 

was the most accurate in estimating b1 followed by random sampling and grid sampling (Fig. 7 

and Table 2). Both transect sampling designs showed the largest bias. A large b1 resulted in 

smaller estimation bias (Fig. 7 and Table 2). 
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Discussion 

DESIGN- AND MODEL-BASED INFERENCE 

The analysis of autocorrelated data without taking the autocorrelation into account is considered 

to be inappropriate (Legendre and Fortin, 1989;Legendre, 1993;Dale and Fortin, 2002;Legendre 

et al., 2002;Liebhold and Gurevitch, 2002;Wagner and Fortin, 2005). Spatial autocorrelation 

causes spatial pseudoreplication which violates the assumption of independent error terms, 

because only a proportion of the sample consists of non-autocorrelated independent data points, 

i.e. the 'effective sample size' (Griffith, 2005). This violation, however, is a misconception (Brus 

and de Gruijter, 1997;Gregoire, 1998;Dorazio, 1999;Little, 2004). In design-based inference 

independence has a different meaning and is determined by the stochastic nature of the sampling 

design, whereas, in model-based inference the independence is determined by the postulated 

model (Brus and de Gruijter, 1997). Like model-based inference, design-based inference can be 

appropriate (i.e. if the assumption of stochastic sampling is met) for the analyses of 

autocorrelated data, but – as was shown here – the results between the two can differ. 

In our study, the estimated mean of design-based (OLS) and model-based (GLS) 

inference were similar, but significance levels differed. Note that we have neglected the fact that 

the data was collected using a grid sampling design and not a formal random sampling design. 

Hence a regularity in the data could have existed which resembled the regularity in the grid and 

would bias OLS estimates. Though such resemblance cannot be ruled out, it is unlikely. OLS 

analysis revealed that seven species significantly changed in abundance between years. By 

contrast, GLS-analysis revealed that two species showed a significant change in abundance 

between years. Both analyses are correct, but fundamentally differ in meaning. From OLS 
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analysis we conclude that the observed changes in abundance between years are significant for 

seven species. With GLS analysis we can conclude that for two out of ten species the underlying 

process that generated changes in population numbers were significantly different. Because both 

frameworks differ in their results, it should be clear which framework has been chosen and 

which hypotheses were tested. Moreover, significance from design-based inference should not 

lead to conclusions on superpopulation level and vice versa.  

The main advantage of the design-based framework for analysing spatially autocorrelated 

data is that no model assumptions of the underlying process are necessary. This contrasts with a 

model-based framework, for which the analyses are as good as the assumed models fit the data. 

We adopted a model-based framework, because it allows for more accurate predictions at 

unsampled locations (i.e. mapping) than design-based inference for which the best prediction is 

the population mean (Ripley, 1981;Cressie, 1993). Additional advantages are that model-based 

inference is independent of the sampling design (i.e. allows for sparse sampling) and that the 

(autocorrelation) model can provide additional biological information (Sokal and Oden, 1978b). 

Spatial autocorrelation can be caused by exogenous and endogenous processes or a combination 

of these (Fortin and Dale, 2005;Wagner and Fortin, 2005). Exogenous processes are independent 

of the variable of interest (e.g., environmental variables) and endogenous processes are caused 

by the biology of the variable of interest such as dispersal (Lagos et al., 2007) and predation 

(Klaassen and Nolet, 2008). A model-based framework to analysing spatial data allows 

quantification of autocorrelation, the possibility of distinguishing exogenous and endogenous 

processes (e.g., Kraan et al. under review-a) and understanding of the mechanisms behind the 

observed spatial distribution (e.g., Bergström et al., 2002;Klaassen et al., 2006;de Frutos et al., 

2007: Kraan et al. under review-b).  
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OPTIMAL SAMPLING DESIGN 

Low levels of autocorrelation resulted in large power to detect changes between years or areas 

