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General Introduction 

The magnitudes of the induced earthquakes in the Groningen field are assigned by the official 

seismological service of the Netherlands, which is part of the Royal Netherlands Meteorological Institute 

(KNMI).  

These are local magnitudes, usually represented by the symbol ML. Local magnitude was the first 

modern instrumental scale proposed and, after its author, it is sometimes referred to as Richter 

magnitude. Within the context of the Groningen seismic hazard and risk models, both the seismicity 

model (i.e. recurrence relationships) and the ground-motion prediction equations (GMPE) are being 

developed in terms of local magnitudes, which until now have been assumed equivalent to moment 

magnitude, M.  

In this report the relationship between these two magnitude scales is derived.  This is also important 

when comparing results from Groningen studies with experience and study results for earthquakes 

elsewhere.    
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1. Introduction 

Gas production in the Groningen field in the northernmost part of the Netherlands is 

inducing earthquakes that potentially pose a threat to the built environment and to 

local inhabitants. As part of the response to the induced seismicity, a probabilistic 

seismic hazard and risk model is being developed for the Groningen field. An 

important element of this study is the quantification of earthquake size, which is 

generally expressed in terms of magnitude. There are several scales on which 

magnitude can be measured and these will often yield different values of the 

magnitude for a single earthquake.  

 

 

1.1. Statement of the Problem 

 

The magnitudes of the induced earthquakes in the Groningen field are assigned by 

the official seismological service of the Netherlands, which is part of the Royal 

Netherlands Meteorological Institute (KNMI). These are local magnitudes, which are 

usually represented by the symbol ML. Local magnitude was the first modern 

instrumental scale proposed and, after its author, it is sometimes referred to as 

Richter magnitude (see Section 1.2.1). Within the context of the Groningen seismic 

hazard and risk models, both the seismicity model (i.e., recurrence relationships) and 

the ground-motion prediction equations (GMPE) are being developed in terms of 

local magnitudes, which until now have been assumed equivalent to moment 

magnitude, M (see Section 1.2.2). Although this assumption represents a reasonable 

starting point, for the final hazard and risk models it is considered imperative to 

explore and validate the assumed equivalence of the magnitude scales; if the 

assumption is found not be supported by the available data, then it may be that a 

transformation other than 1:1 will need to be applied to the KNMI magnitudes.  

 

Although it is important, for completeness and for rigour, that the issue of the 

magnitude scales is addressed in detail, it is also worthwhile putting the issue into 

context. The GMPEs are being developed using a combination of stochastic 

simulations—using source, path and site parameter values estimated from 

inversions of the Fourier spectra of recordings obtained in the field—for the median 

predictions and local recordings to constrain the associated variability (expressed as 

the logarithmic standard deviation, generally referred to as sigma). No data are being 

used from other regions—with the possible exception of global models for the so-

called single-station within-event variability and the models for the sigma correction 

due to the use of a point-source assumption (Bommer et al., 2015b; Bommer et al., 

2016)—and there is also no intention to make the GMPEs transportable to any 

application other than the Groningen field. Additionally, comparisons may be made 

with data and models from other regions, and although these are not an essential 

element of the model-building process it is important that such exercises do not 

convey distorted views due to any systematic differences in the magnitude scales. 



2 
 

Moreover, stochastic simulations are at the core of the GMPE development and the 

scaling implicit in such approaches is scaling of ground-motion amplitudes with 

seismic moment (e.g. Boore, 2003). Should the relationship between ML and M have 

a gradient other than unity, then this assumption in the stochastic simulations would 

be invalidated.  

 

The Groningen GMPEs are therefore internally consistent in their use of magnitudes. 

Since the earthquake catalogue from which the recurrence relationships are derived 

is expressed in terms of the same magnitudes as those used to characterise the 

strong-motion recordings, there is also no issue of incompatibility in terms of the 

hazard calculations. The only issue that may be of significance would be if it were 

found that there were a non-linear relationship between ML and M for the Groningen 

field, since this would have implications for the derivation of the Gutenberg-Richter 

(G-R) recurrence parameters: the G-R recurrence relationship is assumed linear and 

in the case of a non-linear relationship between the magnitude scales, this 

assumption would be invalid for one of the scales. Additionally, physically-based 

estimates of the maximum magnitude, Mmax, defined in terms of moment magnitude 

would need to be adjusted to ML if the assumed equivalence were found not to hold.  

 

Notwithstanding that the issue of the magnitude scales is therefore not of 

overarching importance for the Groningen hazard and risk study (although 1:1 

proportionality—rather than equivalence—is a key implicit assumption in the GMPE 

development), we consider it important nonetheless to investigate in detail the 

relationship between local and moment magnitudes in this region. The issue is 

addressed by first reviewing how the two magnitude scales (ML and M) are defined, 

which is covered in Section 1.2. Section 2 then provides a comprehensive review of 

studies that have addressed the relationship between these two magnitude scales, 

including both empirical and theoretical publications as well as examples from other 

seismic hazard analysis projects. Section 3 then explores the specific case of 

Groningen, including an evaluation of local procedures at KNMI to determine 

magnitudes on both of the scales. Conclusions regarding the recommended 

procedures to be adopted for the Groningen hazard and risk assessments are 

summarised in Section 4.   

 

 

1.2. Magnitude Definitions 

 

Earthquake magnitudes provide a quantitative measure of size in terms of either a 

characteristic of the causative fault rupture itself or the energy radiated from this 

source. The two magnitudes that are the subject of this report, the local and moment 

magnitudes, are described in the following sections. 
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1.2.1. Local Magnitude 

The local magnitude scale, also widely known as the Richter scale, is defined by the 

peak displacement on a specific type of seismometer, the Wood-Anderson 

seismometer, at a distance of 100 km from the earthquake. It is effectively a 

measure of the high-pass filtered displacement field resulting from the earthquake. 

The local magnitude scale was originally defined by Richter (1935) using recordings 

of earthquakes in California. He proposed that: 

 

𝑀𝐿 = log10 𝐴 − log10𝐴0 (1) 

 

with 𝐴 the peak amplitude on a x2800 gain Wood-Anderson torsion seismometer in 

mm, and 𝐴0 a correction for attenuation with distance [(log10𝐴0(100 𝑘𝑚) = −3].  

 

The attenuation correction was determined by Richter (1935) for California, using a 

small dataset of recorded events and was limited to an epicentral distance range of 

30-600 km. Boore (1989), using a much larger dataset, showed that systematic 

differences of up to 0.4 magnitude units can be obtained at short distances (0-30 km) 

if no proper attenuation function for the region is derived. Other magnitude scales 

(Ms, surface wave, or mb body wave) were developed to extend the magnitude scale 

to larger distances (> 600km) (Gutenberg and Richter, 1945a, 1945b).   

