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 1 Introduction 

During gas extraction, the reservoir pressure often decreases and which leads to 

compaction of the reservoir. This reduction in volume at reservoir depth may induce 

surface subsidence [Doornhof, 1992]. Ongoing production may cause further 

ongoing subsidence even after production has stopped [van Thienen-Visser et al., 

2015], and this may have consequences for the environment and for human 

activities near the area at surface where the gas production takes place [van 

Thienen-Visser et al., 2012]. To judge whether such effects take place and to be 

able to study consequences of actions, subsidence forecasts connected to gas 

production are required. TNO has been contracted by NAM for developing and 

implementing a workflow that addresses this requirement.  

 

The current report serves as technical reference manual and presents the main 

ingredients of this workflow, and which has been named the Ensemble based 

Subsidence Interpretation and Prediction tool, in the sequel referred to as ESIP. 

After a further introduction given in the next chapter, the chapters 3-10 present (i) 

the details of the methods applied in the workflow and (ii) the outputs generated. 
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 2 General Description 

The production of gas from a reservoir is accompanied by uncertainties in the 

subsurface parameters and processes. For any forecasting method (e.g. of surface 

subsidence due to gas production) to be useful, this uncertainty must be taken into 

account, and, where possible, reduced. In many scientific realms where 

uncertainties are abundant, like weather forecasting, it has become clear that a 

probabilistic ensemble approach is a fruitful method for doing so (e.g. [Reggiani and 

Weerts, 2008], [Jaynes, 2003], [Evensen, 2003], [Emerick and Reynolds, 2013]). 

Therefore, a probabilistic ensemble approach has been chosen as one of the main 

ingredients for ESIP. Furthermore, as a second main ingredient, reduction of the 

uncertainty is achieved by incorporating surface movement measurements.   

 

ESIP starts from two pieces of information:  
1. an ensemble of reservoir flow model simulation results (pressure scenarios 

through time, and  
2. ground motions measurements provided by the geodetic module [Van Leijen et 

al., 2017].  

From the reservoir flow simulations, ESIP calculates compaction and subsidence 

using a geomechanical simulator. To circumvent the effect of the choice of 

references in time and space, the ground motion measurements are translated to 

double difference observations and the corresponding covariance matrix. Finally, 

ESIP performs a model conditioning and produces improved ground motion 

predictions. A schematic representation of the ESIP workflow steps is provided in 

Figure 1. 

 

ESIP takes advantage of a-priori knowledge mapped out in the reservoir models 

driving input parameters and in the parameters of the geomechanical models. This 

way, given the ensemble of reservoir flow simulations received as user inputs, ESIP 

generates ensembles of modelled surface movements by stochastically selecting 

values in the prior distributions of the driving input parameters of the geomechanical 

forward models. The results are provided in the form of double differences since the 

surface movement measurements are also given in that format. Then, these 

ensembles of prior double differences are conditioned using a confrontation with the 

data to refine the predictions. Finally, the updated or conditioned models are 

propagated to the future, utilizing the projected production scenarios. Forecasts of 

surface movement are given as well in the form of an ensemble of double 

differences predictions to facilitate direct comparison with future measurements. 

 

ESIP approaches intend to be “generic” in the sense that it is not specifically 

tailored for application to a specific reservoir. Hence, ESIP may be applied to any 

producing reservoir of interest, but of course the limitations of the methods may 

prevent ESIP to be suitable for specific applications. One of such limitations is that 

so far ESIP is only able to act on reservoir flow simulation results obtained with one 

specific reservoir simulator. In the sequel of this report several further limitations are 

being brought to the attention of the reader. 

 

Based on synthetic reservoir flow simulations generated with the Shell propriety 

reservoir simulator MoReS the ESIP approaches have been demonstrated. This 

synthetic gas reservoir model mimics all the complexities of many real cases (such 
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 as faults, aquifer connected), and is thus well suited for testing purposes since the 

model geometry (reservoir/aquifer boundaries) and the a-priori uncertainties of each 

of the model parameters are well constrained. In our synthetic scenario, however, 

the geodetic module is not exactly used in the same way as in the workflow 

described below. Instead it is used to create a proper synthetic data covariance 

matrix and data noise that is consistent with it. The synthetic data correspond to 

one member of one of the ensembles of double differences generated for each type 

of compaction model, with the noise added. A full description of this synthetic field 

and the study based on it is beyond the scope of the present document and will be 

deferred. The remainder of the present report will detail the background of the 

different steps in the ESIP workflow. 

 

 
 

 

 

Figure 1: Schematic representation of ESIP workflow steps 
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 3 Upscaling 

The output of the MoReS reservoir simulator is a pressure field on a detailed 3-D 

grid. The ensemble-based approach followed in ESIP precludes the use of such 

full-field grids in the geomechanical and geodetic analysis. Therefore, all 3-D 

pressure fields need to be up-scaled as one of the first steps. 

  

The upscaling procedure consists of two steps, first the vertical averaging of the 

pressure in the reservoir layers, and as second step the horizontal averaging over a 

coarser grid. This averaging process is justified by the fact that the distribution of 

compaction over an upscaled cell in a thin and deep reservoir has a limited effect 

on the surface subsidence [Geertsma, 1973].  

 

The upscaling needs to be performed such that the amount of compaction for the 

upscaled 2-D grid and the initial layered 3-D grid is identical. Therefore, the vertical 

and horizontal averaging of the 3-D pressure field need to be weighted, to take into 

account the variability in compaction between each individual grid block of the 

reservoir model. The variability in compaction is controlled by differences in 

pressures, volumes, and porosities between each grid block. The vertically 

averaged pressures 𝑷𝒂𝒗, volumes 𝑽𝒕𝒐𝒕, porosities ∅𝒂𝒗 and grid block center 

positions 𝑿𝒂𝒗  and 𝒀𝒂𝒗 for one vertical column of the 3-D grid can be expressed as: 

 

𝑷𝒂𝒗 =
∑ 𝑪𝒎𝒌(∅𝒌).𝑷𝒌.𝑽𝒌

𝒏
𝒌=𝟏

𝑪𝒎(∅𝒂𝒗).𝑽𝒕𝒐𝒕
                        (1) 

 

𝑽𝒕𝒐𝒕 = ∑ 𝑽𝒌
𝒏
𝒌=𝟏                            (2) 

 

∅𝒂𝒗 = ∑ ∅𝒌.
𝑽𝒌

𝑽𝒕𝒐𝒕

𝒏
𝒌=𝟏                          (3) 

 

𝑿𝒂𝒗 = ∑ 𝑿𝒌.
𝑽𝒌

𝑽𝒕𝒐𝒕

𝒏
𝒌=𝟏                          (4) 

 

𝒀𝒂𝒗 = ∑ 𝒀𝒌.
𝑽𝒌

𝑽𝒕𝒐𝒕

𝒏
𝒌=𝟏                          (5) 

 

In equation (1) 𝑪𝒎𝒌(∅𝒌) corresponds to the compaction coefficient of one grid block 

as a function of its porosity, pressure, and time. This specific relationship is 

normally constrained by uniaxial experiments. The volume 𝑪𝒎𝒌(∅𝒌) considered for 

each individual grid block is the net volume, that is only including reservoir parts. 