(objective 1). This suggests that largest power is obtained if the inter-sample distance exceeds 

the autocorrelation range to minimise autocorrelation in the data i.e. maximise the effective 

sample size. The opposite is true for predicting values at unsampled locations (objective 2) 

where low levels of autocorrelation resulted in increased prediction error. A trade-off between 

objectives exists. Nonetheless, the optimal sampling design for both objectives was grid 

sampling which revealed largest power for objective (1) and the smallest prediction error for 

objective (2). Grid sampling was the optimal sampling design for objective (1), because no 

samples were closer together than the inter-sample distance which reduced autocorrelation in the 

data. And optimal for objective (2), because it is surface-covering and therefore satisfies the 

uniformity condition necessary for accurate kriging (Pooler and Smith, 2005;Marchant and Lark, 

2007). Additionally, other sampling designs showed ‘holes’ in the sampled surface area (Fig. 1). 

In these holes the prediction error was largest which increased mean prediction error even though 

these designs showed higher levels of autocorrelated data.  

 Grid sampling seemed the optimal sampling design for conflicting objectives (1) and (2). 

However, note that in our study we simulated autocorrelated data with known autocorrelation 

parameters. In the analysis of field data these parameters need to be estimated from the data itself 

and how well they fit the data determines the validity of model-based inference (Gregoire, 

1998;Haining, 2003;Little, 2004). Grid sampling provided the largest estimation bias for 

autocorrelation parameters, opposed to transect sampling with multiple samples and grid 

sampling with random replacements, which revealed smallest autocorrelation estimation bias. 
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Opposite grid sampling the latter designs include small inter-sample distances which allow for 

accurate estimates of autocorrelation parameters (e.g., Diggle and Lophaven, 2006). Transect 

sampling with multiple samples was suboptimal for objectives (1) and (2), but grid sampling 

with random replacements performed well on all objectives: similar MDD (objective 1) and 

prediction error (objective 2) as grid sampling, but with more accurate estimates of 

autocorrelation parameters (objective 3). Therefore, grid sampling with random replacements is 

the optimal sampling design for monitoring programmes with similar objectives. 

In this study, we moved 10% of grid sample stations to randomly selected sample 

positions on gridlines to maintain equal sample sizes for correct comparisons between sampling 

designs. Therefore, we lost homogenous surface coverage which increased the prediction error. 

The constraint of equal sample size does not apply in the field and, therefore, the optimal 

sampling design would be surface-covering grid sampling with a percentage (e.g., 10%) of 

sampling stations randomly placed on gridlines additional to the grid design. The grid sampling 

allows for large statistical power in comparisons between years or areas as well as small 

prediction errors at unsampled locations and the additional random sampling allows for accurate 

estimates of autocorrelation parameters. The larger the percentage of random points the more 

accurate the estimates of autocorrelation parameters. 

 

IMPLICATIONS FOR WADDEN SEA MONITORING PROGRAMMES 

Currently, the NIOZ macrobenthic monitoring programmes follow either transect sampling 

(Beukema, 1976;Beukema and Dekker, 2006;Dekker and Beukema, 2007), or non-surface 

covering grid sampling with a inter-sample distance of 0.25 km (Piersma et al., 2001;van Gils et 

al., 2006a;van Gils et al., 2006b;Kraan et al., 2007;van Gils et al., 2008). This study indicates 
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that surface-covering grid sampling with additional random sampling is the optimal sampling 

design for detecting temporal and spatial changes in abundance as well as the mapping of 

macrobenthic invertebrates across the entire Dutch Wadden Sea. Given the surface area of the 

Dutch Wadden Sea, sampling at 0.25 km would inflate sample size beyond what is feasible 

within seasonal and logistical constraints. We, therefore, suggest the inter-sample distance 

should be increased to 0.50 km to allow surface-coverage of the entire western Dutch Wadden 

Sea according a grid sampling design with additional random samples.  
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Table 1. Results from changes in macrobenthic invertebrate densities using design- and model-

based analyses of field data. Estimates from design-based inference (OLS) and model-based 

inference (GLS) are presented for density changes between 2005 and 2006. For each species are 

given: local autocorrelation b0, steepness of decline in autocorrelation with distance b1, mean 

density change (m-2), standard error of the mean (SE; m-2), the minimum detectable density 

difference (MDD; m-2), and the percentage effective sample size n*.  