  

The Wood-Anderson seismometer was commonly used at the time to record regional 

and local seismicity. However, it has a particular feature that has a direct influence 

on the local magnitude. That is the fact that the instrument is only sensitive to ground 

motion displacements above ~1 Hz. Below this frequency, the instrument’s sensitivity 

rapidly diminishes; the seismometer itself therefore acts as a high-pass filter on the 

recorded displacement. The sensitivity of seismometers to ground motion can be 

quantified through the instrument response function, an example of which is given in 

Figure 1. The response of a Wood-Anderson seismometer means that the scale 

saturates for large earthquakes: for increasingly large events, the dominant 

frequencies of ground motion become increasingly small. Beyond magnitude 7 the 

dominant frequencies fall below the high-pass filter effect of the seismometer, 

meaning that the recorded motion does not increase at the same rate as for smaller 

events.  

 

Despite the shortcoming of saturation at large magnitude, the local magnitude has 

been universally adopted as the magnitude of choice for regional earthquake 

observatories because it is easy and fast to calculate. Since the original scale was 

developed in California, where the geologic setting can be vastly different to other 

regions, most seismic observatories recalibrate the attenuation correction based on 

locally recorded seismicity. Whilst this should lead to a consistent magnitude scale, it 

typically does not, with regional differences becoming apparent where seismicity lies 

at the border regions of seismic networks (Fäh et al., 2011). For instance, it is 

common for systematic differences between local magnitudes assigned by different 
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agencies: the French network LDG typically estimates French-Swiss border region 

events to be 0.4 units higher than the Swiss Seismological Service (SED). This is 

due to the simplistic nature of the attenuation correction, lack of consideration of site 

effects and different interpretations of ‘peak Wood-Anderson displacement’. 

 

 

 
Figure 1: Example instrument response function of a Wood-Anderson seismometer. 

 

 

1.2.2. Moment Magnitude  

The moment magnitude is a measure of the size of the seismic moment (𝑀0) of an 

earthquake. The seismic moment has a physical definition that is based on the fault 

ruptre surface area (𝑆) and displacement (𝑑), and the shear-modulus of the material 

(µ): 

 

𝑀0 = µ𝑆𝑑 (2) 

 

Using the Gutenberg and Richter (1956) magnitude-energy relation: 

 

log( Es) = 1.5Ms + 11.8 (3) 

 

and noting that Es (in Joules) could be replaced by a measure of the strain work 

done (W), Kanamori (1977) proposed an extension to the surface-wave magnitude 

that did not saturate due to band-limited recordings:  

 

log (W) = 1.5Mw + 11.8 (4) 

 

Kanamori (1977) showed that under certain assumptions W = 𝑀0/2 × 104, such that 

the magnitude could be directly related to the seismic moment (in dyn.cm): 
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M𝑤 =
2

3
(log10(𝑀0) − 16.1) 

(5) 

 

In SI units, with dyn.cm = 10-7 Nm, the equation becomes: 

 

Mw =
2

3
(log10(𝑀0) − 9.1) 

(6) 

 

Extending this concept by also noticing the concurrence of the equation for ML in 

California (Thatcher and Hanks, 1973), Hanks and Kanamori (1979) defined the 

moment magnitude, uniformly valid from 3 ≲ M ≲ 7, 5 ≲ 𝑀𝑠 ≲ 7.5 and 𝑀𝑤 above as: 

 

𝐌 =
2

3
log10(𝑀0) − 6.07 

(7) 
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2. Overview of Literature 

The following section provides an overview of existing literature on the topic of the 

relationship between local and moment magnitudes.  

 

 

2.1. Studies Based on Empirical Data 

Since both local and moment magnitudes are often directly determined for moderate 

sized earthquakes (4<M<6), there is the opportunity to observe, empirically, the 

relationship between the two. Unfortunately the magnitude range over which both 

magnitudes are available is often rather small due to the fact that moment tensor 

analyses (used to calculate M) require long-period waveforms (e.g., T > 10 s). For 

earthquakes below M = 4, these periods are typically dominated by noise. Some 

studies extend the lower limit of moment magnitude determination using spectral 

analysis techniques. A limitation in this case is that since short-period motions are 

analysed, there is a higher degree of uncertainty and the risk of biased estimates, for 

example due to local site amplification effects. Furthermore, methodological 

differences between approaches can lead to systematic bias in estimated 

magnitudes. 

 

 

 
Figure 2: Comparison of several regional studies between ML and M (;, Fletcher et al., 1984; 
Bolt and Herraiz, 1983; Archuleta et al., 1982; Johnson and Mcevilly, 1974; Thatcher and 
Hanks, 1973; Edwards et al., 2008; Sargeant and Ottemoller, 2009; Bindi et al., 2005; 
Drouet et al., 2008; Margaris and Papazachos, 1999; Roumelioti et al., 2009; Zollo et al., 
2014). 

 

 

There are numerous studies comparing regional ML and M. Often a shortcoming of 

such studies is the limited magnitude range available: regions of low seismicity, such 

as Northern Europe tend to focus on smaller magnitude data, using spectral 

analyses to obtain M from short-period data, while regions of higher seismicity tend 
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not to compute (or provide) moment magnitudes for smaller events. Authors 

therefore often use a simple linear regression (straight line fit) between the two 

magnitudes. Figure 2 shows a collection of such regressions 

 

Authors have, in the past, assumed that M = ML or that M = ML + a. As seen in 

Figure 2, while this is a reasonable average assumption for M > 3: below this M 

tends to be systematically higher than ML. In addition, individual regions show 

significant systematic differences, even for M > 3. 

 

 

 
Figure 3: Moment magnitude data for central California earthquakes (crosses, box for the 
1906 earthquake) and model calculations after Boore (1983) (solid circles, heavy dashed 
line for [the high magnitude] correction (Hanks and Boore (1984) Equation (4)). See Hanks 
and Boore (1984) for data sources. The lightweight dashed line indicates M=ML. (Modified 
after Hanks and Boore (1984), Figure 2) 

 

 

Due to the limits of computing M across a wide range of magnitudes, there are fewer 

studies that span the ‘complete’ range of magnitudes and investigate the magnitude 

dependence of the ML:M scaling. An early example was that of Hanks and Boore 

(1984). They saw the variety of different scaling relations, even in the California 
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region (Figure 2), as evidence that the results depended on the chosen magnitude 

range. They analysed earthquakes between ML = 0 and 7 from a number of sources. 

They observed a curvilinear relationship between M0 (and consequently M) and ML 

(Figure 3). 