After this first step of vertical upscaling we have a 2-D irregular fine grid of 𝑷𝒂𝒗, ∅𝒂𝒗, 

𝑽𝒕𝒐𝒕 at upscaled positions (𝑿𝒂𝒗, 𝒀𝒂𝒗). 

 

The second step of the upscaling consists in the horizontal averaging of pressures, 

volumes, and porosities of the 2-D fine grid (𝑿𝒂𝒗, 𝒀𝒂𝒗) falling within the limits of a 2-

D regular coarse grid covering the area of the reservoir model. The regular coarse 

grid size can be flexible and is typically between 500-1000m. In order to maintain 

the same amount of compaction before and after upscaling, the same averaging 

procedure needs to be followed as for the vertical averaging in equations (1) – (5). 

After this second step of horizontal upscaling we end-up with a 2-D coarse irregular 

grid with new (xav, yav) positions, pressures, volumes, and porosities.  
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 Following this vertical upscaling approach, each reservoir column is taken based on 

the grid block numbering only, i.e. the numbering that applies to the grid dimension 

that likely aligns with the vertical thickness direction of the reservoir. In doing so, 

one assumes the reservoir column as sub-vertical. Close-by low dipping faults, this 

vertical upscaling approach may not be suitable, since the reservoir column is more 

likely to depart from the verticality. Also, as a further limitation it is being remarked 

that this ESIP upscaling approach is not yet capable of dealing with detailed 3-D 

grids as obtained from MoReS, notably when local grid refinement has been 

applied. 
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 4 Compaction models 

Four types of compaction models have been selected for translating the pressure 

depletions in terms of compacted volume. These are the linear, the bilinear, the 

time decay, and the rate type model. Each compaction model as is described in the 

next four sections of this chapter intends to characterize the non-trivial and often 

non-linear relationship between pressure depletion and compaction of the rock 

volume. As should be clear from Figure 1 each such compaction model is applied 

by ESIP on the coarse 2-D grid obtained from the upscaling approach discussed in 

the previous chapter. This chapter concludes with a section on the interpolation of 

pressure data over time to serve as input for the different compaction models of 

ESIP. 

4.1 Linear model 

Assuming a linear relationship between pressure depletion and compaction, one 

can derive the compaction of each grid block as:  

 
𝑽𝒄𝒐𝒎𝒑(𝒙, 𝒚, 𝒕) = 𝑪𝒎(𝒙, 𝒚). 𝑽(𝒙, 𝒚). 𝒅𝑷(𝒙, 𝒚, 𝒕)               (6) 

 

The compaction coefficient of the reservoir rock 𝑪𝒎 is here again linked to the 

reservoir model porosity by the lab-derived polynomial relationship. Even if this 

linear model is often supported by uniaxial lab rock testing, it still remains to 

determine whether these experiments fully capture the full complexity of the 

reservoir compaction. 

 

Only one material parameter 𝑪𝒎 is needed for the linear compaction model, but the 

parameter can be position dependent due to its dependence on lithology and 

porosity. 

4.2 Bilinear model 

Subsidence data on top of gas fields in the Netherlands demonstrate a delay in the 

subsidence relative to the evolution of production and the associated pressure 

depletion [van Thienen-Visser et al., 2015]. The subsidence rate is slow at the early 

stage of reservoir depletion, and switches to a faster rate when a characteristic 

reservoir pressure has been reached. Assuming a purely elastic response of the 

layers surrounding the reservoir, this behavior can be modeled using two linear 

relationships between pressure depletion and reservoir rock compaction [NAM et 

al., 2015] as: 

 

𝑽𝒄𝒐𝒎𝒑𝒑𝒓𝒆
(𝒙, 𝒚, 𝒕) = 𝑪𝒎𝒑𝒓𝒆

(𝒙, 𝒚). 𝑽(𝒙, 𝒚). (𝑷𝟎(𝒙, 𝒚) − 𝑷(𝒙, 𝒚, 𝒕))               (7) 

 

𝑽𝒄𝒐𝒎𝒑𝒑𝒐𝒔𝒕
(𝒙, 𝒚, 𝒕) = 𝑪𝒎𝒑𝒓𝒆

(𝒙, 𝒚). 𝑽(𝒙, 𝒚). (𝑷𝟎(𝒙, 𝒚) − 𝑷𝒕𝒓𝒂𝒏𝒔(𝒙, 𝒚)) + 𝑪𝒎𝒑𝒐𝒔𝒕
(𝒙, 𝒚). 𝑽(𝒙, 𝒚). ( 𝑷𝒕𝒓𝒂𝒏𝒔(𝒙, 𝒚) − 𝑷(𝒙, 𝒚, 𝒕))  (8) 

 

where 𝑷𝟎 and 𝑷𝒕𝒓𝒂𝒏𝒔 respectively define the initial pressure before the start of 

production and the transition pressure. The first relationship should fit the slow 
subsidence rate at early stage using a low 𝑪𝒎𝒑𝒓𝒆

 value; the second relationship 

addresses the later-stage faster subsidence using a high value for 𝑪𝒎𝒑𝒐𝒔𝒕
. The first 

linear relationship is used from the onset of pressure depletion up to the transition 
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 pressure 𝑷𝒕𝒓𝒂𝒏𝒔, whereas the second linear relationship is used for pressures higher 

than 𝑷𝒕𝒓𝒂𝒏𝒔. 

 
The two material parameters 𝑪𝒎𝒑𝒓𝒆

, 𝑪𝒎𝒑𝒐𝒔𝒕
 and the pressure 𝑷𝒕𝒓𝒂𝒏𝒔 are required to 

compute the bilinear compaction. 

4.3 Time decay model 

The linear and bilinear models both failed explaining recent observations in the 

Netherlands of persistent subsidence even when production had stopped. A way to 

explain both the subsidence delay at the onset of production and the persistent 

subsidence at the arrest of pressure depletion is to evoke a time decay process. 

The background of this suggestion was the observation of the general diffusive 

behavior of many physical systems pushed into a disequilibrium high-energy state, 

which slowly decay to their low-energy equilibrium state [Mossop, 2012]. Such a 

diffusion-type process can be modeled using a convolution of a linear relationship 

between pressure depletion and reservoir rock compaction (as equation (6)) with an 

exponential time decay function: 

 

𝑽𝒄𝒐𝒎𝒑(𝒙, 𝒚, 𝒕) = 𝑪𝒎(𝒙, 𝒚, 𝒕). 𝑽(𝒙, 𝒚, 𝒕). 𝒅𝑷(𝒙, 𝒚, 𝒕) ∗𝒕
𝟏

𝝉
 𝒆𝒙𝒑 [

−𝒕

𝝉
]         (9) 

 

It is important to point out that the exponential time decay function and its 

characteristic time are not laboratory-based and that the underlying micro-

mechanics controlling the time decay are still unknown. In addition, it is important to 

point out that this approach is assuming the purely elastic linear response of the 

rocks surrounding the reservoir rock. Indeed, the hypothesis of a visco-elastic salt 

layer overlaying the reservoir, and creeping in response to reservoir compaction, 

might lead to a similar time-dependence of the subsidence [NAM et al., 2015]. 