OLS GLS

SPECIES b 0 b 1 mean (m
-2
) SE MDD mean (m

-2
) SE MDD n* (%)

Cerastoderma edule* 0.32 -0.76 -31.5 3.01 8.4 -21.8 13.85 38.8 5

Macoma balthica* 0.05 -0.50 -4.2 1.39 3.9 -3.2 3.85 10.8 13

Mya arenaria* 0.05 -0.34 -6.1 1.23 3.5 -5.3 4.30 12.1 8

Abra tenuis* 0.66 -3.12 19.7 6.71 18.8 16.3 15.32 42.9 19

Ensis americanus 0.03 -0.42 0.4 0.31 0.9 0.1 0.72 2.0 18

Scoloplos armiger* 0.21 -0.40 -27.0 3.90 10.9 -10.1 22.37 62.7 3

Heteromastus filiformis 0.13 -0.58 -6.0 5.47 15.3 -3.1 20.02 56.1 7

Nereis diversicolor 0.50 -2.11 8.0 3.78 10.6 6.0 10.26 28.8 14

Nephtys hombergii** 0.38 -3.02 14.3 1.40 3.9 14.1 2.66 7.5 28

Lanice conchilega** 0.23 -1.29 -24.5 3.58 10.0 -27.4 9.75 27.3 13

* significantly different from zero with OLS

** significantly different from zero with OLS and GLS    
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Table 2. Estimation bias of autocorrelation parameters. The difference (in %) is given between 

the simulated and estimated local autocorrelation (∆b0) and decline in autocorrelation with 

distance (∆b1). The sampling designs are: transect sampling with either multiple (Transect M.) or 

a single sample per station (Transect), simple random sampling (Random), grid sampling with 

random replacements (Grid Rand.) and grid sampling (Grid). Tables A-D represent different 

levels of autocorrelation: (A) strong local autocorrelation and a long range of autocorrelation, (B) 

strong local autocorrelation and a short range, (C) weak local autocorrelation and a long range 

and (D) weak local autocorrelation and a short range. 

A B C D

simulated value: b0=0.5 b1=-0.5 b0=0.5 b 1=-3 b 0=0.1 b1=-0.5 b 0=0.1 b 1=-3

Sampling design Sample distance (km) ∆b 0  (%) ∆b 1  (%) ∆b 0  (%) ∆b 1  (%) ∆b 0  (%) ∆b 1  (%) ∆b 0  (%) ∆b 1  (%)

Transect.M 0.25 -4 -128 1 -14 -6 -140 4 -19

0.5 -8 -175 4 -24 -5 -202 10 -12

0.75 -8 -209 2 -16 14 -217 26 9

1 -6 -227 1 -1 22 -209 24 27

Transect 0.25 -3 -108 1 -7 -5 -125 11 -18

0.5 -3 -131 8 -15 31 -227 70 -20

0.75 -1 -151 22 -17 131 -294 191 -15

1 9 -158 19 0 210 -321 244 2

Random 0.25 2 -86 2 -6 -1 -107 13 -18

0.5 5 -90 14 -17 36 -168 85 -19

0.75 9 -109 20 -11 162 -273 219 -11

1 17 -117 17 6 233 -273 308 2

Grid Rand. 0.25 1 -88 1 -4 4 -111 15 -11

0.5 4 -91 13 -16 55 -193 85 3

0.75 11 -108 18 -3 162 -247 148 27

1 19 -108 15 17 229 -208 221 35

Grid 0.25 11 -99 7 -8 7 -114 37 -19

0.5 23 -118 27 -3 67 -165 160 8

0.75 55 -148 -9 30 167 -167 229 29

1 82 -136 -8 44 276 -149 757 16  
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A B

C D

 

Fig. 1. The different sampling designs compared in this study. (A) Simple random sampling, (B) 

grid sampling, (C) transect sampling with either one or five sampling units per station and (D) 

grid sampling with random replacements.
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Fig. 2. Autocorrelation as function of distance for field and simulated data. (A) An example for 

fitting autocorrelation (AC) as function of distance (h) from field data for Nereis diversicolor, 

where AC(h) = 0.50 e-2.11h. Note that distance class zero is not included in the fit (see Methods). 