 

Grünthal et al. (2009) produced an earthquake catalogue for central, northern, and 

north-western Europe. Based on this they observed a quadratic trend between M 

and ML (Figure 4). Similarly Edwards et al. (2010) used Swiss and border region 

(Italy, France, Austria, Germany) events to develop empirical relationships between 

ML (assigned by SED) and M calculated based on spectral fitting (Figure 5). 

 

 

 
 

Figure 4: A) The updated M–ML relations for central Europe based on data in (Grünthal and 
Wahlstrom, 2003) extended by new data (in total 221 data points; the dashed lines denote 
the 68% confidence bounds). (Figure 2 from Grünthal et al. (2009)). 

 

 

Following Edwards et al. (2010), Goertz-Allmann et al. (2011) expanded the Swiss 

dataset to include events of smaller magnitude, and used moment tensor solutions 

for M where available (Figure 6). They defined a piecewise relationship (which is 

linear to ML = 2, quadratic between ML = 2 and 4, and then 1:1 scaling with M above 

ML = 4) to avoid the problem of sparse data at low and high magnitudes. 
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Figure 5: Plot of all events used to define the scaling relation. The ML error bars indicate the 
standard deviation in ML [σ(ML )] as given by the earthquake catalogue of Switzerland (0.15 
for 1 ≤ ML < 2 and 0.1 for ML ≥ 2). The M–ML error bars are given by (σ2ML + σ2M). The solid 
lines indicate the best model given by eq. (17 [in Edwards et al. 2010]), the dash-dot line 
indicates the old linear scaling relation (eq. 15 [in Edwards et al. 2010]) while the dashed 
lines indicate the scaling relation of Grünthal et al. (2009) [see Figure 4]. (Figure 6 from 
Edwards et al. (2010)). 

 

 

 
Figure 6: Difference between ML and Mw versus ML of three spectral methods and of MT 
inversions by the SED (Clinton et al., 2006) and Braunmiller et al. (2005). The combined 
scaling relation from three different segments is shown (solid line, see Table 1 of Goertz-
Allmann et al., 2011). Open circles show data of method 2, which may be affected by 
saturation. The scaling relation obtained by Grünthal et al. (2009) is also included (dashed 
line). (Figure 4 in Goertz-Allmann et al. (2011)). 
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2.2. Simulation- and Theoretical-based Studies 

 

Deichmann (2006) proved that M ∝ ML in the absence of attenuation and neglecting 

the effect of the Wood-Anderson response. He did this by showing that as the 

seismic moment increases two things happen to the radiated displacement pulse: its 

duration increases, and its peak amplitude increases. The duration of the pulse is 

directly linked to the size of the fault, which can itself be related to the seismic 

moment and the static stress drop. After accounting for the increase in displacement 

pulse duration due to fault growth, it is shown that the peak amplitude must increase 

as 2/3(logM0). Since M also increases with 2/3(logM0), it can therefore be inferred 

that M = ML + C. In practice therefore, assuming suitable calibrated scales, M = ML. 

 

Deichmann’s initial analysis did not explain empirical observations (e.g., Figure 2). 

He argued that this could be to two issues: the effect of anelastic attenuation, or the 

instrument response, both of which were initially ignored. He then provided time-

domain simulations showing the effect of Q and the Wood Anderson instrument 

(Figure 7). Figure 7 shows that for increasingly small M, the difference between ML 

and M increases, just as in the empirical analyses. We further see that for larger 

events (M > 4), the effect of the Wood-Anderson instrument response also causes 

the M versus ML plots to deviate from 1:1 (note the inverted axes compared to other 

plots in this report). 

 

 

 
 

Figure 7: Normalized maximum displacement [log A – log A0 ∝ ML] versus moment 
magnitude. The heavy straight line corresponds to the unattenuated peak amplitude of the 
computed moment-rate functions. The light continuous curves give the expected relative 
amplitudes for the source and attenuation models discussed in the text of Deichmann 
(2006), at distances of 12, 22, 42, 82, and 162 km: (a) only the effect of Q, (b) Q and the 
influence of the Wood- Anderson seismograph, (c) like (b) but normalized to Mw 3. The 
dashed curve in (b) shows the effect of the Wood-Anderson seismograph alone. Figure 3 
from Deichmann (2006). 
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In addition to time-domain simulations, random vibration theory (RVT) can be used 

to simulate the response of a Wood-Anderson seismometer to input ground motion. 

This was the method used by Hanks and Boore (1984, circles in Figure 3) to explain 

the curvature of the ML:M data observed in their empirical analysis. Edwards et al. 

(2010) showed a number of examples (e.g., Figure 8) using this approach, with 

different input ground motion (defined by the M, stress-drop and Q). They showed 

that the form of the curvature was explained by different Q values (or equivalently 

site κ0) at the low magnitude range, with the shape in the high-magnitude range (M > 

5) defined by the stress-drop. 

 

 

 
 
Figure 8: Synthetic ML–M scaling relations based on the Bay et al. (2003, 2005) studies 
along with the adjusted Bay et al. (2005) gridsearch results. ML values are computed for a 
range of distances, resulting in the observed scatter. Third degree polynomials are fit to the 
data to highlight the trend. The observed ML–M scaling relation is included for comparison. 
Figure 8 of Edwards et al. (2010). 

 

 

Both simulation analyses of Deichmann (2006) and Edwards et al. (2010) support 

the conclusion of Hanks and Boore (1984) that the scaling of ML and M is due to a 

complex interaction of the earthquake source, wave-propagation and the response of 

the Wood-Anderson seismometer. 

 

 

2.3. Approach in Previous Projects 

Several hazard projects over the last decade have faced the issue of magnitude 

scaling. In the following sections the approach taken in these studies is briefly 

summarised. 
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2.3.1. PEGASOS/PRP 

The PEGASOS Project (Probabilistic Seismic Hazard Analysis for Swiss Nuclear 

Power Plant Sites) was set up to assess the seismic hazard at nuclear power plant 

sites in Switzerland. As part of the project an update of the national earthquake 

catalogue was made (ECOS02: Earthquake catalogue of Switzerland, 2002), which 

in the case of no direct measure of M used a simple relation between ML and M: 

  

𝐌 = ML − 0.2 (8) 

 

This was based on analysis of a catalogue of moment tensor based M and 

corresponding ML in and around Switzerland (Braunmiller et al., 2005).  

