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Executive Summary 
 

This study proposes considerable improvements to the current NAM geodetic 
processing workflow with demonstrated benefit for geomechanical modelling. Their 

consideration will add value to the development of a testing framework for candidate 

hypotheses in geomechanical modelling. The proposed stochastic models also 

provide opportunities for a substantiated optimisation of the current survey design. 

 
The NAM geodetic processing workflow has been examined in the context of 

geomechanical modelling with focus on observations from levelling and InSAR data. 

Together with GPS, these techniques play a complementary role in subsidence 

modelling due to their specific properties.  

 

In this report, we investigated potential improvements for preparing subsidence 
measurements from these techniques for geomechanical model calibration. As an 

essential prerequisite for testing candidate hypotheses on geomechanical models, 

appropriate stochastic models for geodetic datasets have been proposed. It was 

shown that taking into account correlation structures significantly improves the 

precision of geomechanical model predictions. Furthermore, several effective 
measures to optimise the model calibration workflow have been identified, aiming at 

minimising uncertainties and biases due to simplifications and not validated 

assumptions. 

 

 

Stochastic modelling (Chapter 2): 
 

The stochastic model for geodetic data that is currently deployed for geomechanical 

calibration at NAM is simplified and incomplete, because it neglects correlations and 

only accounts for the uncertainty of the measurement itself. However, when 

identifying subsidence due to gas extraction as signal of interest, any deformation 
caused by shallow sources should be considered noise and thus included into the 

uncertainty model. Complementing the technique-related measurement noise by 

this so-called idealisation noise is the major innovation of this study. Idealisation 

noise is by far the most dominant noise component and thus undeniably significant. 

However, its quantification in parametric models is much less reliable than what is 

known on measurement noise. 
 

In the case of both levelling and InSAR, we proposed specific state-of-the-art models 

to describe the measurement noise. Furthermore, we proposed a Monte Carlo 

approach to account for the processing induced correlation resulting from filtering 

out the atmospheric component in InSAR data.  
 

An idealisation noise model has been derived from levelling surveys outside the 

influence area of gas production where shallow deformation effects can be isolated 

from deep source subsidence. The spatio-temporal stochastic analysis of the 

selected area shows the presence of both temporal non-stationary and spatially 

correlated idealisation noise components in the levelling dataset. The obtained 
model parameters for idealisation noise are deemed representative for the Wadden 

area but not for upcountry regions with different soil properties. We proposed to also 

use this model to approximate idealisation noise in InSAR data. 

 

 
Optimal output level (Chapter 3): 

 

Based on simulations with a simple geomechanical model, the optimal interface 

between geodetic data processing and geomechanical modelling workflow has been 
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investigated. Recommendations aim at maximising modelling efficiency while 

minimising not fully validated assumptions and computational complexity. 

The following conclusions were drawn from the output level study. Biases in 
geomechanical calibration can be mitigated by selecting the output level of spatially 

and temporally differenced instead of pseudo-absolute subsidence measurements. A 

demonstrated bias can be easily avoided by calibrating model predictions against 

InSAR observations in the original line-of-sight (LOS) geometry instead of relying on 

the incorrect assumption of purely vertical ground deformation. 

 
We showed that the currently implemented simplified processing compromises the 

precision of the geomechanical model parameters. Thus, the uncertainty of model 

predictions can be significantly reduced by taking covariances into account for 

geodetic data. A similar effect has the use of multiple reference points and multiple 

reference epochs for the individual double difference observations. This measure has 
also the potential to mitigate biases due to the choice of a single reference point.  

 

Finally, the simulation study showed that in the case of using the full covariance 

matrix in the inversion, atmospheric filtering does not have a significant effect on 

the modelling quality. In that sense, not removing the atmospheric signal from 

InSAR data is worth consideration for the geomechanical modelling as it may have 
some considerable advantages for bias mitigation. 

 

 

Outlier handling (Chapter 4):  

 
Considering outlier handling in the geodetic processing workflow is most relevant for 

levelling data, in which unavoidable human errors regularly cause huge 

discrepancies. Rigorous outlier handling, however, requires reliable knowledge on 

geomechanical model uncertainties. Since this is not available, we proposed to focus 

on the very obvious outliers that can be identified without that knowledge, using a 

pragmatic approach. For InSAR, outliers are generally a minor issue due to the high 
spatio-temporal sampling in combination with the smooth signal of interest. We 

propose to address a subclass of InSAR outliers that may become critical for 

geomechanical modelling. For both levelling and InSAR, a sensitivity analysis in 

operational modelling can help quantifying the actually impact of outliers. 

 
 

InSAR Data volume (Chapter 5):  

 

For InSAR, we proposed an approach for data reduction in order to cope with the 

large data volume. We proposed simple binned averaging for data reduction in the 

time domain and hierarchical k-means clustering for data reduction in the space 
domain. Both approaches can be formulated as linear transformation. This is 

beneficial as it allows for rigorous linear error propagation. Replacing the currently 

deployed ad-hoc approach of resampling InSAR observations to levelling benchmark 

locations, the new approach better exploits the full potential of the technique. 

 
 

Data integration (Chapter 6):  

 

To integrate datasets from different measurement techniques into the workflow of 

geomechanical model calibration, we proposed not to combine or collocate them 

prior to modelling. To avoid interpolation artifacts, techniques should be introduced 
separately into the modelling. The conceptual mathematical framework for joint 

geomechanical inversion of all the geodetic techniques was given. 
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Basic recommendations:  

 
1. Use the proposed stochastic model of geodetic data in the form of full noise 

covariance matrices in geomechanical modelling. 

 

2. Use double differences with multiple reference epochs and points as an 

optimal interface between geodetic data and geomechanical modelling. 

 
3. In case of InSAR, use line of sight (LOS) data directly in the geomechanical 

modelling and do not to convert the data to vertical. Instead, geomechanical 

models should be evaluated in LOS direction.  

 

4. Use the proposed approach for outlier detection and removing only the most 
obvious levelling outliers  

 

5. Reduce the InSAR data volume by the proposed spatio-temporal averaging 

methods. 

 

6. Consider not removing the atmospheric signal from InSAR data as the 
preferred option for geomechanical modelling.  
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1. Introduction  
 

This report provides the results of the geodetic subproject of the long-term study on 

anomalous time-dependent subsidence in the Wadden Sea region. Geodetic 

measurements of land subsidence are one of the key components of the subsidence 
modelling/prediction workflow. This study investigates how to correctly and 

optimally exploit geodetic data in this process, aiming for improvements to the 

current implementation at NAM (see Appendix 2). The present report presents 

results on different aspects of geodetic data processing/exploitation as follows.  

 

 Stochastic modelling (Chapter 2): One of the main research questions is 
how to describe the stochasticity of geodetic data, or in other words what the 

stochastic model (or noise model) of geodetic data is. Such a stochastic 

model is an indispensable requirement for hypothesis testing as well as the 

research presented in later chapters. Although we can find different 

stochastic models in literature and technical studies, we cannot find 

substantiated support to prefer one model to another in the project context. 
Furthermore, for modern geodetic techniques like time series InSAR 

(Interferometric Synthetic Aperture Radar), the available knowledge on 

potential noise components and their variability in time and space is limited. 

 

We should note that the major challenge is not so much quantifying the 

uncertainty of the measurement itself but rather parameterising the so-
called idealisation noise. This component of the stochastic model accounts 

for any real deformation that is not associated with the deep source 

deformation induced by gas production. Considering the latter the signal of 

interest, any deformation due to shallow sources should be included in the 

stochastic model.   
 

The goal in this report is to review the stochastic properties of levelling and 

InSAR subsidence measurements, to get more insight in possible spatio-

temporal variability of different noise components, and finally to propose a 

clear and coherent step-wise procedure to construct the required stochastic 

model. 
 

 Optimal output level (Chapter 3): Geo-mechanical modelling/calibration 
can take place using different levels of geodetic processing, ranging from raw 

observations to elaborately tailored products. The more processing steps are 

involved, the more a priori knowledge is needed and the more complicated 

becomes the stochastic model. On the other hand, geomechanical model 
computations become more complicated if the model is matched with 

geodetic data at a lower processing level. The main question here is what the 

best output level of geodetic data is to be used in the modelling considering 
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transparent use of a priori knowledge, simpler structure of the stochastic 

model and modelling efficiency/optimality.   

 

 Outlier handling (Chapter 4): Similar to any kind of measurements, 
geodetic datasets may include outlier observations mainly due to human or 

processing errors. As outliers are described neither by the stochastic model 

nor by the geo-mechanical model, they may introduce a bias in the final 

subsidence model. The objective here is to propose an efficient approach to 

detect the potential outliers in geodetic datasets.    

 

 Data volume (Chapter 5): Handling large data-volumes is an important 
aspect especially for InSAR data.  Output of the InSAR processing is a 3D 

spatio-temporal dataset, i.e., deformation time series for a large number of 

radar targets. Contrary to levelling datasets, which typically contain 

hundreds of benchmarks and a limited number of epochs, InSAR datasets 

often comprise tens of thousands of points and many epochs. Associated 

covariance matrices result in computationally expensive geomechanical 
modelling or are even too large to work with. The main objective here is to 

propose a data reduction approach for InSAR data in both time and space 

with clear/plausible assumptions.  

 

 Data integration (Chapter 6): Geodetic subsidence datasets include data 
from three different geodetic techniques, i.e. levelling, InSAR, and GPS. How 
to properly integrate all different datasets together with their stochastic 

models into the subsidence modelling process is addressed in this part. 
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2. Stochastic Modelling 
 

The main objective of the stochastic modelling here is to describe the precision, i.e. 

“noise” variability/dispersion, of geodetic data (Levelling and InSAR) using a clear 

mathematical formulation. The main focus is on the first and the second central 
moment of noise components. Note that InSAR and levelling datasets are spatio-

temporal, i.e., they include deformation time series for a large number of levelling 

benchmarks or InSAR persistent scatterers, respectively. The final goal is to propose 

an analytical formulation and a step-wise algorithm to calculate the variances of all 

spatio-temporal deformation measurements and covariances among them.  
 

As the term “noise” may be interpreted loosely, in order to avoid misinterpretation, 

we will give a brief introduction to what we mean with this term in the context of 

this project.  

 

Here, the term “noise” subsumes all signal components in geodetic observations that 
are not related to the signal of interest. In our case, the signal of interest is the 

deformation induced by deep mechanisms such as reservoir compaction or aquifer 

depletion. Based on this definition, we encounter two different kinds of noise 

components. One is the random error of the measurements themselves, called 

“measurement noise”, and another one covers any other kind of deformation signal 
rather than the signal of interest. We call the latter “idealisation noise”. This term is 

introduced based on the concept of “idealisation precision”. In classical surveying, 

the idealisation precision describes how well the location of a topographic feature 

can be realized in the terrain. For example, the corner of a building can be identified 

more sharply than the middle of a river and so it has a higher idealisation precision. 

The same concept was introduced in the context of subsidence monitoring by 
(Ketelaar 2009) when the signal of interest is contaminated by other kinds of 

deformation, so it cannot be identified precisely. With this definition, the dispersion 

(variance and covariances) of idealisation noise components is the measure of 

idealisation precision, and the dispersion of measurement noise is the measure of 

measurements precision.  To summarize these definitions in a mathematical form, 

assume 𝑦 is the vector of geodetic observations. In generic form, the vector 𝑦 can be 

written as the summation of three contributions:  

 

𝑦 = 𝑆 + 𝑑 + 𝑒                             
 

where 𝑆 is the true and unknown value of the signal of interest, 𝑑 is any other kind 

of deformation rather than the signal of interest (idealisation noise), and 𝑒 is the 
measurement noise. The dispersion of the noise components is given by their 

covariance matrices as:  

 
𝐷{𝑒} = 𝑄𝑒  , 𝐷{𝑑} = 𝑄𝑑 
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where 𝐷{. }  is the dispersion operator. The goal of this chapter is to introduce a step-

wise algorithm to calculate 𝑄𝑒   and 𝑄𝑑  for leveling and InSAR datasets.     

 

Chapter outline: This chapter consist of four parts. The sections 2.1 and 2.2 will 

address the stochastic model for levelling and InSAR measurement noise, 

respectively. The idealisation noise is explained in section 2.3. Finally, the 

propagation of error sources through InSAR processing is addressed in section 2.4. 

 
 

2.1. Levelling measurement noise 
Levelling measurement noise is a noise component with a very well known model in 

geodesy.  The typical model of measurement noise assumes that all the measured 

height differences in each levelling campaign are uncorrelated. Furthermore the 

variance of a measured height difference between point 𝑖 and 𝑗 is linearly dependent 
on the length of the trajectory 𝑙𝑖𝑗:  

 

𝜎ℎ𝑖𝑗 
2 = 𝜎𝑚  

2 𝑙𝑖𝑗 

 

where 𝜎𝑚  
 (in mm/√km ) is a scaling factor that can be specified per epoch. From 

twelve major levelling campaigns in the northern part of the Netherlands, using 

variance component estimation, we derive an average value of 0.86 mm/√km  for 

σm 
 . The final covariance matrix of the vector 𝑦𝑘, which subsumes all measured 

height differences at epoch 𝑡𝑘, can be constructed as: 
 

 𝑄𝑦𝑘
= 𝜎𝑚

2  
[

𝑙01  
 𝑙12

0 

0 
⋱  
 𝑙𝑖𝑗

]

 

 

 
This covariance matrix is propagated to the estimated heights (i. e., height 

differences with respect to a single reference point) per epoch as:  

 

𝑄𝐻𝑘
= (𝐴𝑘𝑄𝑦𝑘

−1𝐴𝑘)
−1

 

 

where 𝐴𝑘 is the levelling network design matrix for the respective epoch. In this way, 
we construct 𝑄𝐻  for all the epochs. Note that QHk

 is the covariance matrix of single 

differences (height differences of epoch 𝑡𝑘) and should be further propagated to 
double differences (differences between two epochs) using the linear error 

propagation law. For example for epochs 𝑡1, 𝑡2, and 𝑡3:  

 

[
𝑄𝑚12

𝑄𝑚12,𝑚13

𝑄𝑚13,𝑚12
𝑄𝑚13

] = [
−𝐼 𝐼 0
−𝐼 0 𝐼

] [

𝑄𝐻1
  

 𝑄𝐻2
 

  𝑄𝐻3

] [
−𝐼 −𝐼
𝐼 0
0 𝐼

] = [
𝑄𝐻1

+ 𝑄𝐻2
𝑄𝐻1

𝑄𝐻1
𝑄𝐻1

+ 𝑄𝐻3

]  

 

where I  is the identity matrix,  Qm12
 is the covariance matrix of  double differences 

between epochs 1 and 2, and Qm12,m13
 is contains the cross-covariances between the 

double differences of two pairings of epochs.  Using this error propagation, the final 

covariance matrix of levelling measurement noise (𝑄𝑀) is constructed. Figure 2.1 
demonstrates the measurement noise covariance matrix construction. Figure 2.1a is 

a stylized levelling network for two epochs 𝑡1 and 𝑡2 with the same design matrices 

𝐴1 and 𝐴2  visualized in Figure 2.1b. Then the Figures 2.1c and 2.1d are the 

𝑄𝑦1
= 𝑄𝑦2

 and 𝑄𝐻1
= 𝑄𝐻2

 respectively. Note that the observations are ordered based on 

their distance to the reference point. This is the main reason why the variances in 
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Figure 2.1d are increasing. Assuming six epochs with the same design matrix, all 

the 𝑄𝐻𝑘
 matrices are propagated to 𝑄𝑀, which has been visualized in the Figure 2.2.  

 

 
Figure 2.1: Demonstration of measurement noise covariance matrix construction for a stylized levelling 

network: a) levelling network configuration for two epochs 𝑡1 and 𝑡2, red points are benchmark locations, 
black arcs are levelling paths between benchmarks, and the blue point is the network reference benchmark, 

b) design matrix 𝐴1 = 𝐴2, c) diagonal covariance matrix of the observed height differences 𝑄𝑦1
= 𝑄𝑦2

, d) 

covariance matrix of estimated heights with respect to the reference point 𝑄𝐻1
= 𝑄𝐻2

. Benchmarks are 

ordered based on the distance to the reference point. Colorbars are in mm2.  
 