 

In order to compute the time decay compaction, the material parameter 𝑪𝒎 and the 

characteristic time decay constant 𝝉 are required. 

4.4 Rate type isotach model 

Traditional uniaxial experiments are conducted at one single constant loading rate. 

[De Waal (1986)] ran a series of experiments changing the loading rate during the 

experiments. The motivation for this experimental design was to capture the rate 

dependence of sandstone compaction as previously observed for soft soil [Bjerrum, 

1967]. [De Waal (1986)] demonstrated that a faster loading rate leads to stiffer 

response of the rock sample, that is a slower compaction rate. At a change of the 

loading rate, a first direct strain response is recorded followed by a more gradual 

response. These experimental observations might explain the subsidence behavior 

at the onset and arrest of production, which can be seen as changes in loading rate 

of the reservoir rocks.  

 

Recently [Pruiksma et al. (2015)] reformulated and implemented the rate type 

compaction model of [De Waal (1986)] in order to model the transition from one 

loading rate to another (or a zero loading rate). Their new formulation is based on 

the linear isotach compaction model developed for soft soil [Den Haan, 2003]. 

Isotachs define lines of constant loading rate in a stress-strain diagram. At the 

change in loading rate, a first direct elastic strain 𝜺𝒅 response is observed, followed 
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 by a more gradual creep strain 𝜺𝒔 response. Once the new constant loading rate is 

reached, this new path of linear compaction is eventually preserved.  

 

The rate type isotach compaction in ESIP is derived from an explicit Euler finite-

difference scheme keeping a constant time step ∆𝒕 [Pruiksma et al. (2015)]. To 

calculate the compaction of one grid block grid (𝒙, 𝒚) the applied numerical scheme 

can be divided into 5 steps as follows: 

 

1) From the current effective vertical stress 𝝈′(𝒕) and strain 𝜺(𝒕), calculate the creep 

strain rate as: 

 

𝜺̇𝒔(𝒕) = (
𝜺(𝒕)−𝜺𝟎

𝝈′(𝒕)
− 𝑪𝒎𝒅

) 𝝈̇𝒓𝒆𝒇
′ (

𝜺(𝒕)−𝜺𝟎

𝝈′(𝒕)  .  𝑪𝒎𝒓𝒆𝒇

)

−𝟏/𝒃

              (10) 

 

The vertical effective stress is derived from the reservoir depth and the mean 

density 𝝆𝒎𝒆𝒂𝒏 of the subsurface up to the reservoir top 𝒛𝒓 as:  

 

𝝈′(𝒕) =  (𝝆𝒎𝒆𝒂𝒏. 𝒈. 𝒛𝒓) − 𝑷(𝒕)                    (11) 

 

At t0, that is at the onset of pressure depletion/production, the direct elastic strain 

𝜺𝒅(𝒕𝟎) and creep strain 𝜺𝒔(𝒕𝟎) are both considered equal to zero, and thus total 

strain 𝜺(𝒕𝟎) is set to zero. 

The reference total strain is expressed as: 

  
𝜺𝟎 = −𝑪𝒎𝒓𝒆𝒇

 . 𝝈𝒓𝒆𝒇
′                          (12) 

 
with the reference vertical effective stress 𝝈𝒓𝒆𝒇

′ = 𝝈′(𝒕𝟎). 

 
Three material parameters (𝑪𝒎𝒓𝒆𝒇

, 𝑪𝒎𝒅
, 𝒃)  and one state parameter (𝝈̇𝒓𝒆𝒇

′ ) are 

needed to compute the rate type compaction.  The material parameters 𝑪𝒎𝒓𝒆𝒇
 and 

𝑪𝒎𝒅
 are respectively the reference and direct compaction coefficients, where 𝑪𝒎𝒓𝒆𝒇

 

is the compaction coefficient corresponding to the pre-depletion loading rate, and 
thus by definition quite high. Parameter 𝑪𝒎𝒅

 is dedicated to map out the direct effect 

at the change of loading rate. In the scenario of the change of loading rate due to 
the onset of pressure depletion, 𝑪𝒎𝒅

 is expected to be low in order to mimic the stiff 

response of the reservoir rocks. 

 

2) The second step of the Euler scheme consists in calculating the increase in 

creep strain as: 

 

∆𝜺𝒔 = 𝜺̇𝒔(𝒕) . ∆𝒕                          (13) 

 

and update the creep strain as: 

 

𝜺𝒔(𝒕+𝟏) → 𝜺𝒔(𝒕) + ∆𝜺𝒔                       (14) 

 

 

3) The time is updated as 𝒕+𝟏 → 𝒕 + ∆𝒕 

 

4) Following a linear stress-strain relationship one can calculate the direct elastic 

strain as:  
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𝜺𝒅(𝒕 + ∆𝒕) = 𝑪𝒎𝒅

. (𝝈′(𝒕 + ∆𝒕) −  𝝈𝒓𝒆𝒇
′ )                  (15) 

 

5) Finally one can calculate the total cumulative strain as: 

 

𝜺(𝒕 + ∆𝒕) = 𝜺𝒔(𝒕 + ∆𝒕) + 𝜺𝒅(𝒕 + ∆𝒕)                  (16) 

 

And the total cumulative compaction as:  

 
𝑽𝒄𝒐𝒎𝒑(𝒕 + ∆𝒕) = −𝜺(𝒕 + ∆𝒕) .                     (17) 

 

with 𝑽 the grid block net volume, assumed constant over time. Clearly, accounting 

for changes in grid block net volume will not significantly change the compaction. 

After this last fifth step the workflow returns to the first step for the next time step. 

 

Again it is important to note that the present rate type isotach compaction model is 

attempting to mimic the delay and persistence in subsidence rates at the onset and 

arrest of production, by only considering the reservoir compaction and assuming a 

purely elastic linear response of the rocks surrounding the reservoir rocks. The 

creep of a possible visco-elastic salt layer on top of the reservoir might also 

contribute to the non-linearity in the subsidence [NAM et al., 2015]. 

4.5 Interpolation 

Before translating the pressure depletion between two epochs in term of volume 

compacting, the pressures must be interpolated to shorter time steps than the 

epochs of obtained from the reservoir simulation models, which may be typically in 

the order of years. Therefore an interpolation procedure is required for the bilinear, 

the time decay and the rate type compaction models of ESIP. Between each time 

step a linear relationship between pressure depletion and compaction is assumed. 

This is an approximation – the behavior predicted by the bilinear, time decay and 

rate type compaction models is non-linear – and it calls for a careful choice of the 

time step size. The optimum time step for the interpolation depends on the 

compaction model parameters and pressure depletion rate. A time step of 6 months 

was found suitable for the bilinear and time decay models, but it remains an input of 

ESIP to be specified. The most constraining model is the rate type compaction 

model and its explicit finite difference scheme which requires a sufficiently short 

time step in order to obtain a stable solution. Therefore, for the rate type model, the 

time steps are constrained to be such that the pressure drop between two time 

steps does not exceed 1 bar in any of the grid blocks of the upscaled coarse 2-D 

grid. 
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 5 From influence functions to ground motions 

In order to propagate the 2-D compaction fields to surface subsidence, one needs 

to compute influence functions, also called Green functions. 