 

A subsequent project, which aimed to refine the results of the PEGASOS Project 

(the PEGASOS Refinement Project, or PRP), was undertaken between 2007 and is 

currently under review by the regulator. As part of the project a revised earthquake 

catalogue was compiled (ECOS09). For this catalogue M was again assigned based 

on a scaling relation with ML, but now using the curvilinear form of Goertz-Allmann et 

al. (2011): 

 

𝐌 = 0.594ML + 0.985 

𝐌 = 1.327 + 0.253ML + 0.085𝑀𝐿
2 

𝐌 = ML − 0.3 

 

𝑀𝐿 < 2 

2 ≤ 𝑀𝐿 ≤ 4 

𝑀𝐿 > 4 

(9) 

as discussed in Section 2.1. Whereas—based on the empirical analyses—the 

PEGASOS values would have systematically underestimated M for increasingly 

small values, using this curvilinear function in PRP/ECOS09 M estimates were 

considered valid to small magnitudes (M ~ 1.5). Unfortunately this brought to light a 

related issue: that if the Gutenberg-Richter (1944) (G-R) recurrence model (a linear 

fit to the logarithm of the cumulative number of events versus magnitude) is valid for 

ML, then it is not (due to the curved scaling) valid on M, or vice-versa. Over regional 

scales, ML does seem to follow (statistically) the G-R model over a wide range of 

magnitudes, which opens the question of its suitability for predicting M, and 

additionally its physical basis. In order to overcome this issue, the a- and b-values in 

PRP were again calculated using only M greater than a selected value (as chosen by 

individual evaluator experts); the aim being to avoid the curved-region of the 

magnitude scaling function. 

 

2.3.2. CEUS-SSC 

The Central Eastern United States Seismic Source Characterization for Nuclear 

Facilities (CEUS-SSC) project developed a homogenised earthquake catalogue for 

the central and eastern US region (USNRC, 2012). The catalogue contained 

relatively few ML and M pairs (Figure 9) but they did observe that “the trend of the 

data on [Figure 9, this report] displays the typical flattening of slope at the lower 

magnitudes.” In order to avoid this issue, to “minimize the influence of this flattening 
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on the estimation of M in the range of interest, the data below ML 3.5 were not used 

in fitting the [ML versus M] model.” 

 

Additionally, in order to convert ML to M the authors propose a number of different 

approaches depending on the data source and depending on the availability of data, 

for example: 

 

 For events in the north-east region, it was assumed that ML = Mc, where Mc is 

the coda magnitude. 

 ML magnitudes reported by the Southern California Seismic Network (SCSN) 

are equivalent to the MC magnitudes reported by SCSN. 

 ML magnitudes reported by the Advanced National Seismic System (ANSS) in 

the vicinity of New Madrid are equivalent (with minor exception) to MD 

(duration magnitude) reported by the Center for Earthquake Research and 

Information (CERI) for MD > 3. 

 
These converted magnitudes were then in turn converted to M through more robustly 
determined conversion equations. This procedure, nevertheless added significant 
uncertainty, with standard errors of 0.3 to 0.4 magnitude units. 
 

 
Figure 9: ML:M data from the CEUS SSC Project catalog and robust regression fit to the 
data. (Figure 3.3.22 from the CEUS SSC Final Report (USNRC, 2012)) 
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2.3.3. Thyspunt PSHA 

The Thyspunt PSHA Project was a site-specific hazard analysis for a South African 

nuclear power plant site. As part of the project a homogeneous earthquake 

catalogue was compiled, with magnitude in M. In order to provide estimates of M 

where direct measures were unavailable, conversion equations were developed 

(Strasser, 2013). Since a wide range of magnitudes were available with both M and 

ML, she developed a South Africa specific equation. The equation was developed 

giving strong preference to fitting the larger events with available moment tensors, 

whilst avoiding sharp jumps. This led to a correction that tends to systematically 

overestimate M for a range of magnitudes (3 to 4). However, the PSHA was only 

carried out for Mmin = 5 (Bommer et al., 2015a) so this was not considered relevant. 

 

 

 
Figure 10: M versus ML for South African earthquakes using a number of approaches along 
with the ML:M conversion equations of other authors and the model used for South Africa 
(red line). (Figure 4 of Strasser (2013)) 
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2.3.4. SHARE 

The Seismic Hazard Harmonization in Europe (SHARE) Project developed an 

earthquake catalogue for the European region. Due to the diversity of data sources 

(individual country seismic networks and observatories) different conversions were 

applied to ML to obtain M. The conversions are too numerous to describe in detail in 

this context, but can be found in Grunthal and Wahlstrom (2012) and Grunthal et al. 

(2013). The majority of conversions from ML relied on a linear scaling of the general 

form M = aML + b, for example: 

 

𝐌 = 0.65𝑀𝐿 + 1.90 

𝐌 = 1.31𝑀𝐿 − 1.44 

𝐌 = 𝑀𝐿 

𝐌 = 0.906𝑀𝐿 + 0.65 

𝐌 = 0.0376ML
2 + 0.646𝑀𝐿 + 0.53 

Caucasus/Eastern Turkey 4 ≤ 𝑀𝐿 ≤ 7 

France (LDG) 𝑀𝐿 < 4.65 

France (LDG) 𝑀𝐿 ≥ 4.65 

Italy (INGV) 

Bulgaria 

(10) 

 

  



16 
 

 

3. The Groningen Case 

 

Since the north of the Netherlands was apparently aseismic before the first induced 

event was recorded in the region, no local magnitude calibration was carried out. 

Only one short-period station (WIT) was in operation in the region since 1972 as part 

of the KNMI network. Since 1988 a monitoring network was built-up in two stages: 

the first one as a small aperture array around the city of Assen consisting of short-

period vertical sensors located at the surface. Its purpose was to monitor only one 

small gas field. In a second stage a network of 3-component sensors located in 

boreholes was installed in 1995, replacing and extending the first array (Dost and 

Haak, 2007). In addition to the borehole monitoring network, a surface network was 

added consisting of accelerometers. Data from this network was used to calculate 

moment magnitudes.  

 

 

3.1. Local Magnitude 

 

The Assen network enabled a first determination of an attenuation curve for the 

region. Haak et al. (1992) measured the peak amplitude of the P-onset. Peak 

amplitudes were measured in counts and no instrument correction or simulation of a 

Wood-Anderson seismograph was applied. An attenuation curve was constructed of 

the form: 

 

e R c = (r)A
R--1

0
   (11) 

 

with c= 5500 counts, = 0,005 km-1 , assuming that geometrical spreading behaves 

as 𝑅−1, with 𝑅 the hypocentral distance; this is assumed to be only valid for the 

instrumentation around Assen. This curve was constructed on the basis of an 

analysis of four events of magnitude 2.2 to 2.7 at epicentral distances between 5 and 

50 km. The magnitude of the largest events was determined by stations in the 

southern part of the Netherlands.  

 

In 1991 an experimental borehole station FSW was installed with four levels of 3-

component geophones at 75m vertical spacing and data from a level at 225 m depth 

were used to determine magnitudes. The previous attenuation curves were 

extrapolated and used in interpretation of the borehole data, without further 

calibration since the dataset at that time was too small. Since 1995, eight borehole 

stations have been in operation in the region and the dataset has rapidly expanded, 

so a real calibration became possible. 