 
 

Figure 2.2: The final measurement noise covariance matrix 𝑄𝑀 for the stylized network of Figure2.1 and six 
levelling epochs (five double difference epochs with respect to the first epoch). Colorbars is in mm2.   
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2.2. InSAR measurement noise 
Error sources associated with InSAR measurements can generally be categorized 
into four components (Hanssen. 2001) as following:  

1. Decorrelation effect induced by different error sources such as thermal noise, 
scattering mechanism, resampling and coregistration errors, 

2. Atmospheric effects including turbulent mixing and vertical stratification, 

3. Orbital errors and 

4. Unwrapping errors. 

 
The main InSAR measurement noise components considered in this study are 

decorrelation noise and atmospheric effects due to turbulent mixing. Atmospheric 

errors due to vertical stratification affects only mountainous terrains, is strongly 

correlated with topography and insignificant in flat areas such as the northern 

Netherlands. Hence, this effect is not considered in our noise model. Orbital effects 

are assumed deterministic; they are usually estimated and removed during InSAR 
processing. Unwrapping errors are considered as outliers in InSAR results and will 

be addressed later under the subject InSAR outlier handling.  

 

Assuming that 𝑄𝑛 and 𝑄𝑤 , are covariance matrices of decorrelation noise and 
atmospheric effects respectively, we need the final stochastic model in the form of 

Q𝑀𝐼𝑛𝑆𝐴𝑅
= Qn +  𝑄𝑤 for InSAR time series. Note that this noise model describes error 

sources of unwrapped time series without any smoothing/filtering applied on InSAR 

data. In the case of filtering (e.g. atmospheric filtering), this noise model should be   

propagated through filtering steps in order to construct the stochastic model for 

final filtered data. In this section we address only how to construct 𝑄𝑛 and 𝑄𝑤. Later, 
in section 2.4, it will be explained how this model should be propagated further 

through InSAR filtering steps.  

 

2.2.1. InSAR decorrelation/scattering noise 𝐐𝐧 
The significance of scattering and thermal noise for persistent scatterers is very well 

studied in the InSAR community. In addition to some theoretical models given in 

literature, some experimental validation also estimates the uncertainty component 
due to scattering noise (Marinkovic 2008, Ferretti. 2007). Based on these studies, the 

variance of  PS scattering noise for double-difference measurements ranges from 
~2.5 mm² for perfect point scatterers (such as big corner reflectors) to ~25 mm² for 

ordinary points (points with a larger variance are generally disregarded in the InSAR 

processing). Although these numbers can be used as an approximate value, in 

practice we are dealing with large numbers of PS with different signal-to-noise ratio 

and scattering behaviour. Here, we propose to use a noise model that is based on 
the amplitude dispersion index (Ferretti, Prati and Rocca 2001). For InSAR stacks with a 

sufficient number of images (i.e., >25; this criterion is usually fulfilled for InSAR 

datasets in northern Netherlands), this index is a good approximation of the phase 

standard deviation.  

  

The relation of the normalized amplitude dispersion 𝐷𝑎 and phase standard 
deviation 𝜎𝜑 (of one PS in one image) is defined as: 

 

𝐷𝑎 =  
𝜎𝑎

𝜇𝑎
 ≈  𝜎𝜑, 

 

where 𝜎𝑎 is the temporal standard deviation of the radar amplitude, and 𝜇𝑎 is the 
temporal mean of the amplitude for a certain PS. This relation is demonstrated in 

Figure 2.3 using a simulation for a stack of 70 images. We can see that small phase 

standard deviations (as expected for PS) can be approximated well by the normalized 
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amplitude dispersion index. The phase standard deviation is in radian units and is 

converted to meters as: 

𝜎𝑛 =  
𝜆

4𝜋
𝜎𝜑 , 

 

where  𝜎𝑛  is the scattering noise standard deviation in meters and 𝜆 is the radar 
wavelength (typical: 0.056 m).  

 

 
 

Figure 2.3: Simulated scatter plot of the relation between amplitude dispersion and phase standard 
deviation for a stack of 70 images. 

 

The amplitude dispersion index is a standard product of InSAR processing software 

and can be used as an approximation of the phase standard deviation of one PS in 

one SAR image. This standard deviation should be propagated to double-difference 

InSAR measurements using the linear error propagation law. For example, for PS 

points 𝑖, 𝑗, 𝑟, 𝑠 and acquisition times 𝑡0, 𝑡1, 𝑡2, 𝑡3 , double difference variances and 
covariances are computed as: 

C{𝑁𝑖𝑟
𝑡1𝑡𝑜, 𝑁𝑖𝑟

𝑡1𝑡𝑜} =  4𝜎𝑛
2 

C{𝑁𝑖𝑟
𝑡1𝑡𝑜, 𝑁𝑖𝑟

𝑡2𝑡𝑜} =  2𝜎𝑛
2 

C{𝑁𝑖𝑟
𝑡1𝑡𝑜, 𝑁𝑗𝑟

𝑡1𝑡𝑜} = 2𝜎𝑛
2 

C{𝑁𝑖𝑟
𝑡1𝑡𝑜, 𝑁𝑗𝑟

𝑡2𝑡𝑜} =  𝜎𝑛
2 

C{𝑁𝑖𝑟
𝑡1𝑡𝑜 , 𝑁𝑗𝑠

𝑡3𝑡2} =  0 

where C{. } is the covariance operator, and 𝑁𝑖𝑟
𝑡1𝑡𝑜 is the scattering noise component of 

the double difference measurement between points 𝑖 and 𝑟, and acquisitions 𝑡1 and 

𝑡0. Using these equations all the elements of the atmospheric covariance matrix 𝑄𝑛 
will be constructed.  

      

2.2.2. InSAR atmospheric noise 𝐐𝒘  
One of the dominant error sources in InSAR data results from the heterogeneity of 

the wet component of atmospheric refractivity, causing varying time delays in 
satellite radar observations. It has been shown that the variability of atmospheric 

signal between two points increases with distance between the points, and almost 

linearly with their height difference (Emardson 2003, R. Hanssen 1998, Onn 2006). 

In this study, we ignore the height dependent variation of the atmospheric effect, 

because the topographic height variations close to the Wadden Sea are insignificant.  

 
It has been shown by (R. Hanssen 2001) that the atmospheric turbulence effect in 

InSAR is temporally uncorrelated but spatially correlated and can be described by a 

power-law scaling behaviour in space following the turbulence theory proposed by 

(Kolmogorov 1941). Such a power-low behaviour can be effectively described with a 

covariance model from Matern-family as (Tatarskii 1971, Handcock 1994, Stein 
2005, Grebenitcharsky 2005): 
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𝐶(𝑙) =   
𝜎𝑤

2

2(𝜏−1) Γ(𝜏)
 (

√2𝜏 |𝑙|

𝐿𝑤
)

𝜏

 𝐾𝜏 (
√2𝜏 |𝑙|

𝐿𝑤
) , 

 

where l is the spatial distance, σw
2  is the atmospheric variance factor, Lw is the 

spatial range beyond that the turbulence effect becomes practically uncorrelated, 

and τ is the model parameter which controls the spatial smoothness of the 

turbulence signal. Γ and K are the Gamma function and the modified Bessel 

function of the second kind respectively. This covariance model has three unknown 

values (σw
2 , Lw, and τ), which in principle can be estimated from filtered atmospheric 

data of PS-InSAR. We should note that this Matern covariance model coincides with 

well known covariance models for specific choices of the τ parameter. For example if 

τ ⟶ ∞, the Matern model converges to a Gaussian model as 

𝐶(𝑙) =   𝜎𝑤
2  𝑒

−0.5(
 𝑙

𝐿𝑤
)

 2

 , 
 
or if τ = 1 2⁄  the Matern model is identical with an exponential model: 

 

𝐶(𝑙) =   𝜎𝑤
2  𝑒

−(
 𝑙

𝐿𝑤
)

  

. 

 

Based on the experimental studies in (Liu 2012), the parameter τ mainly varies 

between 2/3 and 5/3 in the Netherlands. So the Gaussian model (with τ = ∞) is far 

off from reality. However, the exponential covariance model (with τ = 1/2) can be 
used as an adequate approximation as will be shown. The advantage of the 

exponential model is that it has one unknown less to be estimated, and at the same 

time it can reasonably describe the spatial variability of the atmosphere. In order to 

validate this argument, we simulate five interferometric atmospheric signals with 

different degrees of variability but all based on the experimental power-law model 

presented by (R. Hanssen 2001). Figure 2.4 shows these simulations together with 
their empirical variogram. The modelled exponential variograms are also plotted. We 

can clearly see that an exponential model can effectively approximate the degree of 

the spatial variability in the atmospheric signal. So in this study we propose to use 

the exponential covariance/variogram for InSAR atmospheric noise. 

 

The variation in covariance model parameters (i.e. σw
2  and Lw) depends on the 

random atmospheric conditions at the time of the radar acquisition for each scene. 

In practice, when an estimate for the InSAR atmospheric component is available, we 

recommend to estimate these parameters directly from the data. For simulation and 

feasibility studies a standard deviation of 4~5 mm and a correlation range of ~10 km 

are typical numbers to use. Note that the standard deviation σw
  relates to one radar 

scene. For double difference interferometric observations, this number should be 

further propagated as follows. If  Wir
t0t1 is the relative atmospheric noise component 

of point i with respect to point r between epoch t0 and the epoch t1, then based on 
the exponential variogram model, the variances and covariances between different 

double difference atmospheric components can be computed as: 

 

C{𝑊𝑖𝑟
𝑡0𝑡1 , 𝑊𝑖𝑟

𝑡0𝑡1} = 2𝜎𝑤𝑡1

2 +  2𝜎𝑤𝑡0

2 −  2𝜎𝑤𝑡1

2  exp(−
𝑙𝑖𝑟

 

𝐿𝑤𝑡1

) −  2𝜎𝑤𝑡0

2  exp(−
𝑙𝑖𝑟

 

𝐿𝑤𝑡0

) 

 

C{𝑊𝑖𝑟
𝑡0𝑡1 , 𝑊𝑗𝑟

𝑡0𝑡1} = 𝜎𝑤𝑡1

2 +  𝜎𝑤𝑡0

2 + 𝜎𝑤𝑡1

2  exp(−
𝑙𝑖𝑗

 

𝐿𝑤𝑡1

) +  𝜎𝑤𝑡0

2  exp(−
𝑙𝑖𝑗

 

𝐿𝑤𝑡0

)                  

−  𝜎𝑤𝑡1

2  exp(−
𝑙𝑖𝑟

 

𝐿𝑎𝑡1

) −  𝜎𝑤𝑡0

2  exp(−
𝑙𝑖𝑟

 

𝐿𝑤𝑡0

)                                                                

−  𝜎𝑤𝑡1

2  exp(−
𝑙𝑗𝑟

 

𝐿𝑤𝑡1

) −  𝜎𝑤𝑡0

2  exp(−
𝑙𝑗𝑟

 

𝐿𝑤𝑡0

) 
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C{𝑊𝑖𝑟
𝑡0𝑡1 , 𝑊𝑗𝑟

𝑡0𝑡2} =  𝜎𝑤𝑡0

2 + 𝜎𝑤𝑡0

2  exp(−
𝑙𝑖𝑗

 

𝐿𝑤𝑡0

)  −  𝜎𝑤𝑡𝑜

2  exp(−
𝑙𝑖𝑟

 

𝐿𝑤𝑡0

)  − 𝜎𝑤𝑡𝑜

2  exp(−
𝑙𝑗𝑟

 

𝐿𝑤𝑡0

) 

 

In some time series InSAR algorithms, the atmospheric effect of the reference epoch 

(i.e., the master image) is assumed deterministic and estimated during the 

processing. In that case all the terms related to the reference epoch are zero.  

 
Using these equations all the elements of the atmospheric covariance matrix 𝑄𝑤 are 

computed. The final measurement noise covariance matrix will then be 𝑄𝑀𝐼𝑛𝑆𝐴𝑅
=

𝑄𝑛 + 𝑄𝑤, where 𝑄𝑛 is the covariance matrix of decorrelation/scattering noise. Note 

that Q𝑀𝐼𝑛𝑆𝐴𝑅
 is the covariance matrix of the first output level of InSAR data, i.e. the 

unwrapped InSAR measurement prior to filtering of atmospheric effects. In order to 

compute the covariance matrix of other output levels, for example measurements 

after atmospheric filtering, Q𝑀𝐼𝑛𝑆𝐴𝑅
 should be propagated through the further 

processing steps.  
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Figure 2.4: Five simulated atmospheric effects over an area of 100x100 km, with different signal power 
based on the experimental power-law model presented by (R. Hanssen). The plots on the right are the 

variogram plots. Blue lines show the empirical variograms of the simulated signal. Red curves show the 
modelled exponential variograms. An exponential model can thus effectively approximate the degree of the 

spatial variability in the atmospheric signal.  
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2.3. Idealisation noise  
 

At the beginning of this chapter the concepts of “idealisation precision” and 
“idealisation noise” were introduced. In summary, the idealisation noise is the effect 

of other deformation sources than the signal of interest. The main sources of 
idealisation noise are deformation regimes such as (Ketelaar 2009, Houtenbos and 

Kenselaar 2001): 

 

 Independent motion of individual benchmarks or PS with respect to the 

foundation layer due to for example structural instabilities, benchmark 
weight or pile friction. As the benchmark/PS construction settings differ 

among all benchmarks/PS, this autonomous deformation is assumed 

spatially uncorrelated. However, as deformation is developing in time, it is 

temporally correlated. Hence, the noise contribution of this regime shall be 

referred to as “temporal component”. 
  

 Shallow compaction of the Holocene layer beneath benchmarks/PS due to 
for example ground water level variation or peat compaction. These 

mechanisms are assumed to have dependencies in both space and time. 

Hence, the associated noise contribution shall be referred to as “spatio-

temporal component”.     

 

In order to evaluate the spatio-temporal variability of these deformation regimes, we 

analysed a levelling dataset over an assumedly signal-free area close to the Wadden 

Sea region. The generic methodology that we have used is divided into the following 

steps: 

1. Signal free data selection: select areas with expected zero deep source 

subsidence 

2. Data preparation and epoch-wise levelling adjustment 
3. Compute empirical spatio-temporal variograms 

4. Correct the empirical variograms for the effect of measurement noise  

5. Fit adequate model to the corrected variograms 

6. Propose a final analytical equation to calculate (co)-variances based on the 

modelled variogram. 

1. Signal-free data selection: Figure 2.5 shows the study area for the analysis. The 

assumption that it is unaffected by deep source subsidence is based on the absence 

of gas fields in the area and an evaluation of subsidence prediction models due to 

gas production in nearby gas fields. Another constraint was the proximity to the 
Wadden Sea that makes the area as representative as possible for the area of 

interest in terms of soil composition and other properties. 
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Figure 2.5: Left) selected area for levelling data analysis. Right) the levelling network over the area - Blue 
dots: levelling benchmarks in the northern Netherlands, Red dots: selected benchmarks 

 

 
 

Figure 2.6: all the epoch combinations over the study area (after network adjustment). The color-scale is in 
meters. X-axis and Y-axis are RD coordinates in km. 

 

 

2. Data preparation:  Data from six levelling campaigns over ~25 years are included 
in the study: 1987, 1993, 1998, 2003, 2008 and 2013.  

Network adjustment is applied per epoch with a common datum (i.e. one common 

reference point) for all the epochs. Then, subtracting pairs of epochs from each other 

results in 15 sets of double differences as visualized in Figure 2.6. 

 

3. Computation of empirical variograms: The spatio-temporal empirical 
variograms are computed using robust algorithms (Cressie N. 1980, Genton M. 

1998). The empirical variograms are averaged per spatial and temporal bins. The 

results are visualized in Figure 2.7 and 2.8.   
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Figure 2.7: empirical spatio-temporal variograms of levelling data over the signal-free area. 

 
 

 
 

Figure 2.8: Spatial variogram profiles of levelling data over the signal-free area for different temporal lags 
(from 4.5 to 25.7 years). The X-axes are labelled by the spatial lag in m, and the Y-axes display the 

variograms in mm^2 

 

4. Correction for levelling measurement noise:   

Based on the measurement noise covariance matrix of section 2.1 and the network 

configuration of the levelling dataset, we simulated a large number (~1000) of 

realizations of measurement noise in the Monte-Carlo manner, followed by 
computation of empirical variograms for each realization. Then by averaging all the 

1000 variograms, we estimate the effect of the measurement noise on the empirical 

variogram of the signal-free area (Figure 2.9).  
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Figure 2.9: empirical spatio-temporal variogram of measurement noise (average of 1000 emperical 

variograms computed from realizations of measurement noise). Note that the variogram is constant in time, 
since individual measurement campaigns are independent in terms of measurement noise. 

 

Comparing Figures 2.7 and 2.9, we can see that, as expected, the level of 

measurement noise is far below that of other noise components. The simulated 

variogram of measurement noise is finally subtracted from the empirical variogram 

calculated from levelling data in order to correct for the effect of measurement noise.  
 