5.1 Exponential influence function 

The original form of the exponential influence function of the Knothe’s Theory 

[Knothe, 1953], was developed for flat coal seam, and is given by 

 

𝒈𝒗 =  
𝟏

𝑹𝟐 𝒆
−𝝅

𝒓𝟐

𝑹𝟐                          (18) 

 

where 𝑹 is the influence radius as 𝑹 = 𝑫 𝒕𝒂𝒏(𝝋), where 𝑫 is the reservoir depth in 

our case, and 𝝋 the influence angle. The influence angle is the angle between the 

vertical axis joining the extracted element at depth to its projection at the surface 

and the line joining the extracted element at depth to the surface location of the 

border of the subsidence zone. 𝒓 defines the radius (i.e. horizontal distance) 

between the vertical projection of the extracted element at the surface and the 

surface point where the subsidence is calculated.  

The only input required by the user for calculating the exponential Knothe influence 

function (equation (18)) is the influence angle.  

 

The two drawbacks of this approach are that the physic of the process is missing 

and that one cannot calculate the horizontal displacement caused by extraction of 

the element at depth. 

 

5.2 Physic-based influence function 

[Geertsma (1973)] provided a linear analytical influence function based on the 

nucleus of strain concept and assuming the layers over and underlaying the 

reservoir as elastically homogeneous. [Van Opstal (1974)] included the effect of a 

rigid basement in the shape of the influence function. [Fokker and Orlic (2006)] 

developed a semi-analytical method for generating influence functions for a cake-

layer model with layers with different elastic properties. The semi-analytical 

approach has the advantage of combining relatively complex sub-surface settings 

with small computational times, making it suitable for inversion and data 

assimilation exercises. 

 

AEsubs, TNO’s standalone software generating influence functions based on the 

semi-analytical approached developed by [Fokker and Orlic, 2006], has been 

integrated in ESIP. AEsubs generates vertical and horizontal ground surface 

displacement profiles (influence functions) for a single compacting “nucleus” located 

at the reservoir depth, and for a given elasticity profile. Inputs required by the user 

for running AEsubs are:  
(i) depth of the nucleus (that is the mean depth of the reservoir),  
(ii) depth of the layer interfaces,  
(iii) Young’s modulus 𝑬 and Poisson’s ratio 𝝂 of each layer, including the 

reservoir. In the case of a modeled visco-elastic layer (e.g. mimicking a 
salt layer), its Maxwell viscosity is also required, and the surface 
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 displacement profiles are calculated for a number of time-steps [Fokker 
and Orlic, 2006].  

 

The assumption of the linearity for the visco-elasticity is supported by the fact that 

pressure solution creep is the dominant flow mechanism at low differential stress 

and moderate temperature ([Spiers et al., 1986], [Spiers and Carter, 1998]), which 

are the conditions for the salt layers capping the Netherlands gas fields.  

 

The tensor form of the constitutive equation of an isotropic Maxwell material (see 

also [Ranalli, 1996]) can be written as: 

 

𝝈̇𝒊𝒋 +
𝝁

𝜼
(𝝈𝒊𝒋 −

𝟏

𝟑
𝝈𝒌𝒌𝜹𝒊𝒋) = 𝟐𝝁𝜺̇𝒊𝒋 + 𝝀𝜺̇𝒌𝒌𝜹𝒊𝒋                (19) 

 

When the Maxwell viscosity η is infinite, the above equation reduces to the 

constitutive equation of purely elastic material, the so-called Hooke’s law. With 

Laplace transformation, the constitutive equation (19) is translated into a similar set 

of equations as for the linear elastic case – but as a function of the Laplace 

coordinates. AEsubs solves these equations for a number of specific values of s in 

the same way as for the purely elastic case, and then transform it back to the time 

domain in a numerical way. 

 

The rotationally symmetric influence function for the vertical displacement that is 

generated by AEsubs is used in ESIP in conjunction with the 2-D compaction field, 

in order to calculate the surface subsidence at all the desired geodetic benchmark 

locations. Note here that the benchmark locations have been identified and are 

defined by the geodetic module of ESIP described in chapter 8. For each location 

the subsidence contribution of each compacting grid block is summed as: 

 

𝒖𝟑(𝒙, 𝒚) =  ∑ 𝑪𝒐𝒎𝒑𝒊 .  𝒈𝒗 (√(𝒙 − 𝒙𝒊)
𝟐 + (𝒚 − 𝒚𝒊)

𝟐)𝒊             (20) 

 

where 𝑪𝒐𝒎𝒑𝒊 the compaction of grid block i during each compaction time step; and 

gv the elastic influence function, that is the subsidence profile for 1 m
3
 compaction 

volume. From the influence function gv, which is given at discrete locations, the 

amount of subsidence at the desired benchmark location (𝒙, 𝒚) is obtained by cubic-

spline interpolation. The cumulative total subsidence at the selected benchmark 

locations can be derived by the sum of each individual subsidence amounts due to 

each compacting steps. 

 

In the case of the presence of a visco-elastic layer, the contribution of each past 

period of compaction are convolved as: 

 

𝒖𝟑(𝒙, 𝒚, 𝒕) =  ∑ ∑ 𝑪𝒐𝒎𝒑𝒊,𝒕 .  𝒇𝒗(√(𝒙 − 𝒙𝒊)
𝟐 + (𝒚 − 𝒚𝒊)

𝟐, 𝒕)  𝒕𝒊          (21) 

 

with 𝑪𝒐𝒎𝒑𝒊,𝒕 the compaction of grid block i during each compacting time steps; the 

visco-elastic influence function 𝒇𝒗 is both location dependent and time dependent. 

 

For one (𝒙, 𝒚) benchmark location the convolution scheme can be detailed as:  

𝒖𝟑(𝒕𝟎,𝟎) = 𝟎 

𝒖𝟑(𝒕𝟏,𝟎) = 𝒖𝟑(𝒕𝟏,𝟎) + 𝒖𝟑(𝒕𝟎,𝟏)  

𝒖𝟑(𝒕𝟐,𝟎) = 𝒖𝟑(𝒕𝟐,𝟎) + 𝒖𝟑(𝒕𝟏,𝟐) + 𝒖𝟑(𝒕𝟎,𝟐) 
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 𝒖𝟑(𝒕𝟑,𝟎) = 𝒖𝟑(𝒕𝟑,𝟎) + 𝒖𝟑(𝒕𝟐,𝟑) + 𝒖𝟑(𝒕𝟏,𝟑) + 𝒖𝟑(𝒕𝟎,𝟑) 

. 

. 

. 

where  𝒖𝟑(𝒕𝟑,𝟎) denotes the total subsidence at t3 which is the collective sum of: 

(i) 𝒖𝟑(𝒕𝟑,𝟎): the instantaneous subsidence due to the compaction of each i grid 

block during the time period t3 – t2.  

(ii) 𝒖𝟑(𝒕𝟐,𝟑): the subsidence contribution due to the past compaction of each i 

grid block during the time period t2 – t1. 