 

Following Kanamori et al. (1993) the attenuation function was modelled using the 

function q(R): 
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𝑞(𝑅) = 𝑐 𝑅−𝑛𝑒−𝛼𝑅     (12) 

 

which includes effects of geometrical spreading, attenuation, reflection and refraction 

and scattering and is regarded as a reasonable description for short distances. Since 

there are existing estimates of ML, based on the attenuation curve of Haak et al. 

(1992), a search was conducted for values of parameters c, n and   by minimizing 

the function  

 

 

M
N

1
 = M

  | )Rq( -M-A   = 

L

N

j

L

jLji,

M

i

N

j

ji,i

i









1

2

11

loglog|

 

(13) 

 

where index i refers to the event and j to the recording station and A is the Wood-

Anderson simulated amplitude (half peak-to-peak). 

 

There is a trade-off between n and  , which was noted by several authors  (e.g. 

Bakun et al., 1984; Savage et al., 1995). A grid search was carried out. After an 

initial estimate of the attenuation function, new values for ML are calculated and a 

new minimization is performed to refine the estimate of the attenuation function. It is 

important to realize that amplitudes are measured at the deepest level in the 

boreholes at 200 m depth, with the exception of FSW (225 m depth). Based on a 

dataset of 157 records, recorded in 1995 and the first half of 1996, minimization of 

Equation (13) led to:  

 

log10𝐴0  = -1.33 log(𝑅) - 0.00139 𝑅 - 0.424    (14) 

 

The first term implies that geometrical spreading is more significant than the usual 

assumed 1/𝑅 and from the second term an average Q = 280*f  (for β=3.5 km/s) can 

be derived (Bakun et al., 1984). The attenuation function applies to a larger region 

than only the Groningen area, since the network covers also many small gas-fields. 

 

Equation (14) was used in determination of the local magnitudes. It was not updated 

after more records became available. Figure 11 shows the variation with respect to 

the average magnitude. For distances less than 10-15 km a distance dependence is 

observed and a correction of the attenuation relation may be considered as also 

found in other regions (e.g., Edwards et al., 2015). 
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Figure 11. MLj - ML for events recorded in the period 2010-2015 as a function of distance. 

 

    

3.2. Moment magnitude 

 

Seismic moment, Mo, can be derived from the spectra of P and S waves. In this 

report the focus is on S waves. The S-wave displacement spectrum A(f) recorded in 

one station can be written as the product of a source term, Ω(𝑓), an attenuation 

term, 𝐷(𝑅, 𝑓) and a site effect term, 𝑆(𝑓): 

 

𝐴(𝑓) = Ω(𝑓)𝐷(𝑅, 𝑓)𝑆(𝑓)    (15) 

 

Where 𝑅 is the hypocentral distance, 𝑓 is frequency. As a source model the Brune, 

(1970, 1971) model is chosen, modified by Boatwright (1978): 

 

Ω(𝑓) =
Ω0

(1+(
𝑓

𝑓𝑐
)

ɣ𝑛
)

1/ɣ     (16) 

 

Abercrombie (1995), de Lorenzo et al. (2010) and others found that ɣ=2 and n=2 

produces a better model for spectra of nearby earthquakes compared to the 

standard Brune model with ɣ=1 and n=2. One test of model fit to the Groningen data 

showed that this also applies to the current dataset. It is important to note, however, 

that overall the performance of the two source spectrum models are comparable and 

there is not a compelling reason to select one over the other, as discussed in the 

Appendix. The low-frequency spectral level Ω0 can be expressed in terms of seismic 

moment 𝑀0: 

 

Ω0 =
2𝛷

4𝜋𝜌0

1
2𝜌𝑠

1
2𝑣0

1
2

𝑣𝑠

5
2

𝑔(𝑅)𝑀0     (17) 
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where 𝛷 denotes the average radiation, which is taken as 0.55 for shear waves 

(Boore and Boatwright, 1984), ρs the density at the source (2600  g/cm3) and ρ0 

density at the surface (2100 g/cm3), 𝑣𝑠 the shear velocity at the source (2009 m/s, 

pers. comm. Remco Romijn) and 𝑣0 shear velocity at the surface (200 m/s). The 

free-surface effect is introduced as a factor of 2, which is exact for near vertical 

incoming SH waves and in general a reasonable estimate for vertical incoming SV 

waves. The function 𝑔(𝑅) describes the geometrical spreading and will be discussed 

later. Attenuation along the path from source to receiver involves anelastic decay 

(e.g., Drouet et al., 2010) and high-frequency damping: 

 

𝐷(𝑟, 𝑓) = 𝑒
−

𝜋𝑅𝑓

𝑄 𝑣𝑠𝑎  𝑒−𝜋𝜅𝑓 = 𝑒−𝜋𝑓𝑡∗
     

(18) 

 

with 𝑡∗ =  
𝑅

𝑄𝑣𝑠𝑎
+ 𝜅0 

 

where 𝑣𝑠𝑎 is the average shear velocity between source and receiver. 𝑄 is the 

damping parameter and in these calculations assumed to be frequency independent. 

S(f) is the site effect. Combining Equations (15) to (18), the S-wave spectral 

displacement can be written as: 

 

𝐴(𝑓) = Ω0
𝑆(𝑓)

(1+(
𝑓

𝑓𝑐
)

4
)

1/2 𝑒−𝜋𝑓𝑡∗
     (19) 

 

A grid search was carried out to determine the best fitting parameters for fc, t* and Ω0 

and calculate M0. This grid search was carried out using a minimization function: 

 

𝜎2 =
1

𝑁
∑|log (𝐴𝑜𝑏𝑠(𝑓𝑗)) − log (𝐴𝑐𝑎𝑙𝑐(𝑓𝑗))|

2
𝑁

𝑗=1

 
(20) 

 

For each event, the spectrum of each station is processed separately, since this will 

give insight in the variability of the estimated parameters. Moment magnitude is 

calculated using Equation (6) where: 

 

𝑀0 =
4𝜋𝜌0

1/2
𝜌𝑠

1/2
𝑣𝑠

5/2
𝑣0

1/2

2Φg(R)
Ω0     

(21) 

  

This formulation assumes that S(f)=1, with frequency-independent amplification 

included in Equation (21) by accounting for the impedance contrast between the 

source and site.  
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3.3. Data and processing  

 

The Groningen accelerometer network has developed over the years from a sparse 

stand-alone triggered system to a dense continuous recording system. The former 

consisted of SIG SMACH instrumentation (Dost and Haak, 2002), while the latter is 

equipped with Kinemetrics Episensor accelerometers and Basalt dataloggers. The 

triggered systems provide output in cm/s2, while the Episensor data needs a 

conversion from digital counts. This conversion factor is 4.7684e-7 g/C and the 

response is flat for acceleration within the frequency range of interest (about 0.2 to 

10 Hz although for risk analyses the dominant range is more like 2-10 Hz). 

 

The data processed in this report have been recorded in accelerometer stations of 

the Groningen network. Data are sampled at 5 ms time intervals and recorded in real 

time as continuous mini-seed volumes and transferred over the Internet using the 

seedlink protocol. A time window of 512 samples (2.56s) around the S-onset was 

selected for processing. A Hanning window was applied prior to the Fourier 

transformation. Based on the signal-to-noise ratio of most records, the frequency 

range used to fit the measured spectra to the model is limited to 1-30 Hz (e.g., 

Figure 12). 