5. Variogram modelling:  By visual/qualitative analysis of Figures 2.7 and 2.8, we 

recognise two different behaviours: 

 

 A non-stationary signal in time (the variogram is unbounded in time) 

 A correlated signal in space 
 

 
These two behaviours can be related to the above distinguished deformation 

regimes, i.e. the spatio-temporal component and the temporal component of 

idealisation noise. To combine these two effects in a generic model we propose the 

following variogram model: 

 

 𝛾 (𝛥𝑡 , 𝛥𝑑 ) = (𝜎𝑠
2 − 𝜎𝑠

2𝑒−(
 𝛥𝑑 

𝐿
)) 𝛥𝑡𝑝𝑠 + 𝜎𝑡

2𝛥𝑡𝑝𝑡 

where: 

𝛥𝑡  and 𝛥𝑑 are time difference and spatial distance, respectively 

𝛾 is the variogram as a function of Δt  and Δd   
𝜎𝑠

2 is the variance of the spatio-temporal component 

𝐿 is the correlation length of the spatio-temporal component 

𝑝𝑠 is the power of the non-stationary signal associated with the spatio-temporal 

component 

𝜎𝑡
2 is the variance of the temporal component 

𝑝𝑡  is the power of the non-stationary signal associated with the temporal component. 

 
We should note that the very same model is also proposed by (Houtenbos and Kenselaar 

2001) to describe a spatio-temporal and a temporal deformation component in the 

Netherlands. To fit this model to the empirical variogram, there are five parameters 

(σs
2, L,  ps,  σt

2, and pt  ) to estimate. We use nonlinear weighted least squares to 
estimate the parameters. The weights are computed based on the number of 

samples per bin.   
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The results of the estimation, which turned out to be reasonably insensitive to their 

approximate values, are summarized in the following table. We should note that in 

general, there are different choices available to model the spatial component. Two 

commonly used models in geostatistics are the exponential (𝜎𝑠
2 − 𝜎𝑠

2𝑒−(
 𝛥𝑑 

𝐿
)
) and the 

Gaussian 𝜎𝑠
2 − 𝜎𝑠

2𝑒−(
 𝛥𝑑 

𝐿
)

2

 model. In our case, the misfit of the exponential model to 

the empirical variograms is smaller than the misfit of the Gaussian model. This is 
the main reason to propose the exponential model rather than the Gaussian for the 

spatial component of idealisation noise.  

 

 𝜎𝑠
2 

[mm2 km (year)𝑝𝑠⁄⁄ ] 

𝐿 

[km] 
𝑝𝑠 

[-] 
 𝜎𝑡

2 

[mm2 (year)𝑝𝑡⁄ ] 
𝑝𝑡 

[-] 
Estimated parameters 0.651 12646 1.66 0.148 1.688 

Table 1: Estimated parameters 

 

The fitted models are visualized in Figures 2.10, 2.11, and 2.12.  

 

 
 

 
Figure 2.10:  Estimated model for the empirical spatio-temporal variogram   

 
 



 

 24 

 
Figure 2.11: Spatial variogram profiles for different temporal lags (solid black line: the fitted model, dashed 

black line: fitted temporal component, dashed green line: fitted spatio-temporal component). 
 
 
 
 

 

 
 

Figure 2.12: Temporal variogram profiles for different spatial lags (solid black line: the fitted model, dashed 
black line: fitted temporal component, dashed green line: fitted spatio-temporal component). 

 
 
 

 

6. Construction of the covariance matrices:   

The final covariance matrix of idealisation noise is a summation of the two 

contributions: 

1. Spatio-temporal component of noise (𝑄𝑠) 

2. Temporal component of noise (𝑄𝑡) 
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The final covariance matrix of idealisation noise will then be: 𝑄𝑑 = 𝑄𝑠 + 𝑄𝑡 .  
 

Construction of the covariance matrix of the temporal component (𝑸𝒕) 

If 𝑇𝑖𝑟
𝑡0𝑡1 is the temporal noise component of point 𝑖 with respect to the reference point 

𝑟 between epoch 𝑡1 and the reference epoch with 𝑡0 = 0, then the covariance 

elements will be (Yaglom 1962, A. Houtenbos 2004):   

 

C{𝑇𝑖𝑟
𝑡0𝑡1 , 𝑇𝑖𝑟

𝑡0𝑡1} = 2�̂�𝑡  
2 |𝑡1|𝑝𝑡  

 

C{𝑇𝑖𝑟
𝑡0𝑡1 , 𝑇𝑗𝑟

𝑡0𝑡1} = �̂�𝑡  
2 |𝑡1|𝑝𝑡   

 

C{𝑇𝑖𝑟
𝑡0𝑡1 , 𝑇𝑖𝑟

𝑡0𝑡2} = �̂�𝑡  
2  (|𝑡1|𝑝𝑡 + |𝑡2|𝑝𝑡 − |𝑡1 − 𝑡2|𝑝𝑡) 

    

C{𝑇𝑖𝑟
𝑡0𝑡1 , 𝑇𝑗𝑟

𝑡0𝑡2} =  
1

2
�̂�𝑡  

2 (|𝑡1|𝑝𝑡 + |𝑡2|𝑝𝑡 − |𝑡1 − 𝑡2|𝑝𝑡) 

 

where σ̂t  
2  and p̂t are the estimated parameters from variogram modelling.  

 

Construction of the covariance matrix of the spatio-temporal component (𝑸𝒔) 

If 𝑆ir
t0t1 is the spatio-temporal noise component of point 𝑖 with respect to the 

reference point 𝑟 between epoch t1 and the reference epoch with 𝑡0 = 0, then: 

 

C{𝑆𝑖𝑟
𝑡0𝑡1 , 𝑆𝑖𝑟

𝑡0𝑡1} = 2�̂�𝑠  
2 |𝑡1|𝑝𝑠 (1 − exp(−

𝑙𝑖𝑟

�̂�
)) 

 

C{𝑆𝑖𝑟
𝑡0𝑡1 , 𝑆𝑗𝑟

𝑡0𝑡1} = σ̂s  
2 |𝑡1|p̂s (1 − exp(−

𝑙𝑖𝑟

�̂�
)  − exp(−

𝑙𝑗𝑟

�̂�
) + exp(−

𝑙𝑖𝑗

�̂�
)) 

 

C{𝑆𝑖𝑟
𝑡0𝑡1 , 𝑆𝑖𝑟

𝑡0𝑡2} = �̂�𝑠  
2 (|𝑡1|𝑝s + |𝑡2|𝑝𝑠 − |𝑡1 − 𝑡2|𝑝𝑠) (1 − exp(−

𝑙𝑖𝑟

�̂�
)) 

 

C{𝑆𝑖𝑟
𝑡0𝑡1 , 𝑆𝑗𝑟

𝑡0𝑡2} =
1

2
�̂�𝑠  

2 (|𝑡1|𝑝s + |𝑡2|𝑝𝑠 − |𝑡1 − 𝑡2|𝑝𝑠) (1 − exp(−
𝑙𝑖𝑟

�̂�
)  − exp(−

𝑙𝑗𝑟

�̂�
) + exp(−

𝑙𝑖𝑗

�̂�
)) 

 

where �̂�𝑠  
2  and �̂�𝑠 and �̂�  are the estimated parameters from variogram modelling, and 𝑙𝑖𝑟

  is the 
distance between points 𝑖 and 𝑟.  Using these equations, all the elements of the idealisation noise 
covariance matrix 𝑄𝑑

 =  𝑄𝑠
 + 𝑄𝑡

  are constructed. The final covariance matrix of levelling or 
InSAR observations is then constructed as: 

 
𝑄𝑦 = 𝑄𝑒 + 𝑄𝑑 , 

 
where 𝑄𝑒  is the measurement noise covariance matrix (i.e. 𝑄𝑚  in case of levelling and 𝑄𝑀𝐼𝑛𝑆𝐴𝑅

 in 

case of InSAR). In order to get a feeling about the spatio-temporal significance of the proposed 
idealisation noise model, we demonstrate the spatial variogram of the different noise model 
components for levelling double differences (in Figure 2.13). The spatial variograms are 
evaluated for time spans of 1, 5, 20, and 50 years.  Note that the measurement noise component 
here is just an arbitrary example. In practice the contribution of levelling measurement noise is 
adaptive and depends on the levelling network configuration. As a demonstration, Figure 2.14 
shows the 𝑄𝑠

  and 𝑄𝑡
  covariance matrices for the stylized levelling network of Figure 2.1 with six 

epochs at 0, 6, 12, 18, 24, and 30 years (i.e. five double difference epochs with respect to the 
reference epoch 𝑡 = 0).  
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Figure 2.13: Spatial variogram plot of different component of the proposed model evaluated for time spans of 
1, 5, 20, and 50 years.  Note that the measurement noise component here is just an arbitrary example for a 

levelling network. In practice the contribution of levelling measurement noise is invariant in time and 
adaptive to the levelling network configuration.  

 

 

 
Figure 2.14:  𝑄𝑠

  (left) and 𝑄𝑡
  (right)  for the stylized levelling network of Figure 2.1 with six epochs at 0, 6, 

12, 18, 24, and 30 years (i.e. five double difference epochs with respect to the reference epoch 𝑡 = 0). 
Colorbars are in mm2.  

 
 

2.3.1. Discussion on the idealisation noise model 
 

Interpretation of the proposed model: 

   

The temporal component 𝜎𝑡
2𝛥𝑡𝑝𝑡, which describes temporally correlated and spatially 

uncorrelated noise, can be interpreted as representation of autonomous benchmark 

movements or settlements with respect to the foundation layer due to benchmark 
weight and pile friction. As the benchmark construction settings differ among all 

benchmarks, these autonomous deformations are spatially uncorrelated. In general, 

the power variogram model is a representation of fractional Brownian motion noise. 

In the case of 𝑝𝑡 = 1, the model reduces to the random walk model.  
 

The spatial component (𝜎𝑠
2 − 𝜎𝑠

2𝑒−(
 𝛥𝑑 

𝐿
)) 𝛥𝑡𝑝𝑠 represents any spatio-temporally 

correlated motion. The most likely cause for such a motion is shallow compaction of 

the Holocene layer beneath benchmarks. The exponential spatial variogram model 

describes the signal with a spatial correlation of range 𝐿. The temporal power model 

(Δtps) takes the non-stationary behaviour into account. From the physical point of 
view, since shallow compaction is developing in time, we expect the effect of this 

signal to be non-stationary.  

 
Based on this analysis we can conclude: 

1. There is indication of temporal non-stationary noise in the levelling dataset. 

This can be explained by independent motion of individual benchmarks, by 

spatially correlated deformation due to shallow compaction or by both which 

seems most likely. 
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2. There is indication of spatially correlated noise in the levelling dataset. This 

can be explained by either shallow compaction or by deep source 

deformation in the selected area, whereas the latter is not likely. 
 

On the applicability of the proposed model for InSAR data: 

  

Although the parameters of the proposed idealisation noise model have been 

estimated from levelling data, we propose here to confer the stochastic deformation 

properties of levelling benchmarks to InSAR persistent scatterers. The rationale is as 
follows. If these idealisation noise contributions are induced by shallow deformation 

(either spatially correlated or not), both levelling benchmarks and PS should be 

affected in a similar manner by these shallow sources. It could be argued that 

because the two techniques measure different objects, the effects of shallow 

deformation on them are not necessarily comparable. We acknowledge that the 
idealisation noise in InSAR can be more prominent than in levelling, as levelling 

benchmarks are usually attached to buildings with better foundations. However, for 

the PS that are associated with buildings, the proposed model should serve as a fair 

approximation of idealisation noise. For all other PS (on the ground or other objects), 

the model most likely underestimates the idealisation noise, but is nevertheless still 

the lower bound approximation. Further classification of PS into high and low points 
can be beneficial here in order to identify PS which are associated with buildings 

and high infrastructures.  

 

One could also suggest estimating the same noise parameters from InSAR data over 

a signal-free area. This was indeed intended at the start of the project. Using InSAR 
data from an assumedly stable area to deduce a noise model for PS displacements 

due to shallow sources would certainly have be more straightforward than 

conferring a noise model derived from levelling data. It would also have provided the 

opportunity to validate the models from different techniques against each other.  

 

However, during the study, it turned out that the final InSAR deformation results 
are affected by InSAR processing settings, mainly by the spatio-temporal 

atmospheric filtering. In other words, the filtering of the atmospheric component 

alters the spatio-temporal correlation structure of InSAR deformation estimates. 

Since the stochastic properties turned out to be significantly affected by the filtering 

step, it is not possible to discriminate and isolate the stochastic properties of 
shallow deformation effects from filtered InSAR data. 

 

Inference from unfiltered InSAR data may be possible in principle but it is 

considerably complicated as it would be hampered by the dominant atmospheric 

noise. As the latter significantly differs per image, its consideration would require a 

variogram estimation with atmospheric noise parameters per SAR image, and thus 
the number of variance components scales with the number of images. However, a 

joint estimation of a large number of variance components is usually a very unstable 

optimisation algorithm with little chance to converge to a unique solution. In 

conclusion, finding a more rigorous description for InSAR idealisation noise would 

be a very challenging task with no straightforward solution that could not be 
covered within the scope of this project. 

 

We should note that the noise model derived from levelling data applies to shallow 

deformation in vertical direction only. To confer it to InSAR data, we need to take 

into account that InSAR observations are made in the line of sight (LOS) direction of 

the radar satellite. Hence, 𝜎𝑡
2 and 𝜎𝑠

2 are converted to that direction under the 
assumption that the horizontal component of shallow deformation noise is 

negligible. This is a reasonable assumption, since shallow deformation mechanisms 

work mainly in vertical direction. Assuming an incidence angle of 𝜃, the converted 
variances are computed as  

 

𝜎𝑡_𝐿𝑂𝑆
2 =  𝜎𝑡

2 cos(𝜃)  and  𝜎𝑠_𝐿𝑂𝑆
2 =  𝜎𝑠

2 cos(𝜃).  
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On the zero mean and directional properties of idealisation noise components: 

 
At the first glance, the idea of stochastic modelling of shallow deformation sources 

via the proposed covariance (variogram) function may suggest that vertical motions 

in the up and down direction are equally likely. However, we should note that we are 

dealing with double difference observations. So if all the benchmarks displace into 

one direction in an absolute sense, the double difference observations are insensitive 

to the mean (single-difference) displacement of all the benchmarks. So in other 
words, the deviation of vertical motion with respect to the mean deformation is 

equally likely to be in the up and down direction. 

 

However, the mean of double difference shallow deformations is not necessarily zero, 

and its value depends on the choice of the reference point. The fulfilment of the zero-
mean property that is implied by the stochastic model depends on the choice of the 

reference point(s). This has implications for variogram estimation. In the variogram 

estimation methodology, we have removed the mean deformation of each epoch in 

order to yield zero-mean double differences. So the empirical variograms are 

invariant with respect to the choice of reference point.  

 
Note that the mean shallow displacement signal is present in the data but described 

neither by the stochastic model nor by the geo-mechanical model. In the next 

chapter we discuss that the non-zero mean effect can be mitigated effectively by 

choosing multiple reference points.  

 

2.4. Propagation of noise models through InSAR processing  
 
As mentioned before in section 2.2, the proposed covariance model for InSAR data 

(𝑄𝑦𝐼𝑛𝑆𝐴𝑅
= Q𝑀𝐼𝑛𝑆𝐴𝑅 + 𝑄𝑑) is the covariance matrix of the first level of InSAR data, i.e. 

unwrapped InSAR measurement prior to filtering of atmospheric effects. In order to 

compute the covariance matrix of other InSAR output levels (as explained in Section 

3.4), for example deformation time series after atmospheric filtering, 𝑄𝑦𝐼𝑛𝑆𝐴𝑅
 should 

be propagated through the InSAR filtering step. Evaluating a closed-form analytical 

error propagation for spatio-temporal atmospheric filtering is a complicated 

problem. Here, we propose easy and efficient Monte-Carlo error propagation to 

account for the processing noise induced during filtering. The steps of this approach 
can be summarized as following: 

 

1. Construct 𝑄𝑦𝐼𝑛𝑆𝐴𝑅
 for a hypothetical dataset that has the same number of 

images as the InSAR stack but a limited number of PS 

2. Create a large number of noise realizations (e.g. 1000) based on 𝑄𝑦𝐼𝑛𝑆𝐴𝑅
 

3. Apply the atmospheric filtering on all the realizations using the same settings 

as for the real dataset 

4. Compute the empirical covariance matrix from all the filtered realizations 

5. Fit an analytical covariance model to the empirical covariance matrix 
6. Use the fitted analytical model to fill all the elements of the final covariance 

matrix 𝑄𝑦𝐼𝑛𝑆𝐴𝑅_𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑
. 