(iii) 𝒖𝟑(𝒕𝟏,𝟑): the subsidence contribution due to the past compaction of each i 

grid block during the time period t1 – t0. 

(iv) 𝒖𝟑(𝒕𝟎,𝟑): the subsidence contribution due to the past compaction of each i 

grid block at t0, which is zero. 

 

As for the location, 𝒇𝒗 is time-interpolated following a cubic-spline scheme in order 

to get the amount of subsidence at the right compacting time step. 

 

It is important to note here that the same procedure is followed for determining the 

cumulative horizontal displacements, u1 (E-W component) and u2 (N-S component), 

from the rotationally symmetric elastic 𝒈𝒉 and visco-elastic 𝒇𝒉 influence functions. 

As an example, for a sub-surface layer-cake purely elastic:  

 

𝒖𝟏(𝒙, 𝒚) =  ∑ 𝑪𝒐𝒎𝒑𝒊  .  
𝒈𝒉(√(𝒙−𝒙𝒊)𝟐+(𝒚−𝒚𝒊)𝟐)

√(𝒙−𝒙𝒊)𝟐+(𝒚−𝒚𝒊)𝟐

(𝒙−𝒙𝒊)
⁄

𝒊                (22) 

 

𝒖𝟐(𝒙, 𝒚) =  ∑ 𝑪𝒐𝒎𝒑𝒊  .  
𝒈𝒉(√(𝒙−𝒙𝒊)𝟐+(𝒚−𝒚𝒊)𝟐)

√(𝒙−𝒙𝒊)𝟐+(𝒚−𝒚𝒊)𝟐

(𝒚−𝒚𝒊)
⁄

𝒊                (23) 

 

where  𝒖𝟏 and 𝒖𝟐 refer respectively to the E-W and N-S horizontal components, 

positive toward the North and East. 

 

In one of the subsequent steps of ESIP, these modelled ground motions will be 

confronted with observations. Therefore, these calculation results will have to be 

linearly interpolated from the timings of the reservoir simulation results to the 

specific times of the geodetic campaigns. The timings of the geodetic campaigns 

are provided by the geodetic module of ESIP described in chapter 8. After time 

interpolation and for each type of compaction model we have estimated cumulative 

subsidence and horizontal displacements for the desired benchmarks locations and 

for the desired timing of geodetic campaigns. 
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 6 Double differences 

From the modelled ground motions, double differences dd are generated. A double 

difference indicates a difference in time of a difference in space; in the case of 

subsidence it can be written as: 
 

𝒅𝒅 =  [𝒖𝟑(𝒙𝟏, 𝒚𝟏, 𝒕𝟏) − 𝒖𝟑(𝒙𝟎, 𝒚𝟎, 𝒕𝟏)] − [𝒖𝟑(𝒙𝟏, 𝒚𝟏, 𝒕𝟎) − 𝒖𝟑(𝒙𝟎, 𝒚𝟎, 𝒕𝟎)]    (24) 

 

As well this is being visualized in Figure 2. 

 

 

Figure 2: Concept of double differences 

Note here that the same approach is followed for the double differences of 

horizontal displacements. Again the possible combinations of double differences 

from the benchmark locations and timing of geodetic campaigns are constrained by 

the geodetic module of ESIP, described in chapter 8. 



 

 

TNO report | R11278  16 / 27  

 7 Generating the prior ensemble 

Each type of compaction model includes different driving input parameters, which 

can be adjusted to fit the observations. For example, the time decay compaction 

model requires two parameters, 𝑪𝒎 and 𝝉 (see chapter 4 for more details about the 

other type of compaction model). In the same way, influence functions generated by 

AEsubs require input parameters characterizing the elastic and visco-elastic 

properties (Young’s modulus 𝑬, Poisson’s ratio 𝝂, Maxwell’s viscosity η) of each 

layer of the subsurface. As an example, one can take the time decay compaction 

model and a three-layer subsurface elastic model. In this case, 8 driving input 

parameters are needed for running the geomechanical forward model: 𝑪𝒎  and 𝝉  

for the reservoir compaction, and elastic modulus 𝑬  and Poisson’s ratio 𝝂 for each 

subsurface layer. 

 

Parameters of the compaction models and those of the influence functions are 

gathered together as parameters of the geomechanical forward model followed in 

the ESIP workflow. A-priori knowledge regarding each of these driving input 

parameters are in the form of their statistical distributions (e.g. normal, uniform, 

triangular). A different type of statistical distribution can be chosen for each 

parameters. 

 

Ensembles of prior ground motion predictions are generated by stochastically 

selecting values in the prior distributions of the driving input parameters of the 

geomechanical forward model. This is being performed via a specific sampling 

scheme and which is described in a confidential Appendix to this report and which 

is not being provided with the open version of this report. 

 

 

When the sampling procedure has been performed one can generate the prior 

ensemble of 𝑵𝒆 ground motions predictions. This procedure can be done for each 

type of compaction model. More precisely, for each type of compaction models, the 

prior ensemble for each type of ground motions (u3, u1, u2), and the prior ensemble 

of double differences are generated. 
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 8 Geodetic data 

The modelled double differences, which can be seen as prior predictions, will be 

later on refined by the conditioning steps with the geodetic data. This conditioning 

step model/data will be presented below in chapter 9, here we present the 

procedure to obtain the geodetic data. Currently, two types of geodetic data can be 

handled: levelling and GPS. 

 

The ESIP module that performs the geodetic data handling has been developed by 

TU Delft as part of a separate assignment for NAM and is further described in [Van 

Leijen et al., 2017]. This module has been integrated as standalone module in ESIP 

and can be applied on specific geodetic databases for the Netherlands not all 

brought to the attention of TNO. The main user input contains  

(i) the geographical coordinates of the polygon of interest (supposedly on top of the 

gas field of interest but not limited to that), and  

(ii) the time interval of interest, a set of double differences and their associated 

covariance matrix are automatically generated.  

The algorithm looks for the all the possible combinations of double differences for 

each type of geodetic data, and generates a set of double differences and their 

associated covariance matrix. The covariance matrix of the double differences gives 

the uncertainty/variance of each measurement but also the spatiotemporal 

correlations between each measurement. More background on this module of ESIP, 

not developed by TNO, and the specific approaches applied can be found in [Van 

Leijen et al., 2017] . 
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 9 Conditioning of the models with the data 

The main aspect of the Bayesian based workflow of ESIP is to take advantage of  

(i) a-priori knowledge, and  

(ii) ground motions data from time T0 to T1 in order to predict the surface 

subsidence at time T2 assuming a production/depletion scenario from T1 to T2. 

  

For each type of compaction model, ESIP first creates a prior model vector 

ensemble of 𝑵𝒆 vectors 𝑴𝟎 = (𝒎𝟏, 𝒎𝟐,  … 𝒎𝑵𝒆) based on our prior information. 

These vectors are generated by stochastically selecting values in the prior 

distributions of the driving input parameters, and in this sense our a-priori 

knowledge has been mapped to the reservoir model driving input parameters and 

those of the geomechanical forward model.  