 

 

 
Figure 12: Example of processing. Top: acceleration data (east-west and north-south); 
Middle: Fourier spectrum (blue), model fit (red) and noise (green), logarithmic frequency 
axis. Bottom: same as middle, now showing a linear frequency-axis. 
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The geometric mean of the spectra of the horizontal components is used in this 

analysis, compatible with the development of the ground motion prediction equation 

(GMPE) for Groningen (Bommer et al., 2016). In the process of spectral fitting a 

strong correlation between corner frequency, fc, and attenuation, t*, is observed. The 

estimate of the low-frequency part of the spectrum, Ω0, is much more stable and is 

the only parameter required for calculation of M. 

 

 

3.4. Geometrical spreading 

 

In Equation (17) the geometrical spreading is usually assumed to be well described 

by a simple g=1/R relation. However, in the attenuation relation derived for the ML 

calculation, a higher attenuation was found g= R-1.33. For magnitude calculations this 

parameter is of crucial importance. Drouet et al. (2005) modeled geometrical 

spreading by: 

 

𝑔(𝑅) =
1

𝑅0
(

𝑅0

𝑅
)ɣ   (22) 

 

Where R0 is equal to a reference distance. Since for the low-frequency part of the 

spectrum: 

 

log (𝐴(𝑟, 𝑓 → 0)) =log(
2𝛷𝑀0

4𝜋𝜌0
1/2

𝜌𝑠
1/2

𝑣𝑠
5/2𝑣0

1/2)+ log(𝑆(𝑓 → 0)) − ɣlog (
𝑅

𝑅0
)   (23) 

 

The parameter ɣ can be estimated from the distance dependence of measured Ωo 

values. In this procedure R0 = 1000 m. For the determination of an average 

geometrical spreading factor for Groningen, events of different magnitudes are 

compared by normalizing the logarithm of the low-frequency part of the spectrum 

with the logarithm of the averaged seismic moment for each event. Results are 

shown in figure 13. Linear regression gives an average geometrical spreading factor 

ɣ= 1.9. 

 

A major source of error in these measurements is the effect of the radiation pattern 

and a possible site effect. Therefore, comparison with model calculations is 

important.  

 

Results from finite difference, isotropic wave equation modelling (Bommer et al., 

2015b) are shown in Figure 14. A clear difference in geometrical spreading is 

observed for the hypocentral distance range 3-7 km and 10-14 km. It should be 

noted that this modelling is performed for elastic media. The average geometrical 

spreading derived from the normalized low-frequency spectra is in line with the 

modelling results.  
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Figure 13. Distance dependence of the normalized low frequency spectral level for 
Groningen events listed in Table 1 

  

 

 
 
Figure 14. PGV as a function of distance for the Groningen area near Zeerijp (Bommer et al., 
2015b). Binned data is shown in blue, average values in green. Fits to particular distance 
ranges are shown along with the 1/R line for reference. Figure courtesy of Ewoud van 
Dedem. 
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For all events a general ɣ= 1.9 is used for each station in the calculation of M. 

However, for the Garmerwolde event (2014-09-30), with location in the south-west 

part of the field, this choice for geometrical spreading results in a clear increase of 

magnitude with distance.  For this event, only recordings obtained at epicentral 

distances < 10 km have been used in the analysis. 

 

 

3.5. Stress-drop 

 

Since the stress-drop may be of influence on the magnitude relation, Brune’s stress-

drops are calculated using the relation: 

 

∆𝜎 =  
7

16
𝑀0(

𝑓𝑐

0,37𝑣𝑠
)3    (24) 

  
A stable estimate of the corner frequency for each event is essential in the 

calculation of the stress-drop. Since there are not many collocated events, the use of 

a method based on Empirical Green’s functions (Viegas et al., 2010) could not be 

applied. We followed the authors in their approach to perform an individual spectral 

analysis determining the uncertainty range in fc by a variance increase of 5%, 

keeping Ωo and t* as free parameters in the fit. For each event, data were selected 

from one station which showed the least complicated waveform and did have a 

corner frequency around the average observed. 

   

 

3.6. Results 

 

3.6.1 Relation ML-M 

A total of 34 events, listed in Table 1, have been processed to calculate M and 

compare these values to measured ML. In general the uncertainties in ML are larger 

than uncertainties in M. This may be caused by the fact that the original borehole 

network has a large inter-station distance (on average 20 km), while covering a 

heterogeneous upper crustal structure. The distance between the accelerometer 

stations is less and, being located at the surface, include the influence of the 

heterogeneous upper 200m.  

 

Results from this limited dataset show for ML > 2.5 a trend parallel to the line M=ML, 

at an offset around 0.2 magnitude units (Figure 15). For ML<2.5 this trend seems to 

vanish, although the dataset is still small.  

 

Figure  shows the results for Groningen in a plot similar to Figure 5 and Figure 6  to 

facilitate comparison. The uncertainties on both M-ML and ML are shown as error 

ellipses. Assuming a linear relation between the two parameters, the best fitting 

curve has been calculated, based on the method developed by York et al. (2004):  
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𝑴 − 𝑀𝐿 = 𝑏𝑀𝐿 + 𝑎 
 

(25) 

with a= 0.327 ± 0.186 and b= -0.169 ± 0.071. 