 

In principle this simulation approach can be applied for all the PS locations in 

InSAR stack, and directly provide the final covariance matrix without applying steps 
5 and 6. However, in practice this is not computationally feasible due the to the 

large data volume.  This is the main reason behind step 5 to use an analytical 

model. Furthermore by using admissible analytical covariance/variogram function, 

we avoid singularity in the empirical covariance matrix due to numerical issues.  We 

use here the same covariance/variogram function that we proposed for idealisation 
noise. The only difference is that we consider also a nugget effect in order to account 

for spatio-temporally uncorrelated noise. In principle, this model is quite generic in 
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the sense that it can describe all the different spatio-temporal noise behaviors such 

as spatio-temporally uncorrelated (nugget effect), spatio-temporally correlated, and 

temporally correlated noise contributions.  
 

Here we demonstrate the covariance construction for a stylized InSAR dataset 

(Figure 2.15.) with 264 PS points and 25 radar acquisitions with a 35 days’ time 

interval. 64 of the PS are 1st order PS, which are used for atmospheric spatial 

interpolation (kriging). For atmospheric filtering we used the methodology of the 

Delft Persistent Scatterer Interferometry (DePSI) presented in (van Leijen 2014). 
However, in principle any other algorithm can be used. 

 

Figure 2.16 shows the covariance matrices for different InSAR noise components, 

that is Qn, Qw, Qt, and 𝑄𝑠. The summation of all these covariance matrices gives 

𝑄𝑦𝐼𝑛𝑆𝐴𝑅
 (Figure 2.17.left) : 

 

𝑄𝑦𝐼𝑛𝑆𝐴𝑅
=  Qn + Qw + Qs + Qt.  

 

This matrix is propagated through InSAR atmospheric filtering using the proposed 

Monte-Carlo approach. The final covariance matrix 𝑄𝑦𝐼𝑛𝑆𝐴𝑅_𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑
 of the filtered InSAR 

dataset is visualized in Figure 2.17.right.   

  
 

 
Figure 2.15: Stylized dataset of 1st and 2nd order persistent scatterers. (In total 264 PS).    
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Figure 2.16: Covariance matrices for InSAR noise components for the stylized dataset of Figure 2.15: 

𝑄𝑛 is the covariance matrix of InSAR scattering noise, 𝑄𝑤 is the covariance matric of InSAR atmospheric 
noise, 𝑄𝑡 is the covariance matrix of the temporal component of idealisation noise (converted to LOS 

direction), and 𝑄𝑠 is the covariance matrix of the spatio-temporal component of idealisation noise (converted 
to LOS direction). Colorbars are in mm. 

 

 
 

Figure 2.17:  Left) Covariance matrix 𝑄𝑦𝐼𝑛𝑆𝐴𝑅
 for the stylized dataset of the Figure 2.15 as 𝑄𝑦𝐼𝑛𝑆𝐴𝑅

=  Qn +

 Qw + Qs + Qt, Right) the final covariance matrix 𝑄𝑦𝐼𝑛𝑆𝐴𝑅_𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑
 of the filtered InSAR dataset as the result of 

Monte-Carlo error propagation through InSAR atmospheric filtering (Colorbar is in mm2). 

 

2.5. Summary and conclusions  
In this section, we proposed an analytical approach to construct a noise covariance 
matrix for both InSAR and leveling datasets. The concept of idealisation noise was 

exploited to explain deformation sources other than the signal of interest that is the 

deep source deformation. We estimated the parameters of the idealisation noise 

model using spatio-temporal variogram modelling. The summary of the conclusions 

of this section are listed as following:  
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1. There is temporally non-stationary noise in the levelling dataset. This can be 

explained by independent motion of individual benchmarks, by spatially 

correlated deformation due to shallow compaction or by both, which seems 
most likely. 

 

2. There is  spatially correlated noise in the levelling dataset. This can be 

explained by either shallow compaction or by deep source deformation in the 

selected area, whereas the latter is not likely. 

 
3. The proposed idealisation noise model can reasonably explain the 

uncertainty of the studied dataset. It may be representative for the coastal 

regions around the Wadden Sea. For other regions in the Netherlands with 

harder soil it may still serve as a conservative approximation, whereas the 

possibility of overestimated uncertainties should be taken into account. 
 

4. We propose to use a state of the art analytical model for InSAR scattering 

and atmospheric noise components. 

 

5. InSAR processing (especially the atmospheric filtering step) affects the 

spatio-temporal behavior of the other noise components and introduces 
spatio-temporal correlation in the final deformation estimates. We propose a 

Monte Carlo approach to account for the spatio-temporal correlation induced 

by filtering out the atmospheric component. 

 

6. We propose to use the idealisation noise model derived from levelling data 
also for InSAR data, assuming that the idealisation noise effect on persistent 

scatterers is similar with the effect on levelling benchmarks. 
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3. Output level study  
 

Geo-mechanical modelling/calibration can take place using different levels of 
geodetic processing ranging from raw observations to elaborately tailored products. 

This is conceptually visualized in Figure 3.1.  The main question here is what the 

best output level of geodetic data is to be used in the modelling based on three main 

considerations: 

 

1. Transparent use of a priori knowledge: the more processing steps are 
involved, the more a priori knowledge (including non-validated assumptions) 

may be needed.   

 

2. Simpler structure of the stochastic model: the more processing steps are 

involved, the more complicated the stochastic model may become, as all the 
error sources should be propagated through the processing steps. 

 

 

3. Modelling efficiency/optimality: geomechanical model computations may 

become more complicated if the model is compared with geodetic data at a 

lower processing level.   
 

 
 
Figure 3.1: Conceptual sketch of the main objective of the output level study: to answer where geodesy and 

geo-modelling should meet.  

 

This chapter presents the results of our simulation study to find the best output 

level of InSAR and leveling data for geo-mechanical modelling. Section 3.2 covers the 

generic methodology that we have used.  The results and discussion of the output 

level study for leveling and InSAR data are presented in sections 3.3 and 3.4 
respectively. 
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3.1. Output level study: generic methodology 
 

Our methodology for the output level study can be outlined in four steps:  
1. Assume (or initialize) a simple reservoir and geomechanical model with 

known parameters and construct the subsidence field based on the assumed 

model. 

2. Simulate a large number of realizations of geodetic observations in different 

output levels by summation of the constructed subsidence field and a large 
number of geodetic noise realizations. 

3. Estimate geomechanical model parameters by searching the parameter space 

for each set of geodetic observations. 

4. Give recommendation on the optimal output level based on a posteriori 

statistics of model parameters. 

 
In the following, these steps and assumed parameters/models are described in 

detail.  

 

1. Assumed reservoir model and construction of subsidence field 

Even though the shape, properties, and internal pressure variation of real gas 

reservoirs can be complex, anisotropic and variable, we focused on a simple 
reservoir/geomechanical model for the purpose of this study. It has the following 

properties: 

 

 Reservoir shape: disk-shape reservoir at center position (𝑥𝑐 , 𝑦𝑐) and depth 𝐷 

with thickness 𝐻 and radius 𝑅 (Figure 3.2a).  
 Pressure variability: uniform pressure change (∆𝑝) through the reservoir.  

 Compaction model: time decay compaction model, with time decay relation 
between pressure change and compaction. In this model, the volumetric 

strain 𝑒𝑖𝑖 at a point in the reservoir at time 𝑡 is the product of pressure 

change ∆𝑝 and constrained uniaxial compressibility 𝐶𝑚, but convolved with 
an exponential time decay function:    

 

𝑒𝑖𝑖 =  ∆𝑝 𝐶𝑚  ∗𝑡  
1

𝑇
 exp (

−𝑡

𝑇
),   

 

where ∗𝑡 is the convolution operator with respect to time, and 𝑇 is the time 

decay constant. Figure 3.2b demonstrates this time decay model for 𝑇 = 0, 
2, and 8 years. 

 Compaction-subsidence relation: Geertsma analytical subsidence model for 
a disk shape reservoir (Geertsma 1973, Fjaer 1992).  

 

 

By setting all the model parameters (𝐶𝑚, 𝑇, 𝐻, 𝑅, 𝐷, 𝑥𝑐 , 𝑦𝑐  ) and having a pressure 

change as a function of time ∆𝑝(𝑡),  both vertical and horizontal components of 
subsidence at any point on the surface are calculated using the Geertsma analytical 

model.  
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Figure 3.2: a) sketch of the disk-shape reservoir model, b) demonstration of the time decay model with τ= 0, 
2, 8 years. Dashed lines show the start and end of the pressure depletion (or start and end of the 

production, respectively). 
 

2. Simulation of geodetic data.  

Simulation of geodetic data generally is done in two separate steps of “noise” and 

“signal” simulation. As discussed, the “signal” component is simulated based the 
assumed reservoir model using Geertsma analytical model. However, the simulated 

signal is transformed based on the configuration of geodetic data. For example in 

InSAR, the vertical and horizontal signal components are transformed to the LOS 

direction based on the acquisition geometry. For both levelling and InSAR data, the 

single-difference subsidence signal is converted to double differences based on the 

spatio-temporal configuration of the observations. We will give more examples of 
these simulations for InSAR and leveling in the next sections.  

 

For the simulation of noise realizations, we use the proposed stochastic models for 

measurement and idealisation noise in levelling and InSAR. Given the spatio-

temporal configuration of geodetic data, the covariance matrix of all noise 
components is computed based on the methodology introduced in chapter 2.  

Assuming that noise components have a multivariate normal distribution, the noise 

is then generated using the constructed covariance matrix.  If 𝑆 is the vector of the 

simulated signal and 𝜖𝑖 is the vector of the 𝑖th noise realization with 𝑖 = 1 … 𝑁, then 𝑁 

geodetic datasets are computed as 𝑦𝑖 = 𝑆 + 𝜖𝑖 .  
 

 

3. Geomechanical modelling (Inversion) 

For geomechanical modelling, we assume that all the model parameters related to 

shape/location of the reservoir (e.g., 𝐻, 𝑅, 𝐷, 𝑥𝑐 , 𝑦𝑐) and also pressure changes ∆𝑝(𝑡) 
are known. It is a common practice in geomechanical modelling/calibration that the 

shape and pressure values are fixed, or in other words are computed a priori based 

on the geological and reservoir models. Then during geomechanical calibration only 
few geomechanical parameters are calibrated with respect to geodetic data.  For the 

purpose of this study, we assume there are only two unknown parameters in the 

model: a uniaxial compressibility 𝐶𝑚 and a time decay parameter 𝑇. Note that in 

practice, there is always a good approximate value for 𝐶𝑚. Assuming the 
approximate value to be 𝐶𝑚0

, we introduce a 𝐶𝑚 proportionality factor 𝛼 as: 𝐶𝑚 =

𝛼𝐶𝑚0
. So the two unknown parameters in our model are 𝛼 and 𝑇.  

 

Although the assumed model is linear with respect to 𝛼, this is not the case with 

respect to the time decay parameter 𝑇. In order to avoid the complexities introduced 
by nonlinear inversion methods, we use here simple forward modelling by searching 

the two-dimensional parameter space. The objective function for this inversion is the 

L2-norm of the misfit between data and model. Let’s assume 𝑦 is the vector of 

observations, and 𝐺(𝛼, 𝑇) is the geomechanical model. Then the mathematical model 
for the inversion can be written as:  

 

E{𝑦} = 𝐺(𝛼, 𝑇)  , D{𝑦} = 𝑄𝑦 , 

 

where  E{∙} and D{∙} are expectation and dispersion operators, respectively. The 

optimal L2-norm solution of this model is given by:  

 

[
�̂�
�̂�

] =  𝑚𝑖𝑛(𝛼,𝑇)‖𝑦 −  𝐺(𝛼, 𝑇) ‖𝑄𝑦
−1

2 ,  

or if 𝑒 = 𝑦 −  𝐺(𝛼, 𝑇) then:  

 

[
�̂�
�̂�

] =  min(𝛼,𝑇)(𝑒𝑇 𝑄𝑦
−1𝑒).  
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The solution is obtained from the direct search of the solution space for the 

minimum of the objective function. Figure 3.3 gives an example of such a search 

space.   
 

In this study, in order to evaluate the effect of covariance matrix on the final 

estimates, we consider three different L2-norm objective functions: 

 Simple L2-norm of the residuals:   

min
(𝛼,𝑇)

(𝑒𝑇 𝑒) 

 L2-norm of the residuals in the metric of the weight matrix with weights 
equal to the inverse of observation variance: 

min(𝛼,𝑇)(𝑒𝑇 𝑊𝑦𝑒),  where 𝑊𝑦  = (diag(𝑄𝑦))
−1

 

 L2-norm of the residuals in the metric of the full covariance matrix of the 
observations: 

min(𝛼,𝑇)(𝑒𝑇 𝑄𝑦
−1𝑒).   

 

 
Figure 3.3: Example of the two dimensional search space. The color-scale shows the L2-norm of the 

residuals: ‖𝑦 −  𝐺(𝛼, 𝑇) ‖𝑄𝑦
−1

2 . The white dot shows the true value and the green dot shows the solution with 

minimum L2-norm.   

 
 

4. A posteriori analysis 
After applying inversion to all N realizations of geodetic data, we have N estimates of 

unknown parameters. Statistical analysis of this large number of estimates can 

provide us with different quality measures of the inversion. For example, the 

agreement between the mean value of all the estimates and the true value is a 

measure of unbiasedness of the inversion. Dispersion (e.g. standard deviation) of the 
estimates gives the precision of the inversion. The full covariance matrix (or even the 

two-dimensional probability density function) of the estimated parameters can be 

computed empirically using all the estimates.  Based on these kinds of posterior 

analyses, we can make formal statements about the effect of using different output 

levels on the quality of geomechanical modelling, and consequently on subsidence 
prediction.  

 

In the next two sections, we will present the results of the application of the 

proposed methodology to both leveling and InSAR data.   

3.2. Output level Study: Levelling  

3.2.1. Output level overview 
The overview of the output levels for leveling data is:  
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 Level0: Raw levelling campaign observations, that is height difference 
observations between benchmarks. This level is the direct result of levelling 

campaigns.  

  

 Level1: Adjusted heights per epoch or height differences per epoch with 

respect to a single reference benchmark (or with respect to a common 
reference frame defined by all benchmarks or a subset of benchmarks 

respectively). This level is the result of least squares free network 

adjustment per epoch.   

 

 Level2: Double difference heights with respect to a common reference 
benchmark and a common reference epoch. This is the result of temporal 
differentiation of adjusted heights per epoch with respect to the height in a 

reference epoch.  

 

 Level3: Double difference heights with respect to a common reference 
benchmark but multiple reference epochs. This is the result of temporal 

differentiation of level 2 data.  

 

 Level4: Double difference heights with respect to a common reference 
epoch but multiple reference benchmarks. This is the result of spatial 

differentiation of level 2 data.  

 

 Level5: Double difference heights with respect to multiple reference epochs 
and multiple reference benchmarks. This is the result of both spatial and 

temporal differentiation of level 2 data. 

 
Every level can be transformed to any other level by linear transformation (except for 

backward transformation to Level 0 and 1). Consequently the covariance matrix of 

each level can be transformed to any other level by linear error propagation. In this 

study we disregard the output levels 0 and 1 to be used in geomechanical modelling. 

The main reason for considering only the data levels after network adjustment is to 
take advantage of the strong mathematical model of the adjustment step. The usual 

high redundancy of levelling networks together with the strongly valid constraint of 

closing loops allows us to effectively adjust the measurement noise components and 

detect possible outliers in the network. Furthermore, the Level1 data (i.e. single 

differences in space) was not considered in the study, because the pure (relative) 

benchmark heights do not have any information about the subsidence or 
geomechanical parameters and thus not any added value for geomechanical 

modelling. Therefore, only those output levels are considered in the study that have 

double-difference observations after network adjustment (i.e., levels 2,3,4, and 5).     

 

The schematic visualization of levels 2 to 5 is given in Figure 3.4. Note that we do 
not introduce any fake redundancy in levels 3 to 5 with multiple reference 

points/epochs; i.e. the number of observations is the same for all the levels 2 to 5.  
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Figure 3.4: The schematic visualization of levelling output levels 2 to 5. 

3.2.2. Simulation setting 
Reservoir/geomechanical parameters: We applied the output level study 

methodology on three different scenarios with respect to production history and 
leveling temporal sampling. Except for pressure change rate, all the other 

geomechanical/reservoir parameters are the same for the three scenarios. The 

parameters used in the simulation are summarized in table 3.1. The 

reservoir/geomechanical parameters are a very rough approximation of the 

parameters of the Ameland gas field. Also all the scenarios are evaluated with time 

decay parameters of 1 to 5 years.  
 