  

Secondly from our a-priori knowledge one can generate an ensemble  𝑮𝑴𝟎  of 

ground motion predictions (mostly including surface subsidence) and double 

differences for each type of compaction model via the influence function in the 

geomechanical forward model. The geomechanical forward model is indicated by 

the function  𝑮 working on each vector of prior model parameters.  

 

It is important to bear in mind here that the double differences predictions are 

directly derived from the ground motion predictions and in this sense include the 

same information. For the sake of clarity, the ensembles 𝑮𝑴𝟎 for each type of 

compaction model, will from now on only refer to the ensemble of 𝑵𝒆 prior double 

difference predictions: 

 

𝒅𝒅𝒑𝒓𝒊𝒐𝒓 = (𝒅𝒅𝟏
𝒑𝒓𝒊𝒐𝒓

, 𝒅𝒅𝟐
𝒑𝒓𝒊𝒐𝒓

,  … 𝒅𝒅𝑵𝒆
𝒑𝒓𝒊𝒐𝒓

).                 (25) 

 

For each type of compaction models one can define a mean and a covariance 

matrix of the prior double differences predictions. The mean over the 𝑵𝒆 members 

is defined as: 

 

 < 𝑮𝑴𝟎 >=  𝝁[𝒅𝒅𝒑𝒓𝒊𝒐𝒓] =
𝟏

𝑵𝒆
∑ 𝒅𝒅𝒊

𝒑𝒓𝒊𝒐𝒓𝑵𝒆
𝒊=𝟏                  (26) 

 

The covariance over the 𝑵𝒆 members between the jth location and the kth location 

being defined by the following covariance matrix: 

 

𝒄𝒋𝒌
𝒑𝒓𝒊𝒐𝒓

=
𝟏

𝑵𝒆−𝟏
 ∑ (𝒅𝒅𝒊𝒋

𝒑𝒓𝒊𝒐𝒓
− 𝝁[𝒅𝒅𝒋

𝒑𝒓𝒊𝒐𝒓
]) . (𝒅𝒅𝒊𝒌

𝒑𝒓𝒊𝒐𝒓
− 𝝁[𝒅𝒅𝒌

𝒑𝒓𝒊𝒐𝒓
])

𝑵𝒆
𝒊=𝟏         (27) 

 

which can be written in matrix notation as: 

 

𝑪𝒑𝒓𝒊𝒐𝒓 = (𝑮𝑴𝟎
′ . 𝑮𝑴𝟎

′𝑻)/(𝑵𝒆 − 𝟏)                   (28) 

 

And where 

 

𝑮𝑴𝟎
′ = 𝑮𝑴𝟎−< 𝑮𝑴𝟎 >.                      (29) 
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 The 4 mean priors < 𝑮𝑴𝟎 >  calculated for the 4 compaction model types can be 

seen as our best prior estimates.  

 

Consequently from now, only considering our prior knowledge (and assuming a 

production scenario from time T1 to T2), one can generate 4 best prior estimates for 

the 4 types of compaction model from T0 to T2.  

 

For a real scenario time T1 and T2 will correspond respectively to the present day 

and a future geodetic campaign. For a synthetic scenario time T1 can be 

theoretically picked up anytime between T0 and T2; this allows testing of the 

robustness of the workflow and its sensitivity to different choices made in running it. 

  

The next step corresponds to confront or condition the prior estimates up to T1 with 

the geodetic data acquired up to T1. The goal here is to take advantage of the 

ground motions measurements up to T1 in order to refine our predictions. The next 

paragraphs will document two approaches for the evaluation against the 

measurements: the Red-Flag [Nepveu et al., 2010] and Ensemble Smoother (e.g. 

[Fokker et al., 2016]) approach.  

9.1 Red-Flag approach 

For a particular realization 𝒓 of the ensemble 𝑮𝑴𝟎, the Red-Flag approach defines 

the mismatch function as: 

 

 𝑰(𝒓) =
𝟏

𝟐𝑵
(𝒅𝒅𝒓

𝒑𝒓𝒊𝒐𝒓
− 𝒅𝒅)

𝑻
𝑪𝒅𝒅

−𝟏(𝒅𝒅𝒓
𝒑𝒓𝒊𝒐𝒓

− 𝒅𝒅)               (30)  

 

with 𝑵 the number of double differences from T0 to T1 of the vector data 𝒅𝒅 and 

prior model  𝒅𝒅𝒓
𝒑𝒓𝒊𝒐𝒓

. The lower the value of the mismatch function, the better the 

match of the vector of prior double difference predictions with the measurements. In 

this formulation, 𝑪𝒅𝒅 represents the covariance matrix of the measurements. It is 

usually assumed that the non-diagonal values vanish – that is the different data 

points are uncorrelated. Instead, in our workflow, the full 𝑪𝒅𝒅 covariance matrix 

(generated by the geodetic module of ESIP) is taken into account. Also the relative 

importance (~weight) of the different data points is handled by 𝑪𝒅𝒅: points with a 

larger variance receive less weight. 

 

The mismatch function (29) can be read as the Gaussian likelihood of the data, that 

is:  

 

𝑷(𝒅𝒅|𝒅𝒅𝒓
𝒑𝒓𝒊𝒐𝒓

) = 𝒆𝒙𝒑[−𝑰(𝒓)].                     (31) 

 

The Bayesian probability of a particular realization 𝒓 of the ensemble is thus given  

as 

 

𝑷(𝒅𝒅𝒓
𝒑𝒓𝒊𝒐𝒓

|𝒅𝒅) =
𝑷(𝒅𝒅𝒓

𝒑𝒓𝒊𝒐𝒓
) .  𝑷(𝒅𝒅|𝒅𝒅𝒓

𝒑𝒓𝒊𝒐𝒓
)

∑ 𝑷(𝑵𝒆
𝒊=𝟏 𝒅𝒅𝒊

𝒑𝒓𝒊𝒐𝒓
) .  𝑷(𝒅𝒅|𝒅𝒅𝒊

𝒑𝒓𝒊𝒐𝒓
)
 .               (32) 

 

In the right-hand side of the numerator, we have the prior probability of the 

realization (i.e. 𝟏/𝑵𝒆) before confrontation with the measurements, and the 
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 associated likelihood of the data. The denominator is a normalizing factor, in order 

for the sum of all the 𝑷(𝒅𝒅𝒓
𝒑𝒓𝒊𝒐𝒓

|𝒅𝒅) to be equal to one.  