 

 

 
Figure 15. Moment magnitude M as a function of local magnitude ML 

 

 

 
Figure 16. M-ML as a function of ML for the events listed in table1. Uncertainties are shown 
as ellipses. A linear regression for ML > 2.5, taking into account uncertainties in both 
parameters, is shown in red. 
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Limiting the dataset to ML>2.5, which is the lowest magnitude considered in 

probabilistic seismic hazard analysis for Groningen, the regression parameters 

become a = -0.084 ± 0.560 and b=  -0.035 ± 0.181, which can be approximated for 

magnitudes 2.5<ML<4 by: 

 

M= ML-0.2          (26) 

 

 

Table 1. Events used in the M-ML calculations with their corresponding magnitudes 

 
yymmdd time lat lon ML M Name # rec 

060808 05:04:00.1 53.350 6.697 3.5 ± 0.1 3.2 ± 0.2 Westeremden 4 

081030 05:54:29.1 53.337 6.720 3.2 ± 0.1 2.8 ± 0.2 Westeremden 6 

090414 21:05:25.9 53.345 6.680 2.6 ± 0.2 2.6 ± 0.1 Huizinge 3 

090508 05:23:12.0 53.354 6.762 3.0 ± 0.2 2.6 ± 0.1 Zeerijp 5 

110119 19:39:31.7 53.319 6.645 2.4 ± 0.2 2.2 ± 0.1 Westerwijtw. 4 

110627 15:48:09.6 53.303 6.787 3.2 ± 0.3 3.3 ± 0.2 Garrelsweer 8 

110831 06:23:57.2 53.444 6.687 2.5 ± 0.3 2.6 ± 0.1 Uithuizen 3 

120816 20:30:33.3 53.345 6.672 3.6 ± 0.1 3.4 ± 0.1 Huizinge 7 

130119 20:10:06.5 53.285 6.790 2.4 ± 0.2 2.6 ± 0.1 Overschild 3 

130207 23:19:09.0 53.389 6.667 3.2 ± 0.3 2.8 ± 0.1 Zandeweer 3 

130702 23:03:55.5 53.294 6.785 3.0 ± 0.2 2.9 ± 0.1 Garrelsweer 2 

130904 01:33:32.1 53.344 6.772 2.8 ± 0.1 2.7 ± 0.1 Zeerijp 5 

140213 02:13:14.3 53.357 6.782 3.0 ± 0.2 2.9 ± 0.2 Leermens 14 

140311 09:08:23.4 53.228 6.822 2.3 ± 0.2 2.3 ± 0.3 Schildwolde 5 

140318 21:15:18.3 53.390  6.618 2.1 ± 0.3 2.2 ± 0.2 Rottum 6 

140702 17:34:16.7 53.214 6.790 2.1 ± 0.2 2.2 ± 0.1 Slochteren 5 

140809 15:55:32.9 53.325 6.835 2.0 ± 0.3 2.1 ± 0.2 Oosterwijtwerd 6 

140901 07:17:42.9 53.194 6.787 2.6 ± 0.3 2.9 ± 0.2 Froombosch 6 

140930 11:42:03.4 53.258 6.655 2.8 ± 0.3 2.8 ± 0.2 Garmerwolde 12 

141105 01:12:34.5 53.374 6.678 2.9 ± 0.3 2.7 ± 0.1 Zandeweer 14 

141230 02:37:36.7 53.208 6.728 2.8 ± 0.3 2.5 ± 0.1 Woudbloem 11 

150106 06:55:28.2 53.324 6.768 2.7 ± 0.3 2.3 ± 0.1 Wirdum 12 

150118 10:54:10.3 53.233 6.720 1.5 ± 0.2 1.6 ± 0.3 Lageland 6 

150225 10:02:56.9 53.323 6.857 2.3 ± 0.1 2.3 ± 0.1 Appingedam 10 

150324 13:27:56.8 53.322 6.855 2.3 ± 0.3 2.2 ± 0.1 Appingedam 10 

150516 14:14:49.1 53.306 6.847 1.6 ± 0.2 1.6 ± 0.1 Appingedam 7 

150521 21:08:47.7 53.244 6.810 1.8 ± 0.1 1.9 ± 0.1 Schildwolde 5 

150527 10:52:10.0 53.404 6.668 2.0 ± 0.3 2.0 ± 0.1 Uithuizen 6 

150606 23:39:15.x 53.340 6.750 1.9 ± 0.2 1.9 ± 0.2 Loppersum 9 

150610 02:26:07.x 53.344 6.753 1.8 ± 0.2 1.6 ± 0.1 Zeerijp 9 

150707 03:09:00.9 53.262 6.631 2.1 ± 0.2 1.8 ± 0.2 Thesinge 10 

150818 07:06:12.6 53.185 6.754 2.0 ± 0.2 1.8 ± 0.3  Kolham 8 

150930 18:05:37.2 53.234 6.834 3.1 ± 0.3 2.6 ± 0.1 Hellum 12 

151030 18:49:01.1 53.285 6.920 2.3 1.9 ± 0.1 Meedhuizen 5 
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Regarding the data in Table 1, from 01-01-2014 onward, all events of ML≥ 2.0 are 

selected, before that time only events of ML>3.0 and some additional smaller events have 

been selected. Starting in 2015 some events could be added with ML<2.0. The last column 

shows the number of records available for analysis. 

 

3.6.2 Stress-drop 

Figure 17 shows the results for the calculation of the stress-drop, listed in Table 2. 

 

 

 
Figure 13. Overview of stress-drop measurements for Groningen events. 
 

 

The majority of the Groningen events do show a low stress-drop (Δσ < 20 bar). 

There is some indication for an increase in stress-drop with magnitude (M, see 

Figure 13) for M<3, although the dataset is small and the variation in stress drop 

large. The stress-drops presented are best estimates for each event evaluated in the 

reference station mentioned in table 2 (under the heading stat). Uncertainties are 

also listed in the table as minimum and maximum values of both stress-drops and 

corner frequency.  

 

The largest stress-drop value (event 2014-02-13: Δσ = 39 bars) has an uncertainty 

range of 20-80 bar. The current version of the GMPE (Bommer et al., 2016) takes 

into account stress-drops up to 100 bar.  
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Table 2. Corner frequencies and stress-drops for events analysed. Parameter uncertainties 

are listed (min, max values) and the reference station used. 