Reservoir radius (R)  5 km  
Reservoir depth (D) 3 km  
Reservoir Thickness (H) 100 m  

 

Poisson ratio  0.3  
Compaction coefficient (Cm) 
Time decay parameter (T) 

7.410-11 Pa-1 

1,2, … ,5 years 
 

Start of the production  t=3 years 

End of the production 

 

t=18 years 

 
Pressure depletion rate (𝜕∆𝑝 𝜕𝑡⁄ ) 

(scenario 1)                                      (scenario 2)                                (scenario 3) 

2.0106 Pa/year                  2.0105 Pa/year             2.0106 Pa/year  
 

Observation period 30 years                             30 years                        12 years  
Sampling interval 6 years                               6 years                          3 years  

 

Table 3.1: parameters used in the simulation for the leveling output level study  

A depicted overview of the production/pressure history and the observation period 

of all the scenarios is shown in Figure 3.5. The production period is assumed to be 
15 years, starting at t=3 years (with respect to the modelling reference time). The 

pressure is assumed to deplete linearly with time during the production period. In 
scenarios 1 and 2, we have leveling data every 6 years starting from t=0 till t=30 

years. The only difference between scenarios 1 and 2 is the pressure change rate, 
which is 10 times smaller for scenario2.  In scenario 3, we have the same pressure 
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change as in scenario 1, but leveling data is available only during the early field life 
from t=0 till t=12 years and with higher temporal sampling of every 3 years.   

         

 
 

Figure 3.5: The depicted overview of the production/pressure history and the observation period of all the 
three scenarios. 

 

 

Leveling network: We used the stylized leveling network visualized in Figure 2.1. 
The noise components are simulated based on the covariance matrices computed 

from the noise model presented in Sections 2.1 and 2.3.  

 

Inversion search space: The Inversion is done by searching the two-dimensional 

search space of the unknown parameters (proportionality factor 𝛼 and time decay 

parameter 𝑇). The search space range is [0.5 1.5] for 𝛼 and [0 12] years 𝑇. The 

sampling interval of the search space is 0.02 and 0.2 years for 𝛼 and 𝑇, respectively.   

 

3.2.3. Results 
 

Results (Scenario1) 

The results of the inversion application on 400 level2 levelling realizations are 
summarized in Figure 3.6. The figure shows the posterior standard deviation of the 

model parameter estimates from all 400 realizations. The results clearly show, as 

expected, that the precision of the estimated parameters increases if the full 

covariance matrix is taken into account. The same simulation was also applied on 

the same data in other output levels. The results for output levels 2, 3, 4 and 5 are 
comparatively visualized in Figures 3.7 and 3.8 for the time decay parameter and 

the Cm proportionality factor respectively. We can see two effects here: 

 

 If the full covariance matrix is taken into account, the precision of the 
estimated model parameters is identical for all the output levels. This was 

expected, because the information content of different output levels is 

identical. By using the full covariance matrix, we always exploit the full 
information content from each output level, and consequently there is no 

difference in the precision of the estimates based on different output levels.   
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However, when we do not use the full covariance matrix (e.g., in practice the 

precise stochastic model may be not available, or not be completely/correctly 

known), we compromise the precision of the estimates more or less severely. 
This effect can be mitigated by using multiple reference points/epochs. This 

is an important conclusion. More generically this implies that by simply 

transforming the data to an output level with multiple reference points or 

epochs, we reduce the sensitivity of the model parameters to the use of 

covariance information in the modelling.  

 
 

Figure 3.6: The results of the inversion application (scenario 1) on 400 level2 dataset realizations with 
different time decay parameters (1 to 5 years) with three different objective functions, Left) the posterior 
standard deviation of time decay estimates, Right) the posterior standard deviation of Cm proportionality 
factor estimates. The precision of the estimated parameters improves significantly if the full covariance 

matrix is taken into account.    

 
Figure 3.7: The results of the inversion application on 400 dataset realizations of levels 2 to 5 for the time 

decay parameter (scenario 1). The figure shows the posterior standard deviation of the 400 estimates. 

 
Figure 3.8: The results of the inversion application on 400 dataset realizations of levels 2 to 5 for the Cm 

proportionality factor (scenario 1).  The figure shows the posterior standard deviation of the 400 estimates. 
 

Results (Scenario2: low signal to noise ratio) 

The results of the inversion of level2 data for this scenario are presented in 

Figure 3.9. The same as the first scenario, the precision of the estimated parameters 

improves significantly if the full covariance matrix is taken into account. Note that 
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while the noise significance for both scenarios 1 and 2 are identical, the pressure 

change rate (and so the maximum deformation) is ten times smaller for the 2nd 

scenario. Consequently the achievable parameter precision is worse for scenario 2 
due to the lower signal-to-noise ratio (compare figures 3.6 and 3.9).  

  
Figure 3.9: The results of the inversion application (scenario 2) on 400 level2 dataset realizations with 

different time decay parameters (1 to 5 years) with three different objective functions, Left) the posterior 
standard deviation of time decay estimates, Right) the posterior standard deviation of Cm proportionality 
factor estimates. The precision of the estimated parameters improves significantly if the full covariance 

matrix is taken into account. The achievable parameter precision  for scenario 2 is worse than for scenario 1 
due to the lower signal-to-noise ratio.   

 

The scenario 2 results for all the output levels are shown in Figures 3.10 and 3.11 

for the time decay parameter and the Cm proportionality factor, respectively. We see 

the same pattern as in the first scenario but more dominantly in the case of scenario 

2. The effect of neglecting stochastic properties in the inversion is much more 
dominant and can be effectively reduced (or even mitigated) by using the 5th output 

level with multiple reference point/epochs.  

 
Figure 3.9: The results of the inversion application on 400 dataset realizations of levels 2 to 5 for the time 

decay parameter (scenario 2). The figure shows the posterior standard deviation of the 400 estimates. 
   

 
Figure 3.10: The results of the inversion application on 400 dataset realizations of levels 2 to 5 for the Cm 

proportionality factor (scenario 2).  The figure shows the posterior standard deviation of the 400 estimates. 
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Results (Scenario3: early-field life observations) 

The results of this scenario for the leveling output level 2 are shown in Figure 3.11. 

We can see that, for larger time decays (T > 2), we are not able to estimate the model 
parameters precisely. This is due to the fact that for larger time decays, the onset of 

subsidence is relatively late in the observation period (see Figure 3.5), resulting in a 

very low signal to noise ratio. We even observe that the precision of the model 

parameters is not necessarily best when using the most rigorous stochastic model. 

However, we believe that this observation is an artefact of the limited numerical 

accuracy of the inversion approach. For the output levels 3,4, and 5, Figures 3.12 
and 3.13 suggest the same conclusions as already drawn for scenarios 1 and 2..  

  

 
Figure 3.11: The results of the inversion application (scenario 3) on 400 level2 dataset realizations with 
different time decay parameters (1 to 5 years) with three different objective functions, Left) the posterior 
standard deviation of time decay estimates, Right) the posterior standard deviation of Cm proportionality 
factor estimates. The precision of the estimated parameters improves significantly if the full covariance 

matrix is taken into account. For larger time decay parameters T>2, we are not able to estimate parameters 
due to very low signal to noise ratio. 

 

 
Figure 3.12: The results of the inversion application on 400 dataset realizations of levels 2 to 5 for the time 

decay parameter (scenario 3). The figure shows the posterior standard deviation of the 400 estimates. 
 

 

 
Figure 3.13: The results of the inversion application on 400 dataset realizations of levels 2 to 5 for the Cm 

proportionality factor (scenario 3).  The figure shows the posterior standard deviation of the 400 estimates. 
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3.2.4. Levelling output level study: discussion and conclusion 
 

On the effect of the covariance matrix:  

We clearly observed from the leveling output study that using the full covariance 

matrix in the inversion can significantly improve the modelling precision. We also 

observed that if the full covariance matrix of observations is used in the inversion 

there is no difference between the results of the different output levels. Another 
lesson learned from this experience is that if the covariance matrix is not used, the 

precision of the estimation can be significantly improved by using multiple reference 

points and reference epochs. We should note that in practice and for some areas the 

stochasticity of the data may be not known, and so the covariance matrix may be 

not available.  Therefore we propose to always use (if available) use the full 
covariance matrix in the modelling. If due to any reason the covariance model is not 

available or the modeler decided not to use the covariance matrix, it is highly 

recommended to use multiple reference points and multiple reference epochs in 

order to mitigate the effect of neglecting the covariance model.  

 

The more insight to the effect of using multiple reference points and epochs can be 
drawn by looking at the structure of the covariance matrix at different output levels. 

By using multiple reference point/epochs, we linearly transform the data into new 

set of observations with the same information content, but with less correlation or 

with a more homogenous covariance matrix. This is the main reason why the 

inversion is almost insensitive to the use of the covariance matrix. In other words, 
this transformation decorrelates the observations to some extent. In an ideal case, if 

the observations were totally decorrelated, there would be zero sensitivity to 

covariances, as in fact there is no covariance among data.  

 

Whereas the full decorrelation of observations may be not possible, we showed that 

by using multiple reference points/epochs, we can effectively (although not 
completely) decorrelate the data. In order to demonstrate this effect, we visualize a 

sample covariance matrix for different outputs levels in Figure 3.14. We can see that 

the structure of the Level5 covariance matrix is most homogenous and least 

complex: The variances (diagonal elements) are relatively in the same order of 

magnitude, and the covariance elements are mainly zero or have a homogenous 
pattern.   

  

  

 
Figure 3.14: The example of the covariance matrix for different outputs levels. The structure of the Level5 

covariance matrix is the most homogenous and the least complex 
 

Effect on subsidence prediction:  
We observed that using the full covariance matrix or using multiple references 

improves the precision of the estimated geomechanical model parameters. 

Propagating their precision further shows that likewise also the confidence intervals 

of subsidence predictions are narrowed. Figures 3.15 and 3.16 demonstrate this 
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effect. We are using the setting of simulation scenarios 1 and 3 with a time decay of 

2 years and predict the subsidence for the years after the observation period based 

on the inverted parameters from Level2 and Level5. We propagate the full empirical 
covariance matrix of estimated parameters to the subsidence predication curve and 

plot the 95% (2 sigma) confidence intervals. We can see in the both scenarios that 

the increased parameter precision due to consideration of covariances (or due to 

using an output level with multiple reference points/epochs) can substantially 

enhance the precision of subsidence predictions. 

 
 

       

 
 

Figure 3.15: Effect of the precision of geomechanical inversion on the confidence interval of subsidence 
prediction .The prediction is based on the scenario 1 with a time decay of 2 years, based on the inverted 

parameters from Level2 and Level5. Increased inversion precision can substantially enhance the precision 
of subsidence predictions or narrow their confidence interval, respectively. Note that the visualization 

assumes normally distributed predictions, which is not fully rigorous. 
 

 

 
Figure 3.16: Effect of the precision of geomechanical inversion on the confidence interval of subsidence 

prediction .The prediction is based on the scenarios 2 with time decay of 2 years, and for 20 years after 
observation period based on the inverted parameters from Level2 and Level5. Increased inversion precision 

can substantially enhance the precision (or confidence interval) of subsidence predictions.  
 

 

On the effect of the zero mean property of noise components:  

As discussed in section 2.3.1 the fulfillment of the zero-mean property of double 

differences that is implied by the stochastic model for idealisation noise depends on 

the choice of the reference point(s). This has implications for geomechanical 
modelling. In the output level study, we have simulated the shallow motion of the 

reference benchmark in order to take into account its effect on the geomechanical 

model parameters, and we did not observe any significant bias in the inversion 

based on different output levels. However we should note that in contrast to this 

output level study, we have only one noise realization in practice, and if we then rely 
on a single, arbitrarily chosen reference point (Levels 2+3), we risk a bias if this 

point does not reflect by chance the mean shallow motion of all points. By using 
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multiple reference points (Levels 4+5), we can sufficiently mitigate any potential bias 

due to non-fulfillment of the zero-mean property. Against this background and also 

considering the effect of the covariance matrix, we propose to always use multiple 
reference points in the geomechanical modelling. 

 

Conclusions: 

The main conclusion of the leveling output level study can be summarized as: 

 

1. Using the full covariance matrix significantly enhances the precision of 
estimated geomechanical model parameters and can substantially improve 

the precision of subsidence predictions. 

 

2. Weighting of individual observations yields no significant improvement with 

respect to unweighted estimation if covariances are neglected. 
 

3. Using multiple reference points and reference epochs (Level 5) can 

significantly mitigate the effect of neglecting the covariance matrix in the 

modelling.  

 

4. Using multiple reference points also reduces the risk of biased estimates due 
to non-fulfillment of the zero-mean property of double differences. 

 

5. By using Level 5 data, the structure of the covariance matrix of observations 

will be much simpler. Its effect on the inversion may be even insignificant. 

For geomechanical modelling, it is recommended not to use a common 
reference in time and space.  
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3.3. Output level Study: InSAR 

3.3.1. Output level overview 
The overview of the output levels for InSAR data is given in table 3.2. The schematic 
summary of these levels is given in Figure 3.17.  The output levels 0 and 0w are not 

considered in the output level study because of the considerable complexity of 

geomechanical modelling with respect to these levels.  

 

Level Description  Signal/Noise components 

How to be computed 
(Required a priori 

knowledge (APK) in the 
processing) 

 
Level0w 

 
Single-master wrapped (modulo-
2π) interferometric phase time 

series per PS 

 
(w.r.t. one reference point and 

one reference image ) 
 

 
Line of sight (LOS) deformation 

(projection of superposition of different 
deformation mechanism on the 

satellite LOS), relative heights, 
atmospheric delays, thermal and 

scattering noise 

 
Output of InSAR processing 

 

Level0 

 

Single-master unwrapped 
interferometric phase time series 

per PS 
 
(w.r.t. one reference point and 

one reference image ) 
 

 

LOS deformation (projection of 
superposition of different deformation 

mechanisms on the satellite LOS), 
relative heights, atmospheric delays, 
thermal and scattering noise 

 

Output of spatio-temporal 
unwrapping (Requires APK 

on spatio-temporal 
smoothness of deformation 
signal) 

 

Level1A 

 

Single-master unwrapped 
interferometric phase time series 

per PS (height estimated and 
excluded) 

 
(w.r.t. one reference point and 

one reference image ) 
 

 

LOS deformation (projection of 
superposition of different deformation 

mechanisms on the satellite LOS), 
atmospheric delays, thermal and 

scattering noise 

 

Output of spatio-temporal 
unwrapping and (residual) 

height estimation (Requires 
APK on spatio-temporal 

smoothness of deformation 
signal, topographic 

variability) 

 
Level2A 

 
Single-master LOS deformation 

time series per PS, excluding 
atmospheric effect and 

topography 
 

(w.r.t. one reference point and 
one reference image ) 

 
LOS deformation (superposition of 

different deformation signals on the 
satellite LOS), thermal and scattering 

noise 

 
Spatio-temporal 

unwrapping + height 
estimation + atmosphere 

filtering (Requires APK on, 
topographic variability , 

and spatio-temporal 
behavior of both 

deformation and 
atmospheric effect ) 

 

 

Level3A 

 

Single-master vertical 
deformation time series per PS, 

excluding atmospheric effect and 
topography, and converted to 

vertical assuming zero horizontal 
deformation  

 
(w.r.t. one reference point and 

one reference image ) 
 

 

Vertical deformation (superposition of 
different deformation mechanisms), 

thermal and scattering noise 

 

LOS to vertical conversion 
(Requires APK that 

horizontal deformation is 
insignificant).  

 
Level1B 

 
Same as level1A but transformed 

w.r.t. multiple reference images 
and multiple reference points 

 

 
Same as Level1A 

 
Spatial and temporal 

differentiation of Level1A 

 
Level2B 

 
Same as level2A but transformed 

w.r.t. multiple reference images 
and multiple reference points 

 

 
Same as Level2A 

 
Spatial and temporal 

differentiation of Level2A 

 

Level3B 

 

Same as level3A but transformed 
w.r.t. multiple reference images 

and multiple reference points 
 

 

Same as Level3A 

 

Spatial and temporal 
differentiation of Level3A 

 

Table 3.2: The overview and description of InSAR output levels.   
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Figure 3.17: The overview of InSAR output levels.   

3.3.2. Simulation setting 
Reservoir/geomechanical parameters: We applied the output level study 

methodology (See section 3.2) on three different scenarios with time decay 

parameters of 1 to 3 years. All the geomechanical/reservoir parameters are the same 
for the three scenarios. The parameters used in the simulation are summarized in 

table 3.3. Similar to leveling output level study, the reservoir/geomechanical 

parameters are a very rough approximation of the parameters of the Ameland gas 

field.  