(B) Autocorrelation functions of four simulated levels of autocorrelation with weak or strong 

local autocorrelation (LAC) combined with a shallow or steep decline in autocorrelation with 

distance.
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Fig. 3. Minimum detectable difference for sampling designs at different levels of autocorrelation. 

The minimum detectable difference (MDD) for: transect sampling with either multiple (Transect 

M.) or a single sample per station (Transect), simple random sampling (Random), grid sampling 

with random replacements (Grid Rand.) and grid sampling (Grid). The bottom axis gives the 

distance between sampling stations which is inversely related to sample size (top axis). Each 

panel represents different simulated levels of autocorrelation: (A) strong local autocorrelation 

and a long range of autocorrelation, (B) strong local autocorrelation and a short range, (C) weak 

local autocorrelation and a long range and (D) weak local autocorrelation and a short range. 
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Fig. 4. The mean prediction error of kriging is given for sampling designs at different levels of 

autocorrelation. For an explanation on the x-axis, legend and panels A-D, see caption of Fig. 3.
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Fig. 5. Count of inestimable spatial autocorrelation function (SAF) from 1000 simulation runs 

for different sampling designs at different levels of autocorrelated data. For an explanation on the 

x-axis, legend and panels A-D, see caption of Fig. 3.
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Fig. 6. Estimation bias of local autocorrelation for different sampling designs at different levels 

of autocorrelated data. The difference is given between the simulated and estimated local 

autocorrelation (∆b0). For an explanation on the x-axis, legend and panels A-D, see caption of 

Fig. 3.
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Fig. 7. Estimation bias of decline in autocorrelation for different sampling designs at different 

levels of autocorrelated data. The difference is given between the simulated and estimated 

decline of autocorrelation with distance (∆b1). For an explanation on the x-axis, legend and 

panels A-D, see caption of Fig. 3. 
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Appendix: reply to Audit Cie 

Naar aanleiding van de eerste rapportage (Bijleveld et al. 2009) zijn er een aantal vragen gekomen vanuit 

de Audit Cie. Wij danken de Audit Cie voor hun kritische blik. In deze brief geven wij een reactie op deze 

vragen. In de volgende rapportage zullen we, waar nodig, dieper ingaan op de vragen en opmerkingen van 

de Audit Cie 

 
-       Het manuscript bespreekt, analyseert en concludeert in algemene zin. Nergens wordt 
expliciet aangegeven welke benadering het beste (of goed genoeg) zou zijn voor het meten van 
eventueel effect op de bodemdieren door de onderhavige gaswinning.  
 

Het manuscript houdt zich bezig met de vraag wat de beste plaatsing van monsterpunten is voor het in 
kaart brengen van de verspreiding van macroozoobenthos in de gehele Waddenzee en wat de beste 
ruimtelijke configuratie is om effecten van gaswinning te kunnen bepalen. Er wordt inderdaad niet 
onderzocht hoeveel monsters genomen dienen te worden. De belangrijkste reden is dat wij van mening zijn 
dat een dergelijke analyse niet vooraf gemaakt kan worden. We weten namelijk pas wat de ruimtelijke 
heterogeniteit (patchiness) is van de verschillende soorten en hoe groot de veranderingen zijn tussen de 
jaren, als we daadwerkelijke in de gehele Waddenzee gemonsterd hebben. Zowel heterogeniteit en variatie 
tussen jaren zullen sterk verschillen tussen soorten en dat betekend dus ook dat het aantal benodigde 
meetpunten zal verschillen per soort. Voor zeer zeldzame soorten zou in theorie elk stukje wad onderzocht 
moeten worden. Misschien hebben wij echter een inzicht gemist, en in dat geval hopen we dat de AuditCie 
ons kan helpen deze tekortkoming ongedaan te maken. 