  

The model probability 𝑷(𝒅𝒅𝒓
𝒑𝒓𝒊𝒐𝒓

|𝒅𝒅) based on the confrontation between model 

and measurements up to time T1, is used in a direct way to assign a weight 

𝒘𝒓 = 𝑷(𝒅𝒅𝒓
𝒑𝒓𝒊𝒐𝒓

|𝒅𝒅) to every model realizations computed up to time T1. The same 

weights based on the confrontation between model and measurements up to time 

T1 can be also assigned to every model realization computed up to time T2 (date of 

a future geodetic campaign). The last step consists in computing the weighted 

mean and weighted covariance matrix of the posterior double differences prediction 

both up to T1 and up to T2 as it follows: 

 

𝝁[𝒅𝒅𝒑𝒐𝒔𝒕] =  𝒘. 𝑮𝑴 = ∑ 𝒘𝒊 𝒅𝒅𝒊
𝒑𝒓𝒊𝒐𝒓𝑵𝒆

𝒊=𝟏                  (33) 

 

𝒄𝒋𝒌
𝒑𝒐𝒔𝒕

=
𝟏

𝟏−∑ 𝒘𝒊
𝟐𝑵𝒆

𝒊=𝟏
 ∑ 𝒘𝒊(𝒅𝒅𝒊𝒋

𝒑𝒓𝒊𝒐𝒓
− 𝝁[𝒅𝒅𝒋

𝒑𝒐𝒔𝒕
]) (𝒅𝒅𝒊𝒌

𝒑𝒓𝒊𝒐𝒓
− 𝝁[𝒅𝒅𝒌

𝒑𝒐𝒔𝒕
])

𝑵𝒆
𝒊=𝟏       (34) 

 

where 𝒄𝒋𝒌
𝒑𝒐𝒔𝒕

 is the posterior covariance between the j
th
 location and the k

th
 location; 

and which can be written in matrix notation as: 

 

𝑪𝒑𝒐𝒔𝒕 = (𝑮𝑴′′𝑻. (𝒘. 𝑮𝑴′′))/(𝟏 − ∑ 𝒘𝒊
𝟐𝑵𝒆

𝒊=𝟏 )                (35) 

 

where  

 

𝑮𝑴′′ = 𝑮𝑴 − (𝒘. 𝑮𝑴).                       (36) 

 

At this stage, following the Red-Flag confrontation approach, one computed the 

weighted mean and weighted covariance matrix of the posterior double differences 

prediction both up to T1 and up to T2 and for each type of compaction model. 

 

Before switching to the next confrontation approach, note here that with the model 

weights w based on the confrontation between prior double differences and 

measurements up to time T1, one can also calculate the mean ground motions 

𝝁[𝒅𝒑𝒐𝒔𝒕] (where 𝒅𝒑𝒐𝒔𝒕 here represents the posterior u3, u1, u2), and their associated 

standard deviation 𝝈[𝒅𝒑𝒐𝒔𝒕] for each benchmark locations and for each timing of 

geodetic campaigns between T0 to T2 as: 

 

𝝁[𝒅𝒑𝒐𝒔𝒕] = ∑ 𝒘𝒊 𝒅𝒊
𝒑𝒓𝒊𝒐𝒓𝑵𝒆

𝒊=𝟏                       (37) 

 

𝝈[𝒅𝒑𝒐𝒔𝒕] = √
∑ 𝒘

𝒊 
(𝒅𝒊

𝒑𝒓𝒊𝒐𝒓
−𝝁[𝒅𝒑𝒐𝒔𝒕])

𝟐
𝑵𝒆
𝒊=𝟏

(𝒍−𝟏)

𝒍

                   (38) 

 

where 𝒅𝒑𝒓𝒊𝒐𝒓 denotes the prior ground motions (u3, u1, u2) between T0 to T2; and l is 

the number of non-zero weights w. 

9.2 Ensemble Smoother approach 

The Ensemble Smoother approach consists in an inversion scheme, for which the 

goal is to maximize (or minimize –log[j]) an objective function of the form (see 

[Menke, 1989], [Tarantola, 2005]): 
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𝑱(𝒎) = 𝒆𝒙𝒑[−
𝟏

𝟐
((𝑮(𝒎) − 𝒅𝒅)𝑻 𝑪𝒅𝒅

−𝟏 (𝑮(𝒎) − 𝒅𝒅)+ (𝒎 − 𝒎𝟎)𝑻 𝑪𝒎
−𝟏 (𝒎 − 𝒎𝟎))]    (39) 

  

where 𝒎 and 𝑮(𝒎) are respectively the “optimized” (posterior) vector of model 

parameters and double differences predictions (that is 𝒅𝒅𝒑𝒐𝒔𝒕) from time T0 to T1. 

More specifically 𝒎 represents the updated “optimized” (posterior) driving input 

parameters of the geomechanical forward model (e.g. 𝑪𝒎𝒑𝒓𝒆
, 𝑪𝒎𝒑𝒐𝒔𝒕

, 𝑷𝒕𝒓𝒂𝒏𝒔 for the 

bilinear compaction model).Following this approach the objective function is 

integrated in an inversion scheme seeking the solution for the vector 𝒎 of model 

parameters that optimize the match with data and with prior information 𝒎𝟎. This 

way, the Ensemble smoother conditioning step updates both models and 

predictions; instead Red-Flag adjusts model weights according to the data. Beside 

the fact that the Ensemble Smoother includes an inversion exercise and Red-Flag 

does not; the main difference between the two methods for confronting model with 

data is that for the Ensemble smoother we explicitly include our prior knowledge 𝒎𝟎 

and the model covariance matrix 𝑪𝒎 (explained in the sequel of this section) with 

the term (𝒎 − 𝒎𝟎)𝑻 𝑪𝒎
−𝟏 (𝒎 − 𝒎𝟎). For the Red-Flag mismatch function, our prior 

knowledge is implicitly included in 𝒅𝒅𝒑𝒓𝒊𝒐𝒓.   

 

Following the Ensemble Smoother approach, we take advantage of the prior 

knowledge (coming from previous studies) on the statistical distributions of each 

model parameter (such as permeability, porosity, compaction coefficients…). The 

Ensemble Smoother objective function (39) stresses the relative importance of the 

different prior model parameters (certain parameters receive less weight through a 

larger variance); it correctly weighs parameters and measurements (by the relative 

magnitude of 𝑪𝒅𝒅 and 𝑪𝒎); it correctly incorporates correlations between prior 

model parameters and between different measurement values (by the non-diagonal 

elements in 𝑪𝒅𝒅 and 𝑪𝒎). If one parameter has no clear definite knowledge/belief, 

its variance should be larger. For the extreme case that none of the model 

parameters are well defined/known, the 𝑪𝒎 values should be extremely large and 

the term (𝒎 − 𝒎𝟎)𝑻 𝑪𝒎
−𝟏 (𝒎 − 𝒎𝟎) in equation (39) can be neglected. Although the 

density of measurements above some areas of a field can be small, their influence 

can still be substantial through a variability of the prior model parameters that 

specifically affects the match with those measurements while much less influencing 

the match with the more dense measurements. For instance, if there are only few 

measurements above an aquifer with uncertain properties, the variability of the 

aquifer properties can be reduced by the measurements while the influence on the 

gas-bearing part – where the measurements are denser – is only limited. 