 

Reservoir radius (R)  5 km  
Reservoir depth (D) 3 km  
Reservoir Thickness (H) 100 m  

 

Poisson ratio  0.3  
Compaction coefficient (Cm) 

 
Time decay parameter (T) 

7.410-11 Pa-1 

 

(scenario 1)                                      (scenario 2)                                (scenario 3) 
1 years                                 2 years                            3 years 
 

Start of the production  t=3 years 

End of the production 
 

t=18 years 

 
Pressure depletion rate (𝜕∆𝑝 𝜕𝑡⁄ ) 

 

2.0106 Pa/year  

 

Observation period 
Start of the observation period 

6.5 years 
t=3 year (coincident with start of the production) 

Number of SAR images  
Time interval 
Standard deviation of 
perpendicular baselines 

Satellite elevation  
Incidence angle  
Heading angle  
 

25 radar images 
96 days 
200 m 
 

800 km  
23º  
193º (descending orbit) 

 

Table 3.3: parameters used in the simulation for the InSAR output level study  

A depicted overview of the maximum deformation (center of the subsidence bowl) 
and the observation period of all the scenarios is shown in Figure 3.18. The 
production period is assumed to be 15 years, starting at t=3 years (with respect to 
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the modelling reference time). The pressure is assumed to deplete linearly with time 

during the production period.  

 
 

 
Figure 3.18: The depicted overview of the maximum deformation (at the center of the subsidence bowl) and 

the observation period of all the scenarios of the InSAR output level study.  

InSAR observations: The locations of persistent scatterers (PS) are randomly 
distributed over an area of 13x13 km2. In total 64 1st order PS and 200 second order 

PS are simulated. The 1st order PS are used in the processing to estimate and filter 

the atmospheric effect (the same as DePSI methodology (van Leijen 2014)). An 

example of the PS locations is given in Figure 2.15. For each simulation 25 radar 

images with a time interval of 96 days are considered. The steps of InSAR data 

simulation can be summarized as: 
1. Create a network of 1st and 2nd order PS 

2. Construct the full spatio-temporal covariance matrix of InSAR observations 

for Level1A 

3. Simulate observation noise for Level 1A based on the covariance matrix 

4. Simulate a 3D deformation signal for Level 1A based on the known 
geomechanical model, and project the 3D deformation on the radar line of 

sight (LOS). 

5. Compute the observation vector for Level1A (observation = signal + noise) 

6. Transform Level 1A data to other levels (linear transformation or atmospheric 

filtering)  

7. Propagate the covariance matrix to other levels using linear or Monte-Carlo 
error propagation.   

 

The noise components are simulated based on covariance matrices computed from 

the noise model presented in Sections 2.2 and 2.3. The error propagation for 

atmospheric filtering is based on the Monte-Carlo approach presented in the 
Section 2.4. The demonstration of signal simulation for InSAR data is given in 

Appendix 1.  

 

Inversion search space: The inversion is done by searching the two-dimensional 

search space of the unknown parameters (proportionality factor 𝛼, and time decay 

parameter 𝑇). The search space range is [0 2] for 𝛼 and [0 12] years for 𝑇. The 

sampling interval of the search space is 0.02 and 0.1 years for 𝛼 and 𝑇, respectively.   
 

3.3.3. Results   
Results (scenario1): 
The deformation (signal) time series of all the simulated PS are plotted in 

Figure 3.19. We can see that the magnitude of the deformation during the 

observation period (from t=3 till t=9 years) is significant (with a maximum of 
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~35 mm). The results of the inversion of 400 InSAR data realizations are 

summarized in Figures 3.20-3.24. 

 

 
Figure 3.19: The deformation (signal) time series of all the simulated PS for scenario1.  

 

These plots show the inversion results using three different objective functions as 

described in section 3.2. The background of the plots shows the normalized 

empirical probability distribution function of the estimated parameters (i.e., the 

empirical probability density function (PDF) derived from the 400 estimates). The 1-
sigma confidence ellipses of the estimated parameters are also plotted.  Note that 

the wideness of the empirical PDF or the confidence ellipses is representative for the 

precession/dispersion of the estimated parameters, and the closeness of the PDF 

mode to the true value is the measure of the biasedness of the inversion.  

 

Figure 3.20 shows the results for the output levels 1A and 2A, i.e. the results before 
and after atmospheric filtering. We can see that, similar to the leveling study, the 

precision is increased significantly if the full noise covariance matrices are taken 

into account in the inversion. The important observation here is that atmospheric 

filtering does not have a significant effect on the inversion precision when the full 

covariance matrix is considered in the inversion.  
 

 
Figure 3.20: the results (scenario1) for the output levels 1A and 2A using three different objective functions. 

The background of the plots shows the normalized empirical probability distribution function of the 
estimated parameters. Atmospheric filtering does not have a significant effect on the inversion precision 

when the full covariance matrix is considered in the inversion. 
 

Figure 3.21 compares the results of the output levels 2A and 3A, i.e. the results with 

and without conversion to vertical. The results demonstrate a significant bias in the 
inversion due to the neglect of horizontal deformation in the LOS-to-vertical 

conversion. This is due to the well-known error introduced on InSAR deformation 
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estimates if we convert them to vertical assuming zero lateral movement (Samiei-

Esfahany n.d.).  

 
Figure 3.21: the results (scenario1) for the output levels 2A and 3A using three different objective functions. 

The background of the plots shows the normalized empirical probability distribution function of the 
estimated parameters. We can see a significant bias in the inversion due to the neglect of horizontal 

deformation in the LOS-to-vertical conversion. 
 

Figures 3.22 and 3.23 compare the results of output levels with a single reference 

points/image (1A and 2A) to the results of levels with multiple reference 

points/images (1B and 2B). By analogy to the output level study on levelling can be 

concluded that using multiple reference points/images can enhance the precision of 
model parameters if covariances are neglected.  

 
Figure 3.22: the results (scenario1) for the output levels 1A and 1B using three different objective functions. 

The background of the plots shows the normalized empirical probability distribution function of the 
estimated parameters. If covariances are neglected, using multiple reference points/images can enhance the 

precision of model parameters. 
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Figure 3.23: the results (scenario1) for the output levels 2A and 2B using three different objective functions. 

The background of the plots shows the normalized empirical probability distribution function of the 
estimated parameters. If covariances are neglected, using multiple reference points/images can enhance the 

precision of model parameters. 
 

Results (scenario2): 
The deformation (signal) time series of all the simulated PS for the 2nd scenario are 

plotted in Figure 3.24. We can see that, due to the larger time decay parameter, the 

magnitude of the deformation during the observation period (from t=3 till t=9 years) 

is much less that the 1st scenario, resulting in a much lower signal-to-noise ratio. 

The results of the inversion of 400 InSAR data realizations in the 2nd scenario are 
summarized in the Figures 3.25-3.28. 

 
       Figure 3.24: The deformation (signal) time series of all the simulated PS for scenario2. The magnitude 
of the deformation during the observation period is much less than in the 1st scenario, resulting in a much 

lower signal to noise ratio. 
 

Figure 3.25 shows the results for the output levels 1A and 2A, i.e. the results before 

and after atmospheric filtering. First of all we can see a significant degradation of 

parameter precision due to the lower signal-to-noise ratio. As a consequence, we 

only get reasonable results when the full covariance matrix is used in the inversion,. 
This outcome underlines the essential importance of using the full covariance 

matrix for the fields with smaller subsidence (or lower signal-to-noise ratio 

scenarios). Comparing the dispersion of inverted parameters, we can see that, by 

analogy to scenario1, atmospheric filtering does not have significant effect on the 

inversion precision when the full covariance matrix is used in the inversion.  
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Figure 3.25: the results (scenario2) for the output levels 1A and 2A using three different objective functions. 

The background of the plots shows the normalized empirical probability distribution function of the 
estimated parameters. The parameter precision is significantly worse than in scenario 1 due to the lower 

signal-to-noise ratio. Only when the full covariance matrix is used, the results are reasonable. Atmospheric 
filtering does not have a significant effect on the inversion precision when the full covariance matrix is used. 
 

Figure 3.26 compares the results of the output levels 2A and 3A, i.e. the results with 
and without conversion to vertical. As in scenario 1, we see a significant bias in the 

inversion due to the neglect of horizontal deformation in the LOS-to-vertical 

conversion.  

 
Figure 3.26: the results (scenario2) for the output levels 2A and 3A using three different objective functions. 

The background of the plots shows the normalized empirical probability distribution function of the 
estimated parameters. We can see a significant bias in the inversion due to the neglect of horizontal 

deformation in the LOS-to-vertical conversion. 

 
Figures 3.27 and 3.28 compare the results of output levels with a single reference 

points/image (1A and 2A) to the results of levels with multiple reference 

points/images (1B and 2B). Here, the effect that using multiple reference 

points/images enhances the precision of model parameters if the covariances are 

neglected is even more significant than in scenario 1. 
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Figure 3.27: the results (scenario2) for the output levels 1A and 1B using three different objective functions. 

The background of the plots shows the normalized empirical probability distribution function of the 
estimated parameters. If covariances are neglected, using multiple reference points/images can enhance the 

precision of model parameters. Estimation is biased if the covariances are neglected. 

 
Figure 3.28: the results (scenario2) for the output levels 2A and 2B using three different objective functions. 

The background of the plots shows the normalized empirical probability distribution function of the 
estimated parameters. if covariances are neglected, using multiple reference points/images can enhance the 

precision of model parameters. Estimation is biased if the covariances are neglected. 
 

Results (scenario3): 

The deformation (signal) time series of all the simulated PS for the 3rd scenario are 

plotted in Figure 3.29. We can see that, due to the time decay of 3 years, the 

magnitude of the deformation during the observation period is very small (maximum 
~5mm in 9 years), resulting in a too low signal-to-noise ratio to get any significant 

(precise and unbiased) results from the inversion.   
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Figure 3.29: The deformation (signal) time series of all the simulated PS for scenario3. The magnitude of the 
deformation during the observation period is very small, resulting in too low signal- to-noise ratio to estimate 

the parameters significantly. 
 

 

3.3.4. InSAR output level study: discussion and conclusion  
 

On the effect of the covariance matrix:  

As in the leveling output level study, we observed the significant importance of using 

the full covariance matrix in order to get more precise results in the inversion. The 
results for the 2nd scenario with lower signal-to-noise ratio show that this effect is 

even more significant for the fields with smaller subsidence. We see again that using 

multiple reference points/images can improve the modelling/prediction precision 

when information on data stochasticity is not fully available.   

 

On the effect of horizontal deformation:  
We have observed that the wrong assumption on horizontal deformation in the LOS-

to-vertical conversion of InSAR data can introduce a significant bias in the modelling 

and consequently in subsidence predictions. Although the error introduced by 

neglecting horizontal deformation in InSAR data is well studied and known in the 

InSAR community, it is still often neglected for some applications. It is highly 
recommended, based on this study, to improve the geomechanical modelling 

methodology by making the inversion from InSAR data in the original LOS geometry.  

 

On the effect atmospheric filtering: 

All our simulation studies have shown that atmospheric filtering does not have 

significant effect on the modelling quality if the full (and correct) covariance matrix 
is used in the inversion. This is an interesting result. The atmospheric filtering is the 

very standard step in most of the InSAR processing softwares. The filtering always 

results in more smooth time series, which is more convenient for the user/modeler 

interpretation. However, atmospheric filtering requires also assumptions and a-

priori knowledge about the spatio-temporal behavior of both deformation and 
atmospheric signal. Wrong assumptions on the temporal smoothness of deformation 

may introduce error (or bias) in the deformation time series, and consequently in the 

modelling. Note that in the simulation study, we used correct assumptions, so we do 

not see any bias in the modelling. However, in practice, this is a likely situation. So 

regarding the potential bias, it may be beneficial to use unfiltered InSAR data in 

geomechanical modelling. On the other hand, we should consider that a completely 
perfect/correct stochastic model for InSAR is not always available. In that case, 

filtering the atmosphere can improve the results of the modelling (for example see 

the results in Figure 3.20). It also makes the interpretation of the residuals (misfit 

between data and the model) easier. So in the end, considering both pros and cons 

of filtering, we think not removing the atmospheric signal from InSAR data is worth 
consideration. We recommend trying the inversion with and without atmospheric 

filtering. In principle the results of the both inversion should not deviate 

significantly. In case of significant differences in the results, the feedback should be 
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given to InSAR data providers and the cause of the difference should be further 

investigated.  

 
 

Conclusions: 

The main conclusions of the InSAR output level study can be summarized as: 

 

1. Conversion to vertical assuming zero horizontal deformation introduces an 

error in the vertical component of deformation that yields a significant bias 
in geomechanical modelling. 

 

2. Using the full covariance matrix significantly enhances the precision of the 

estimated geomechanical model parameters. This effect is very significant 

for cases with low signal to noise ratio. In these cases, the estimates can 
even be biased if covariances are neglected.  

 

3. Weighting of individual observations yields no significant improvement 

with respect to unweighted estimation if covariances are neglected. 

 

4. Using multiple reference points and reference images can significantly 
mitigate the effect of neglecting the covariance matrix in the modelling and 

reduce the risk of biased estimates due to non-fulfillment of the zero-mean 

property of double differences. For geomechanical modelling, it is 

recommended not to use a common reference in time and space!  

 
5. In the case of using the full covariance matrix in the inversion, 

atmospheric filtering does not have a significant effect on the modelling 

quality. Considering that the atmosphere filtering is more demanding with 

respect to the required a priori knowledge on the deformation signal than 

accounting for its effect via the stochastic model, we propose to consider 

not removing the atmospheric signal from InSAR data as the preferred 
option for geomechanical modelling.  
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4. Outlier Handling 

4.1. Introduction  
Geodetic datasets may include outlier observations, for example due to human or 

processing errors in levelling campaigns, or due to unwrapping errors in InSAR 

data. As outliers are described neither by the stochastic model nor by the geo-
mechanical model, they may introduce bias in the final subsidence model. The 

objective of this section is to propose an efficient approach to detect the potential 

outliers in geodetic datasets.  

 

Outlier handling is a very well addressed issue in geodesy and geodetic surveying, 
and there exist different rigorous methodologies to detect and identify outliers in 
geodetic networks. Most of these methodologies, such as data-snooping (Baarda 1968), 

are based on iterative hypothesis testing in linear(ized) functional models. These 

methods involve testing a null hypothesis of a well-known functional relationship 

between observations and estimated parameters against alternative hypotheses for 

different types of outliers. 
 

However, there are some obstacles and difficulties associated with the application of 

such a rigorous approach for geomechanical modelling: 

 

 In geodetic networks or surveying applications, the functional relationship 
between observations and unknown parameters is often well-defined. In 

geomechanical modelling, however, these functional relationships are based 
on deterministic assumptions from geological and reservoir models that are 

subject to errors. In a rigorous testing framework, we would need to consider 

these assumptions as observations with associated uncertainties. Therefore 

any kind of hypothesis testing for outlier detection requires a reasonable 

stochastic model not only for the geodetic data but also for the subsurface 
observations, propagated to surface deformation. Such a stochastic model 

that takes all the model uncertainties into account is not available so far.  

 

 It is also possible to consider a testing framework, in which geodetic 
observations and geomechanical predictions are compared in the subsidence 

domain without tracking down model uncertainties to their driving 

mechanisms. In that case, a simple parametric model can be used to 
describe uncertainties, which are also referred to as model noise. There are 

approaches to derive parameters describing the model noise in an iterative 

manner (e.g. using variance component estimation) from the residuals 

between the observations and an a priori geomechanical prediction. However, 
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due to the potentially large imperfections in an a priori geomechanical model, 

any stochastic model that is estimated from the residuals runs the risk to be 

substantially biased. So would be any hypothesis testing for outlier detection 
that is based thereupon. 

 

 Applying geodetic testing concepts is (not necessarily impossible but) usually 
not straightforward for geomechanical models due to the lacking closed-form 

functional relationship or due to the highly non-linear models. 

 

 Iterative geodetic outlier identification, such as data snooping, involves time 
consuming computations. In every iteration, the full estimation/inversion 
step must be repeated. Such an approach is computationally inefficient for 

geomechanical inversion, which is usually based on the time consuming 

forward modelling and parameter-space searching.  

 

 Developing a framework for rigorous hypothesis testing for outlier detection 
(even if other obstacles can be circumvented) is a lengthy process that keeps 

us from achieving timely results. 
 

Due to the aforementioned difficulties, we propose to use a pragmatic approach and 

focus only on the very obvious outliers that can be identified without detailed 

knowledge about model noise. In the following sections we describe and demonstrate 

our pragmatic proposal for both levelling and InSAR data.   
 

4.2. Outlier handling: levelling data 
 

For the levelling data, we propose two main steps for outlier handling: 

 

1. We detect and remove gross observation errors that are detectable from 

closed loop conditions within one epoch, using standard geodetic testing 
methodology (i.e., overall model test and w-test). In this step, we take 

advantage of the very strong functional model of network adjustment, and 

also very well studied levelling measurement noise model.  