Zelf zijn wij van mening dat met de huidige opzet van het bemonsteringsprogramma in de gehele 
Waddenzee, een goed beeld verkregen zal worden van de ruimtelijke variatie in aantallen en dat eventuele 
effecten van gaswinning aangetoond kunnen worden. Wij zullen de opmerking van de Audit Cie meenemen 
in de volgende rapportage en indien nodig analyses uitvoeren op de recent verzamelde data. Indien nodig 
kunnen we besluiten om aanpassingen aan de huidige bemonstering te maken. 
 
 
-       In de conclusies (p 21/r 14-16) wordt toepassing van een 500 meter grid aanbevolen voor 
de westelijke Waddenzee. Het geeft geen duidelijkheid over de bruikbaarheid van een dergelijk 
grid in het gebied van Moddergat-Lauwersoog-Vierhuizen. 
 
Zie antwoord hierboven. Overigens hebben analyses van een onvolledig 250 m grid in deze gebieden 

aangegeven dat verschillen in dichtheden (van individuele soorten) van 20-40% tussen jaren statistisch 
significant aangetoond kunnen worden. 
 
 
-       Er ontbreekt elke aanduiding betreffende de noodzaak van het meten van de bodemdaling 
en sedimenttype op de gridpunten. Deze informatie lijkt nodig voor een deugdelijke interpretatie 
van eventueel uit de metingen naar voren komende verschillen (ruimtelijk en temporeel). 
  
 
Wij nemen sedimentmonsters voor korrelgrootte typering, en meten geen hoogte. Er is een belangrijke 
reden om sedimentmetingen mee te nemen in de bemonstering. Veranderingen in sedimentsamenstelling 
zullen zich ongetwijfeld voordoen binnen de gaswingebieden. Indien we veranderingen in de 

macrozoobenthos-samenstelling waarnemen binnen het gaswingebied, dan kan dit hopelijk de ecologische 
interpretatie van de gevonden veranderingen in de benthische gemeenschap helpen.  
 
-       Er is geen beschouwing gewijd aan de monstergrootte. De gehanteerde monstergrootte van 
1/56 m2 geeft voor de wat minder talrijke soorten minder betrouwbare gegevens dan voor de 
talrijker soorten. Enig inzicht is gewenst of dit wel of geen p roblemen kan opleveren voor 
toekomstige interpretaties? 
 
Het is inderdaad correct dat een monstergrootte van 1/56 m2 voor de zeldzamere soorten mogelijk minder 
betrouwbare gegevens oplevert. Vanuit een theoretisch oogpunt zou het beter zijn een groter monster te 
nemen. Dit is praktisch echter alleen haalbaar door het totaal aantal meetpunten in de Waddenzee te 

verminderen. Dit echter zal weer leiden tot een kleinere gebiedsdekking en resolutie, met juist weer een 
vergroot risico dat zeldzamere soorten worden gemist. Naar alle waarschijnlijkheid zal er een optimale 
steekproefgrootte en omvang zijn, maar dit optimum kan alleen bepaald worden door ook praktische 
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aspecten (de kosten om de meetpunten te bereiken, nemen en onderzoeken) mee te nemen. Wij 
verwachten dat de Audit Cie ook realiseert dat dit optimum niet (of uiterst moeilijk) te bepalen is. De reden 
om voor 1/56 m2 te kiezen is dat dit in het veld goed uitvoerbaar is EN op deze manier kunnen we direct 
aansluiten op historische gegevens. Deze historische gegevens kunnen ook als een soort t0 optreden, wat 
het onderzoek naar het effecten van gaswinning verbeterd. 
 

 
Wij hopen hiermee in antwoord te hebben gegeven op de gestelde vragen. 
 
Met vriendelijke groeten,  
 
Het NIOZ Synoptic Benthic Sampling (SIBES) team, 
Voor deze, 
Dr Geert Aarts 
 