 

The optimal “least-square” solution of (39) for one particular realization of the 

ensemble and assuming a linear inverse problem is given by: 

 

𝒎̂ = 𝒎𝟎 + 𝑪𝒎𝑮𝑻(𝑮𝑪𝒎𝑮𝑻 + 𝑪𝒅𝒅)−𝟏(𝒅𝒅 − 𝑮𝒎𝟎) .             (40) 

 

For an ensemble-based estimate with a non-linear problem we define 𝑮𝑴𝟎 as the 

result of the non-linear geomechanical forward model working on all the members 

of the ensemble, that is the ensemble of prior double differences predictions from T0 

to T1. For an ensemble-based estimate, the Ensemble Smoother then gives as 

updated model parameter ensemble: 
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 𝑴̂ = 𝑴𝟎 + 𝑴𝟎
′ [𝑮𝑴𝟎

′ ]𝑻 {𝑮𝑴𝟎
′ [𝑮𝑴𝟎

′ ]𝑻 + (𝑵𝒆 − 𝟏) 𝑪𝒅𝒅
−𝟏}

−𝟏
× (𝑫𝑫 − 𝑮𝑴𝟎)      (41) 

 

with 𝑮𝑴𝟎, as before for Red-Flag, represents the result of the non-linear 

geomechanical forward model working on all the members of the ensemble, that is 

the ensemble of prior double differences predictions from T0 to T1. This expression 

uses the expression for the empirically estimated model covariance matrix 𝑪𝒎 =
𝑴𝟎

′ 𝑴𝟎
′𝑻

𝑵𝒆−𝟏
 for the ensemble of model realizations. The estimate for 𝑪𝒎 includes the 

known and belief bandwidths of the model parameters. Clearly, the larger the 

ensemble, the better the numerical estimate of the 𝑪𝒎 should be. Primes in Eq. (41) 

indicate anomalies with respect to the ensemble mean as 𝑴𝟎
′ = 𝑴𝟎−< 𝑴𝟎 >. 

Finally 𝑫𝑫 = (𝒅𝒅 + 𝜺𝟏,  𝒅𝒅 + 𝜺𝟐, … 𝒅𝒅 + 𝜺𝑵𝒆
) corresponds to an ensemble of double 

differences data realizations created adding to the vector data 𝒅𝒅 different random 

noise vectors 𝜺 that lie within the uncertainty range of the measurements. This 

procedure ensures a posterior error covariance that is consistent with the theory. 

 

Ideally the reservoir model should be run again with the new updated model 

parameters 𝑴̂ to create new pressure distributions up to time T2 before running 

again the geomechanical forward model. However as a first approximation and 

assuming linearity, one can directly include in 𝑴𝟎:  

 the prior double differences from T0 to T1,  

 the prior double differences from T0 to T2,  

 the prior ground motions (u3, u1, u2) predictions from T0 to T2.  

This way one can update in one single step:  

 all the model parameters with  

 the prior double differences predictions from T0 to T1,  

 the prior double differences predictions from T0 to T2,  

 the prior ground motions predictions from T0 to T2.  

In other words, in doing so 𝑴̂ includes now:  

 the posterior model parameters,  

 the posterior double differences predictions from T0 to T1,  

 the posterior double differences predictions from T0 to T2,  

 the posterior ground motions (u3, u1, u2) predictions from T0 to T2. 

 

From the ensemble of posterior double differences predictions 𝑮𝑴̂ (now embedded 

in 𝑴̂), the posterior mean double differences predictions over all the ensemble 

members 〈𝑮𝑴̂〉 and the posterior covariance matrix 𝑪𝑮𝑴̂ can be computed as: 

 

< 𝑮𝑴̂ > =   𝝁[𝒅𝒅𝒑𝒐𝒔𝒕] =
𝟏

𝑵𝒆
∑ 𝒅𝒅𝒊

𝒑𝒐𝒔𝒕𝑵𝒆
𝒊=𝟏                  (42) 

 

 𝑪𝑮𝑴̂ =  
[𝑮𝑴′̂][𝑮𝑴′̂]

𝑻

𝑵𝒆−𝟏
 .                        (43) 

 

The mean and covariance matrix of the posterior double differences prediction both 

up to T1 and up to T2 and for each type of compaction model can thus be computed. 

 

One can also extract from 𝑴̂ the ensemble of posterior ground motions (u3, u1, u2) 

predictions from T0 to T2, and one can calculate the means of the ground motions 

and their attached standard deviations at each benchmark locations and for each 

timing of geodetic campaigns between T0 to T2 as: 
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 𝝁[𝒅𝒑𝒐𝒔𝒕] =
𝟏

𝑵𝒆
∑ 𝒅𝒊

𝒑𝒐𝒔𝒕𝑵𝒆
𝒊=𝟏                       (44) 

 

𝝈[𝒅𝒑𝒐𝒔𝒕] = √
𝟏

𝑵𝒆−𝟏
∑ (𝒅𝒊

𝒑𝒐𝒔𝒕
− 𝝁[𝒅𝒑𝒐𝒔𝒕])𝟐𝑵𝒆

𝒊=𝟏  .              (45) 
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 10 Assessment 

For both the Red-Flag and Ensemble Smoother approach, of ESIP computes 4 

posterior means and their attached covariance matrix for each type of compaction 

model. Consequently, 8 updated models are now available and it remains to judge 

whether the method has worked properly (and possibly decide for the determination 

of the model that is best fitting the data). To this aim, one can use the 
2
 method. 

The number calculated in this method judges if the model posterior predictions and 

the data are consistent: their average mismatch should be of order unity. In this 

number, a combination of the data covariance and the covariance of the posterior 

prediction must be employed: 

 

𝝌𝒓𝒆𝒅
𝟐 =

𝟏

𝝂
(𝒅𝒅 − 𝝁[𝒅𝒅𝒑𝒐𝒔𝒕])𝑻. [𝑪𝒅𝒅 + 𝑪𝑮𝑴]−𝟏. (𝒅𝒅 − 𝝁[𝒅𝒅𝒑𝒐𝒔𝒕])        (46) 

 
where 𝝂 is the number of degree of freedom given as 𝑵𝒅𝒅 − 𝒏𝒇 with 𝑵𝒅𝒅 the number 

of double differences and 𝒏𝒇 the number of model parameters. The 
2
 method takes 

into consideration the model complexity, that is a model with more degrees of 

freedom (e.g. the rate type compaction model) will be penalized. Here, 𝝌𝒓𝒆𝒅
𝟐 = 𝟏 

means that model is matching the data and that the quality of the match is in 

agreement with the error covariance of the data. If 𝝌𝒓𝒆𝒅
𝟐 >> 𝟏, it means that either 

the model is poorly fitting the data or the covariance of the data has been 

underestimated. If 𝝌𝒓𝒆𝒅
𝟐 > 𝟏, it means that the model is fairly close to the data and 

that the mismatch is either due to the model or again that the covariance of the data 

has been underestimated. When 𝝌𝒓𝒆𝒅
𝟐 < 𝟏, it means that the model is “over-fitting” 

the data, which can be due to the model but also again can be due to an 

overestimation of the covariance of the data. 

 

It is not straightforward to use 𝝌𝒓𝒆𝒅
𝟐  for the assessment of a model performance, or 

to distinguish between models. The 𝝌𝒓𝒆𝒅
𝟐  assessment is primarily on the 

performance of the method. It can happen that a poor model can still give a 

reasonable value for 𝝌𝒓𝒆𝒅
𝟐  because the posterior covariance is still large. The 

question on selection of the right conceptual model using the data is related to the 

concept of observability. More research is required to apply such concepts to the 

problem at hand. 
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