 

2. We apply hypothesis testing to the individual time series of double 

differences to detect gross (potentially human) errors that are not detectable 
from closed loop conditions. These are benchmark misidentifications that 

create discontinuities in the time series. In this way, instead of 

computationally expensive testing of a complete spatio-temporal dataset, we 

test each time series individually, which is a very fast process.  

 
The first step is a very well known, standard, and well addressed experiment in 

geodetic surveying. So we do not explain it further in this report. First, we elaborate 

the generic concept of the second step in the next paragraphs, and then in the next 

subsection, the mathematical formulation of the testing is given.   

 

Given a time series of double differences, we initiate the test by removing the 
expected signal component due to deep-source deformations. For this purpose, a 

first order geomechanical model of subsidence can be used to be subtracted from 

the data. Note that we do not need a perfect model here. As the geomechanical 

model behaviour is always temporally smooth, any model imperfection can only 

create temporally correlated components in the residuals. As we only apply the test 
for gross errors that are often temporally uncorrelated the test is not affected 

significantly by the model imperfection.  

 

Two types of gross errors are considered in the testing: 
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1. Identification error: this is a single outlier in the time series, most likely 

due to benchmark misidentification during one levelling campaign.  

 
2. Disturbance: this is an abrupt jump in the time series, most likely due to 

repeated benchmark misidentification.   

 

Figure 4.1 shows the stylized concept of disturbances and identification errors.  

 

 

 
Figure 4.1: the stylized concept of disturbances and identification errors. 

 

The null hypothesis is that the residuals only contain the contributions from 

measurement and idealisation noise, so the residual behaviour should be consistent 

with the stochastic model proposed in Chapter 2. We test the null hypothesis 
against the alternative hypotheses of having gross errors (identification or 

disturbance) in the residuals with an extremely relaxed test sensitivity. Thus, we 

prevent the rejection of the null hypothesis due to: 

 eventual imperfections of the used geomechanical model, 

 neglect of uncertainties of the used geomechanical model, 

 uncertainties in the stochastic model for levelling data. 
 

In the next paragraphs, we give a mathematical formulation of the proposed 

hypothesis testing.  
  

4.2.1 Hypothesis testing for gross error detection in double difference 
time series 
 

Detection and identification of gross errors: Assuming 𝑦 is a vector of residuals 

for an individual double difference time series with m observations, and 𝑄𝑦 is the 

covariance matrix of 𝑦, the null hypothesis is defined as: 

 
H0: E{𝑦} = 0,   D{𝑦} = 𝑄𝑦 . 

 

This null hypothesis indicates that there is no residual deep source deformation 
expected (i.e. zero mean expectation), and all the noise contributions together have a 

dispersion of 𝑄𝑦. Three different kinds of alternative hypotheses are considered: 

 
1. Abnormal behavior: There is no gross error, but the residual time series is 

biased and has an expectation of ∇. This is equivalent to the so-called overall 

model test. 

 
HA: E{𝑦} = ∇,   D{𝑦} = 𝑄𝑦 

 
2. Identification error: in total, m alternative hypotheses for an identification 

error can be defined as  

 

HI𝑖: E{𝑦} = 𝐶𝑦𝑖
𝑇 ∇,   D{𝑦} = 𝑄𝑦 ,   𝑖 = 1 … 𝑚, 
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where 𝐶𝑦𝑖
𝑇  is a canonical unit vector as 𝐶𝑦𝑖

 = [0, … ,1, … ,0]𝑇 and ∇  is  a scalar 

with the value of the identification error.  

 
3. Disturbance: in total, m alternative hypotheses for a disturbance can be 

defined as 
 

HD𝑖: E{𝑦} = 𝐶𝑦𝑖
𝑇 ∇,   D{𝑦} = 𝑄𝑦  ,   𝑖 = 1 … 𝑚 

 

where 𝐶𝑦𝑖
𝑇  is a canonical vector as 𝐶𝑦𝑖

 = [0, … ,1,1, … ,1]𝑇  and ∇  is a scalar with 

the value of the identification error.  

 
Considering these three kinds of scenarios, we have in total 2m-2 alternative 

hypotheses: m hypotheses for identification errors, m-3 hypotheses for disturbances 
and one for abnormal behavior. Note that disturbances after the first or before last 

epoch would be equivalent with identification errors. So there are m-3 hypotheses 

for disturbances.  We test them against each other and select the most likely 
scenario based on the B-method of testing (Baarda 1968, Teunissen 2000). As a 

result we can detect and identify the gross errors in every double difference time 

series. The next question is what to do with the detected outliers or how to adapt the 

observation vector to handle the outlier effect.  

 
Adaptation step: Based on the outcome of the test, one of the following actions 

should be taken (See Figure 4.2): 

 

 in case of an identification error, we exclude the corresponding 
observation from the time series,  

 in case of a disturbance, we split the time series at the time of the 
disturbance,  

 and in case of abnormal behaviour, we do not take any action and just 
flag the time series to have a potentially abnormal behaviour.  This 
hypothesis may be sustained due to imperfections in geomechanical 

modelling or poorly separable combinations of identification errors 

and/or disturbances. We flag them just to inform the geomechanical 

modeller that there is a potential artefact in these particular time series. 

This information may be useful in the post-analysis and interpretation of 

the misfit of geomechanical modelling.  

 
Figure 4.2: The decision for three different kinds of alternative hypothesis: removing the identification error, 

splitting the time series at disturbance, and flag the abnormal time series. 
 

After detection of all outliers and the corresponding adaptations, the full procedure 

can be iterated a couple of times with geomechanical modelling until the null 

hypothesis is accepted. The sensitivity of geomechanical modelling to outliers can be 
evaluated in the implementation phase by comparatively using two levelling 

datasets: one complete dataset and one dataset with outliers removed. 

 

As a demonstration, figures 4.3, 4.4, and 4.5 give three examples of outliers detected 

by the testing methodology applied on the Ameland levelling dataset.  
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Figure 4.3: Arbitrary example of a detected identification error in the Ameland levelling dataset. The red 
dots show the levelling observations, the blue dashed line is the first order geomechanical model, and the 

green dots are the residuals (differences between observations and the 1st order model). The red circle 
indicates the detected identification error in the time series.  

 

 

 
 

Figure 4.4: Arbitrary example of a detected disturbance in the Ameland levelling dataset. The red dots show 
the levelling observations, the blue dashed line is the first order geomechanical model, and the green dots 

are the residuals (differences between observations and the 1st order model). The red circles mark all 
observations after the detected disturbance in the time series.  

 
 

 
 

Figure 4.5: Arbitrary example of detected abnormal behavior in the Ameland levelling dataset. The red dots 
in the upper plot show the levelling observations, the blue dashed line is the first order geomechanical 

model, and the red dots in the lower plot are the residuals (differences between observations and the 1st 
order model). This time series is flagged to have a potentially abnormal behavior.    

 



 

 62 

 

4.3. Outlier handling: InSAR data 
 
In InSAR datasets, there are three generic sources of outliers as follows. 

 

1. Incoherent pixels, which are mistakenly detected as PS in the InSAR 

processing (falsely detected PS) 

  

2. Spontaneous movement of a PS, due to for example very fast movement or 
collapse of a building.  

 

3. Unwrapping errors in InSAR processing.  

 

Outliers induced by the aforementioned sources can be classified with respect to 
their representations in time and space.  

 

Part of the outliers are uncorrelated in space. This applies to falsely detected PS, 

spontaneous movement of PS and a subset of unwrapping errors. PS with spatially 

uncorrelated outliers can be easily identified (and removed) based on their large 

differences with respect to the neighboring PS in areas with high PS density.  Such 
an identification procedure can be incorporated easily in the InSAR post-processing.  

 

Another class of outliers is uncorrelated in time. This applies to temporally isolated 

unwrapping errors (similar to identification errors in levelling data) and persistent 

jumps in time series due to unwrapping errors (similar to disturbances in levelling 
data). To detect these kinds of isolated outliers in time, we propose to apply a similar 

procedure as proposed for levelling to all the InSAR double-difference time series.  

 

Whereas spatially-uncorrelated outliers in high PS density areas and temporally 

uncorrelated outliers can be easily identified in InSAR datasets, it is very likely that 

their effect on the modelling is negligible. Whereas we recommend further exploring 
this hypothesis, we do not consider the handling of these two kinds of outliers a top 

priority. 

 

The main challenge in outlier handling is the identification of two other kinds of 

outliers as follows. 
 

 Falsely detected PS and temporally correlated unwrapping errors in areas 
with low density of PS: Due to the poor point density, we cannot exploit 

spatial correlation properties for validation and all PS in that area have to be 

considered potential outliers. By disregarding them, we may lose valuable 

information. Thus, it is essential to perform sound consistency checks in the 

InSAR processing and to quantitatively assess the reliability of PS. Spatially 
isolated PS that are not deemed sufficiently reliable or verifiable should be 

flagged and interpreted with care.     

 

 Both spatially and temporally correlated unwrapping errors: These are the 
most critical kind of outliers or errors in the InSAR datasets and cannot be 

easily detected or identified. However, the presence of this kind of outliers in 

InSAR data from the Netherlands is very unlikely. First of all, most of the 
time series InSAR processing routines apply intensive consistency checks in 

the unwrapping steps in order to prevent this kind of errors. Second, in time 

series InSAR methodologies, most of the points are unwrapped 

independently from their neighboring points. So the likelihood that all points 

in one particular area have the same unwrapping error is very small. Third, 
the chance of unwrapping errors is much lower for the InSAR stacks with a 

large number of images (>50) like those that are available from the northern 
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Netherlands. Fourth, the chance of unwrapping errors is even lower in areas 

with negligible topography variations as in the northern Netherlands. Based 

on all these arguments, we conclude that spatio-temporally correlated 
unwrapping errors are not likely for the application of geomechanical 

modelling based on InSAR data, and we do not propose any kind of testing 

for this kind of unlikely scenarios. However we do recommend to raise 

awareness for this kind of errors in the post-analysis of the geomechanical 

modelling.  

  

4.4. Outlier handling: summary 
 

The main focus of outlier handling is on levelling, in which unavoidable human 

errors regularly cause huge discrepancies. We proposed a pragmatic approach for 

outlier removal in levelling datasets. Our proposal can be summarized as: 

 

1. First, apply testing on epoch-wise (single-difference) adjusted observations 
using a standard geodetic testing methodology 

2. Then, apply testing to individual time series of double differences with 

following considerations: 

 

 Base the test on time series residuals with respect to a first order 
geomechanical model. 

 Use the stochastic model proposed in chapter 2. 

 Use an extremely relaxed test sensitivity to identify only most obvious 
outliers. 

 Consider three kinds of alternative hypotheses as identification error, 
disturbance, and abnormal behavior  

 Use the B-method of testing to decide for the most likely hypothesis 

 Remove the detected identification errors, split the time series in case 
of disturbances, and flag the detected abnormal time series  

 Iterate with geomechanical modelling. 
 

For InSAR, outliers are generally a minor issue due to the high spatio-temporal 

sampling. Nevertheless, thorough reliability checks are essential here. 

 
For both levelling and InSAR, a sensitivity analysis in operational modelling can help 

quantifying the actual impact of outliers.  
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5. InSAR data reduction 
 

5.1. Introduction 
 

Handling large volumes of InSAR data is an important aspect of the geomechanical 
modelling workflow. An InSAR dataset consists of deformation time series for a large 

number of radar targets. Contrary to levelling datasets, which typically cover 

hundreds of benchmarks and up to 10-30 epochs, InSAR datasets often comprise 

tens of thousands of points with 40-100 epochs and increasing tendency. This has 

two consequences:  
 

1. Computationally expensive geomechanical modelling, 

2. Too large full covariance matrix to work with in practice (Note that we need 

the matrix inverse in the modelling).   

 

Hence, a proper data reduction technique is required for InSAR data. For data 
reduction, some assumptions about spatio-temporal variability of the deformation 

signal are needed. In developing a proper methodology for data reduction, the 

clarity, simplicity, plausibility, and therefore falsifiability of the used assumption 

should be considered. In this chapter, we propose a data reduction approach for 

InSAR data in both the time and space domains with clear and plausible 
assumptions.  

 

In general, there are two different lines of thought towards data reduction: 

 

1. Methodologies that transform the data to another domain, for example 

principle component analysis or FFT/wavelet-based data techniques. These 
are popular in image processing. A good example of such an approach 
applied to InSAR can be found in (Hetland, et al. 2012). 

 

2. Methodologies that keep the data in the original domain. A popular example 

of this kind is the quadtree decomposition.   
  

The disadvantage of the first kind of methodologies is that it creates extra 

complexity in geomechanical modelling and interpretation. In other words, the 

geomechanical modelling should then be applied in another domain, e.g., wavelet 

domain, which makes the interpretation complicated. Furthermore, propagation of 

the full covariance matrices to another domain is challenging and error-prone, 
especially for nonlinear transformations. As a consequence, our proposal is based 
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on the second kind of methodologies that keep the deformation data in the 

deformation domain. 

 

5.1. InSAR data reduction in time 
 
For data reduction in time we propose to use “binned averaging” with a fixed time 

interval (e. g., 6 or 12 months), depending on the characteristics of the subsidence 

signal. The method consists in subdividing every double difference time series in 

intervals (“bins”), in which all contained values are averaged. The underlying 

assumption of this simple approach is (in case of regularly sampled time series) that 
the deformation rate is constant during the bin time interval. This clear assumption 

allows the user to simply choose the time interval in which he expects a constant 

rate.  

 

We should note that the main cause of the big data volume in InSAR data is the 

large number of persistent scatterers, and the data reduction in the time domain is 
of secondary importance compared to data reduction in space. So if plausible 

information about the rate variability is not available, it is recommended not to 

apply any temporal data reduction. Furthermore, if the temporal evolution of 

subsidence is of particular interest, the time interval should be chosen 

conservatively small. 
 

The binned data averaging can be formulated as a linear transformation, allowing 

the application of linear error propagation to derive the InSAR covariance matrix 

after data reduction.  

 

Figure 5.1 demonstrates the application of the binned averaging (with six month 
intervals) on a synthetic InSAR time series.   

 

 

 
 

Figure 5.1: demonstration of binned averaging with 6 month intervals applied on a synthetic 
InSAR time series. Blue and red dots are InSAR observations before and after data reduction.  

 

We should note that for temporal data reduction, it is possible to apply more 
sophisticated (but also more complicated) alternative approaches. An example is to 

predict InSAR deformation at temporal sampling points using best linear unbiased 

prediction (BLUP, also known as least squares collocation), taking the full 

covariances into account with the same assumption of a constant rate in the time 

intervals. However, we think such an approach is unnecessarily complex for the 
application at hand.    

  

5.2. InSAR data reduction in space 
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For spatial data reduction, we consider two potential methodologies: quadtree 

decomposition and hierarchical K-means clustering. Both of techniques are based 

on recursive partitioning of point locations into clusters. In the following, we review 
the two techniques.  

 

5.2.1 Quadtree decomposition 
 

Quadtree decomposition is a common compression algorithm in image/signal 
processing to subdivide an image or a data cloud into sub-blocks. It has been 

already applied on InSAR data in different studies such as (Jonsson, et al. 2002, 

Ketelaar 2009). In this procedure, the scene covered by PS points is divided into four 

quadrants and the mean deformation of each quadrant is calculated. If the variation 

of deformation in each quadrant (based on a defined criterion) exceeds a given 

threshold, the quadrant is divided into four new quadrants and again the variation 
is evaluated. The process continues recursively until convergence. Data reduced by 

this approach then represent the statistically significant portion of the original data 

information but with far fewer sampling points.  

 

An important parameter in this quadtree procedure is the criterion to evaluate the 
significance of signal variation in each quadrant. For application on time series 

InSAR datasets, we propose the following parameter as a measure of signal 

variability within a quadrant: 

 

𝑇quadtree =  Max ([𝜎𝑞1
 𝜎𝑞2

… 𝜎𝑞𝑁
]), 

    

where N is the number of SAR images, and 𝜎𝑞𝑖
 is the standard deviation of the 

deformation measurements within the quadrant for the ith image. An alternative to 

using standard deviations is to use the range of the observed deformations (i.e., the 

difference between the maximum and minimum deformation) in each cluster. In that 
case 𝑇quadtree  is defined as: 

 

𝑇quadtree = Max ([𝑟𝑞1
 𝑟𝑞2

… 𝑟𝑞𝑁
]), 

 

with 𝑟𝑞𝑖
 is the range of the observed deformations in the ith image. We should note 

that using the deformation range as a measure of consistency is better than the 
standard deviation, as it is more robust to outliers. This is an advantage that 

prevents outliers to contribute in the averaging. In addition to 𝑇quadtree , an extra 

criterion on the final blocks size can also be added in the procedure. For example 
the algorithm can be iterated till all the blocks have 𝑇quadtree  smaller than a given 

threshold and also all the blocks have a size smaller than a given size threshold. In 

this way, we avoid to have very large blocks. The thresholds for 𝑇quadtree  and block-

size can be chosen by the user based on expected spatial variation of deformation.          