yymmdd fc-min fc fc-max Δσ-min Δσ Δσ -max stat ML M 

060808 2.8 3.8 4.9 11.1 19.7 30.1 mid3 3.5 3.2 

081030 3.2 3.9 5.1 5.9 8.5 15.1 wse 3.2 2.8 

090414 1.6 2.0 2.4 0.7 1.0 1.4 mid3 2.6 2.6 

090508 2.2 2.9 3.8 2.3 3.3 5.1 zan1 3.0 2.6 

110119 5.4 7.4 11.2 5.4 10 30 mid1 2.4 2.2 

110627 2.1 2.8 3.7 12 19 30 garst 3.2 3.3 

110831 3.6 4.4 5.2 8 12 17 wse 2.5 2.6 

120816 1.3 1.7 2.1 7.1 11 14 mid1 3.6 3.4 

130119 1.0 1.7 2.6 0.3 0.5 1 hks 2.4 2.6 

130207 1.8 2.2 2.6 2.9 3.8 5.9 kant 3.2 2.8 

130702 1.3 1.7 2.3 1.0 1.4 2.2 win  3.0 2.9 

130904 3.4 4.2 5.2 6.8 11 17 zan1 2.8 2.7 

140213 4.8 6.4 8.4 20 39 80 bzn2 3.0 2.9 

140311 1.6 2.1 2.8 0.6 0.9 1.3 bwse 2.3 2.3 

140318 3.3 4.0 5.1 0.9 1.4 2.4 bmd2 2.1 2.2 

140702 2.0 2.7 3.4 0.3 0.5 0.7 boww 2.1 2.2 

140809 5.0 6.4 8.4 3.1 5.5 11 boww 2.0 2.1 

140901 0.6 1.1 1.7 0.2 0.3 0.5 bapp 2.6 2.8 

140930 1.9 2.9 4.2 1.6 3.2 6.1 bhar 2.8 2.8 

141105 5.1 6.0 7.4 23 33 55 bmd2 2.9 2.7 

150106 1.8 2.6 3.4 0.5 0.9 1.4 bhks 2.7 2.3 

150118 3.7 4.6 5.6 0.6 0.9 1.4 bhar 1.5 1.6 

150225 2.2 2.9 4.0 1.2 1.8 3.2 bapp 2.3 2.3 

150324 1.0 1.4 2.0 0.1 0.2 0.3 bapp 2.3 2.2 

150516 2.8 3.5 4.7 0.1 0.2 0.4 bapp 1.6 1.6 

150521 0.7 1.4 2.2 0.01 0.03 0.05 bhks 1.8 1.9 

150527 1.8 2.5 3.5 0.2 0.3 0.5 buhz 2.0 2.0 

150606 3.3 4.1 5.3 0.4 0.7 1.2 bwse 1.9 1.9 

150610 3.7 4.9 6.8 0.2 0.4 0.9 bwse 1.8 1.6 

150707 5.1 6.8 13 0.9 1.8 13 bhar 2.1 1.8 

150930 2.3 3.4 4.9 4.7 8.3 16 bfb2 3.1 2.6 

151030 3.8 5.5 7.5 0.7 1.4 3 g200 2.3 1.9 
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4. Conclusions 

 

Numerous empirical studies have shown that 1:1 scaling between ML and M does 

not extend to low magnitudes. For ML > 3, the average of the studies seems to 

conform with M ≈ ML, albeit with significant scatter of the scaling relations between 

individual regions. For ML < 2, and for studies spanning a broader magnitude range, 

it is seen that M > ML. The difference, furthermore, tends to increase for increasingly 

small magnitudes, with up to a unit of difference for ML = 0 events. Three studies 

compiling data over a broad magnitude range: in Europe, Switzerland and border 

regions, and in California, show a distinct curve in the ML:M scaling below ML = 3. 

 

This is consistent with simulation-based studies, which show that when accounting 

for the effect of attenuation (Q and κ0) and the Wood-Anderson instrument response, 

we should expect a curvilinear scaling relation between ML and M. This is due to a 

complex interaction of the earthquake source signal and the filtering effects of the 

propagation medium (low-pass) and instrument response (displacement high-pass).  

 

Due to the strong regional dependence of ML assigned for a given earthquake (e.g., 

Fäh et al., 2011) coupled with the limited datasets containing both ML and M, 

regional correlations calibrated over limited magnitude ranges are usually applied in 

PSHA projects. Since it is known that the scaling should not be linear, this means 

that such conversions are only valid between the range of magnitudes in which they 

were derived. Given a suitable seismological background model (e.g., Atkinson and 

Boore, 2006; Rietbrock et al., 2013; Edwards and Fäh, 2013), the expected scaling 

can be simulated. However, such models are known to be non-unique and, as is 

often done in PSHA, the epistemic uncertainty of the correction should also be 

carefully considered. 

 

In the Groningen case it has been shown that above ML = 2.5 that M is approximately 

0.2 units smaller than ML. A systematic trend similar to those observed in other 

empirical and theoretical studies is seen for magnitudes below ML = 2.5, with M = ML 

at ML = 1.5 (Figure ), although the dataset is small. The fact that the relationship 

between the two scales appears to be linear with gradient of unity for magnitudes 

above 2.5 enables the stochastic simulation approach to be used with some 

confidence for the GMPE development. However, for several other aspects of the 

hazard and risk assessment for the Groningen field—including comparisons with 

models from other regions, adjustments based on other GMPEs, and estimates of 

Mmax—adjustments should be made for the 0.2 difference between the ML values 

determined by KNMI for induced earthquakes and the corresponding moment 

magnitudes. Due to the relationship between ML, M and stress parameter, the stress 

parameter of Groningen earthquakes was calculated. Values were generally low 

(<50 bar) consistent with the GMPE adopted for the region. 
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APPENDIX 

 

Sensitivity to the Source Spectrum Model 

 

In the inversions of the Fourier amplitude spectra (FAS) of Groningen ground 

motions to estimate parameters such as seismic moment, corner frequency and 

stress drop, a model needs to be assumed for the seismic source spectrum. For the 

inversions to estimate input parameters for the simulations that underlie the 

generation of the Groningen GMPEs, the Brune (1970, 1971) spectrum has been 

used, in common with most simulations for the derivation of stochastic GMPEs. 

However, in the analyses presented in this report the Boatwright (1978) source 

spectrum—which is a subtle modification of the Brune spectrum—was used since it 

was found to give a slightly better fit for the dataset analysed herein. Since this may 

appear as an important inconsistency, an exploratory analysis was performed using 

the recordings from the database being used to derive the current versions of the 

GMPE to determine if there is a definite preference for one source spectrum model 

over the other.  

 

Using recordings from 24 earthquakes with ML ≥ 2, inversions were performed to fit 

both the Brune and Boatwright spectral models to the FAS after transformation to the 

NU_B (base of the Upper North Sea formation) rock horizon. The misfit is calculated 

for each individual FAS as follows:  
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where f is frequency, N is number of samples in the FAS. An event specific misfit is 

the average over all the used FAS for that event: 
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where M is the number of FAS used for the event. In this scheme, the larger the 

misfit, the poorer the performance of the model in reproducing the recorded FAS. 

Figure A1 shows a plot of the ratios obtained with the Boatwright spectrum to those 

obtained with the Brune spectrum for each event, plotted against magnitude. A ratio 

of less than unity implies a greater misfit with the Boatwright model than with the 

Brune model. As can be seen from the plot, there is no consistent pattern in terms of 

superior performance and it can be seen that the use of either of the models is 

justified (with a possible slight preference for the Brune model at larger magnitudes).  

 



34 
 

 

Figure A1. Ratios of misfits obtained fitting the Boatwright model to those obtained using 
the Brune spectrum 