 

As a demonstration, Figure 5.2 shows a quadtree decomposition applied to InSAR 
deformation rates over the Veendam salt mining area (The Netherlands). Note that 

one disadvantage of quadtree decomposition is that the final location of averaged PS 

is always the center of a grid cell. Hence, the spatial distribution of the results is 

defined by the grid geometry rather than the location of PS. 
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Figure 5.2: Quadtree decomposition procedure applied to InSAR deformation rates over the 

Veendam area. Left) deformation rates, Middle) quadtree blocks, Right) deformation rates after 

data reduction.  
 
 

5.2.2 Hierarchical K-means clustering  
 

This approach has been developed based on the concept of “K-means clustering”. We 

first review first the generic methodology of k-means clustering, and then we 

describe the specific recursive implementation of the technique, that is 

“hierarchical” k-means clustering.   
 

K-means clustering: Let’s assume a dataset of m spatial observations 𝑑𝑖 with 

coordinates (𝑥𝑖 , 𝑦𝑖), where 𝑖 = 1 … 𝑚. This technique partitions the m observations 
into k clusters in a way that each observation belongs to the cluster with the nearest 

mean coordinates. In other words the m observations are clustered into sets 

𝑆𝑗  (𝑗 = 1 … 𝑘) in a way to minimise the following objective function: 

 

min𝑠  ∑  

𝑘

𝑗=1

∑ √(𝑥𝑖 −  �̅�𝑗)
2

+ (𝑦𝑖 − �̅�𝑗)
2

 

𝑑∈𝑆𝑖

 

 

where �̅�𝑗 and �̅�𝑗 are the mean coordinates of the points in the jth cluster. To start the 

algorithm, the initial positions of the k clusters are required.   

The k-means clustering algorithm can be summarized as: 
 

1. Input: m spatial observations 𝑑𝑖 with coordinates (𝑥𝑖 , 𝑦𝑖) where 𝑖 = 1 … 𝑚, and 

the number of clusters k 

2. Initialize: k cluster center coordinates (𝑥𝑜𝑗 , 𝑦𝑜𝑗), where 𝑗 = 1 … 𝑘 

3. Iterate:  

 Assign each sample 𝑑𝑖 to its closest cluster center 

 Recompute the new cluster centers as the mean coordinates of the 

points in each cluster (�̅�𝑖 and �̅�𝑖) 

 Repeat while not converged 
4. Convergence criteria: cluster centers do not change.  

 
 

Hierarchical k-means clustering for InSAR: 

This concept is similar to the quadtree decomposition but instead of iteratively 

dividing the data into quadrants, the data are iteratively portioned into two clusters 
based on k-means clustering approach with k=2. The iteration continues until 

convergence. 
 

In order to apply this approach to InSAR data, we introduce two new convergence 

criteria:  

1. The maximum distance between points in all clusters should be smaller than 

a given threshold. By using a threshold on this criterion, we avoid averaging 
points that are too far from each other.  
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2. The variation of deformation in all clusters is beneath a given threshold. To 

evaluate the variation, the same parameter as in the quadtree decomposition 

can be used (𝑇quadtree ).   

 

 

The algorithm can be summarized as: 
 

1. The dataset of all PS points is divided first into two clusters using k-means 

clustering. The initial values of the cluster centers are selected randomly.  

2. Then the mean deformation of each cluster is calculated.  

3. If the variation of deformation in each cluster based on 𝑇quadtree  exceeds a 

given threshold or the maximum distance between points in each cluster 

exceeds a given threshold, the cluster is divided into two new clusters.   

4. Steps 2-4 are iterated till all the clusters are smaller than the maximum-size-

threshold and all the clusters pass the consistency test based on 𝑇quadtree .   

 

Figure 5.3 shows the results of the hierarchical k-means clustering applied to InSAR 

deformation rates over the Veendam mining area. The key advantage with respect to 
quadtree decomposition is that the final locations of the points in the reduced 

dataset are defined based on the location of existing PS rather than a grid geometry.  

 

 
  

Figure 5.2: hierarchical k-means clustering applied to InSAR deformation rates over the 

Veendam area. Left) deformation rates before clustering (~3000 points), Right) deformation rates 
after clustering (~400 points).  

 

5.3. Summary/Conclusion 
 
In this section, we proposed simple methodologies for InSAR data reduction in time 

and space.  

 

We proposed simple binned averaging for data reduction in the time domain based 

on the assumption of a constant (deep sourced) deformation rate within the bin time 
intervals. 

 

For data reduction in the space domain, we considered both quadtree decomposition 

and hierarchical k-means clustering. Based on the advantages of the latter, we 

propose to use hierarchical k-means clustering. The main assumption for this data 

reduction is that the deformation is constant within each cluster. The validity of this 
assumption depends on the size of the cluster. The user can steer the size of the 

clusters by choosing a reasonable threshold for the cluster size.  

 

Both proposed approaches for temporal and spatial data reduction can be 

formulated as linear transformation. This is beneficial as it allows for rigorous linear 
error propagation. 
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6. Data integration 
 
Geodetic subsidence datasets include data from levelling, InSAR, and GPS. Due to 

their different properties regarding precision, spatio-temporal sampling rate, 

continuity and sensitivity to horizontal and vertical deformation components, the 

measurements from these three techniques have a complementary role in 

subsidence modelling. For example the high temporal sampling of GPS and InSAR 

data together with their sensitivity to both horizontal and vertical deformation can 
complement levelling measurements that have a much higher precision but have a 

sensitivity only to vertical displacements and have a lower temporal sampling. Using 

all the available geodetic datasets better constrains the modelling and consequently 

has a potential to improve the subsidence prediction. How to properly integrate 

different datasets together with their stochastic models into the modelling process is 
subject of this chapter.  

  

Conceptually, it is possible to combine the datasets in the observation space prior to 

geomechanical modelling.  As the temporal and spatial sampling of different kind of 

geodetic data is not the same, this approach obviously requires some sort of 

interpolation (collocation) in order to evaluate the deformation/subsidence at certain 
locations and times. Then the interpolated deformations can be directly used for the 

modelling. The disadvantage of this approach is that interpolation or collocation 

methods need a-priori knowledge about the spatio-temporal variability of the signal 

of interest. Wrong assumptions and imperfect a-priori knowledge can result in 

bias/error in the interpolated deformations, which may be propagated to the biased 
subsidence modelling. To avoid interpolation artifacts, we propose not to combine 

different datasets prior to the modelling. Thus, techniques are introduced separately 

into the modelling, and implicitly combined in the inversion/estimation of the 

geomechanical model parameters. In this manner, there is no need for interpolation 

or collocation.  

 
Here, we propose a conceptual mathematical framework for joint inversion of 

geodetic data.  Let’s assume that 𝑦L, 𝑦G, and 𝑦I are the vectors of double differences 

from levelling, GPS, and InSAR respectively. Each of these sets of observations may 
have a different datum. The three vectors can be merged to one observation vector 

as: 

 

𝑦 = [

𝑦L

𝑦G

𝑦I

] 
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Then, the dispersion of 𝑦 is described by its block covariance matrix as: 
 

𝑄𝑦 =  [

𝑄𝑦𝐿
𝑄𝑦𝐿𝑦𝐺

𝑄𝑦𝐿𝑦𝐼

𝑄𝑦𝐺𝑦𝐿
𝑄𝑦𝐺

𝑄𝑦𝐺𝑦𝐼

𝑄𝑦𝐼𝑦𝐿
𝑄𝑦𝐼𝑦𝐺

𝑄𝑦𝐼

]. 

 

The diagonal elements of this block matrix are covariance matrices of levelling, GPS, 

and InSAR respectively, and the off-diagonal elements contain the cross-covariances 
between different techniques. Whereas measurement noise components of different 

techniques are not correlated, idealisation noise components can very well be 

correlated. So the off-diagonal blocks of 𝑄𝑦 describe only the correlation due to the 

idealisation noise.          

 

Having an observation vector 𝑦 and its covariance matrix 𝑄𝑦, the objective function 

of geomechanical modelling can be written in general form as: 

 

�̂� =  argmin𝑚  ‖𝑦 − 𝐺(𝑚)‖
𝑄𝑦

−1
2 , 

 

where 𝑚 are the model parameters, and 𝐺(𝑚) is the function that explains the 

relation between model parameters and observations. ‖ . ‖
𝑄𝑦

−1
2  is the L2-norm 

operator as ‖ ( . )‖
𝑄𝑦

−1
2 =  ( . )𝑇𝑄𝑦

−1( . ).  

 

Let 𝐹𝐿(𝑚), 𝐹𝐺(𝑚), and 𝐹𝐼(𝑚) be the geomechanical functional models which predict 

the subsidence at locations of levelling benchmarks, GPS stations and InSAR 

persistent scatterers, respectively. Then, 𝐺(𝑚) can be written as: 
 

𝐺(𝑚) = [

𝐷𝐿𝐹𝐿(𝑚)
𝐷𝐺𝐹𝐺(𝑚)

𝐷𝐼𝐹𝐼(𝑚)
], 

 

where 𝐷𝐿, 𝐷𝐺, and 𝐷𝐼 are matrices which transform the geomechanical model 
prediction to the spatio-temporal structure of levelling, GPS, and InSAR data 

respectively. For example in case of LOS InSAR observations with multiple reference 

points and multiple reference images, the matrix 𝐷𝐼 accounts for the projection of 

the vertical and horizontal subsidence components (i.e. output of 𝐹𝐼(𝑚)) on the LOS 

direction as well as for multiple references by temporal or spatial differentiation. If 
the datum (or spatio-temporal reference) of the geomechanical model is different 

than the datum(s) of geodetic observations, the matrices 𝐷𝐿, 𝐷𝐺, and 𝐷𝐼 can 

transform the model predictions to the datum(s) of the observations.  
 

Discussion on using inter-techniques cross-correlations in the modelling: 

As we discussed before, observations from different techniques can be correlated 

due to their idealisation noise. Taking into account inter-technique correlations in 

the proposed mathematical framework would imply two difficulties as follows.  
 

 It increases the computational complexity due to propagation of cross-
covariances through InSAR data reduction. Consider that if data reduction 

is applied on InSAR data, to do the error propagation through this 

transformation, not only the InSAR covariance matrix should be propagated 

but also the cross-covariance matrices between InSAR and the other two 

techniques also should be propagated. Although this is possible, it increases 
the computational complexity of the error propagation significantly.  

  

 It increases the complexity due to lacking modularisability of the techniques 
in geomechanical inversion. If we do not consider all inter-techniques cross-



 

 73 

correlations, the inversion objective function can be simply modularized 

(i. e., partitioned) as: 

 

argmin𝑚  ‖𝑦 − 𝐺(𝑚)‖
𝑄𝑦

−1
2 =  

= argmin𝑚  (‖𝑦𝐿 − 𝐷𝐿𝐹𝐿(𝑚)‖
𝑄𝑦𝐿

−1
2 + ‖𝑦𝐺 − 𝐷𝐺𝐹𝐺(𝑚)‖

𝑄𝑦𝐺
−1

2  + ‖𝑦𝐼 − 𝐷𝐼𝐹𝐼(𝑚)‖
𝑄𝑦𝐼

−1
2 ). 

 

This modularisability would allow that the L2-norm components can be 

evaluated separately for each technique.  

 

 
Due to the aforementioned complications, and also due to difficulties in assessing 

correctly the cross-covariance matrices, we propose to neglect inter-technique 

correlations in the geomechanical inversion. 

 

Summary: In this chapter, we proposed the conceptual mathematical framework for 
joint geomechanical inversion of all the geodetic techniques together. This approach 

does not need any collocation or interpolation of different data sources before the 

inversion.   
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A.1. Appendix 1- Demo: Simulation of deformation 

for InSAR observations 
 
In this appendix we demonstrate the simulation of the deformation signal for a set of 

PS over an area of 13x13 km. We assume 25 radar acquisitions 25 with a time 

interval of 96 days. The parameters used in the simulation are reported in Table 3.3.    

 

The simulated data are visualized here in the order of:  
 

 Figure A1.1: vertical deformation 

 Figure A1.2: magnitude of horizontal deformation 

 Figure A1.3: magnitude of the east component of horizontal deformation 

 Figure A1.4: magnitude of the north component of horizontal deformation 

 Figure A1.5: LOS deformation 

 Figure A1.6: Converted-to-vertical deformation assuming zero horizontal 
deformation 

 Figure A1.7: Difference between the true vertical signal (Figure A1.1) and the 
converted one (Figure A1.6). This the bias due to neglect of horizontal 

deformation 

 Figure A1.8: Double difference LOS deformation with respect to the 
reference image and the reference point.  
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Figure A1.1: vertical deformation. Color-scale is in [mm].  
 

 
 

Figure A1.2: magnitude of horizontal deformation Color-scale is in [mm]. 
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Figure A1.3: magnitude of the east component of horizontal deformation Color-scale is in [mm]. 
 

 
 

Figure A1.4: magnitude of the north component of horizontal deformation Color-scale is in [mm]. 
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Figure A1.5: LOS deformation. Color-scale is in [mm]. 
 

 
 

Figure A1.6: Converted-to-vertical deformation assuming zero horizontal deformation Color-scale is in [mm]. 
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Figure A1.7: Difference between the true vertical signal (Figure A1.1) and the converted one (Figure A1.6). 
This is the bias due to neglect of horizontal deformation Color-scale is in [mm]. 

 

 
 

Figure A1.8: Double difference LOS deformation with respect to the reference image and the reference point. 
Color-scale is in [mm]. 
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A.2. Appendix 2- Aspects of the current NAM 

geodetic data processing workflow 
 
In this study, we provided recommendations regarding five different aspects of 

exploitation of geodetic data in subsidence modelling. These aspects are: stochastic 

modelling, optimal output level, outlier handling, InSAR data volume reduction and 

data integration. In order to facilitate the appreciation of innovations to the current 

workflow, this appendix summarizes the current status of the five studied aspects in 
the geodetic data processing workflow as it is currently implemented at NAM.  

 

Stochastic model used in the modelling: 

 

 Idealisation noise is not taken into account. 

 For levelling data, only standard deviations of spatial single differences, 
propagated to spatio-temporal double differences, are taken into account as 

a weighting. Any covariances are neglected. 

 For InSAR data, no formal quantification of uncertainties is provided at all. 
InSAR observations are spatially resampled to the positions of levelling 

benchmarks. Due to variable PS density in the vicinity of the levelling 

benchmarks, the actual uncertainty is poorly reflected by the implicitly 

assumed model of uniform weights. 

 

Optimal output level: 
 

 Levelling: Observations are adjusted epoch-wise as a free network with one 
reference benchmark under consideration of measurement noise (as reported 

in Section 2.1). The adjusted height differences are propagated to the final 

output level, which is double differences with respect to a common reference 

benchmark but multiple reference epochs (i.e., output level 3 in Section 

3.2.1). In the modelling, these double differences are interpreted as temporal 
single differences with a pseudo-absolute reference in space by assuming 

stability of the reference benchmark.  

 InSAR: The output level used in the modelling is single-master vertical 
deformation time series per PS, excluding atmospheric effect and topography, 

and converted to vertical assuming zero horizontal deformation (w.r.t. one 

reference point and but multiple reference epochs). This is equivalent to 
output level 3 in Section 3.3.1. 

 GPS: The output level is temporal single differences with a pseudo-absolute 
reference in space, manifested by a network of assumedly stable reference 

stations. 
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Outlier handling: 

 

 For leveling, only gross errors are detected and removed during the epoch-
wise network adjustment based on the closing loop conditions and using 

standard geodetic testing methodology (i.e., overall model test and w-test). 

Additionally, spatio-temporal deformation analysis is used to formally 

identify a class of “potentially unstable” benchmarks. The assessment makes 

use of a geomechanical model prediction. A “potentially unstable” benchmark 

has an apparent displacement behaviour that is significantly different from 
that of surrounding benchmarks and can be explained by either an actually 

deviation of the displacement or by human errors such as benchmark 

misidentifications. The modeller decides heuristically if an individual 

“potentially unstable” benchmark can be trusted or not. 

 For InSAR, the PS that show a different deformation pattern with respect to 
the surrounding PS are detected and removed.  

 
InSAR data volume: 

 

InSAR data are resampled to the locations of levelling benchmarks to create a 

combined dataset with levelling:  

 All PS within a radius of 500 m about a benchmark are attributed to that 
benchmark.  

 InSAR time series per benchmark are generated as the (spatial) median of all 
individual time series. 

 Yearly averaging of InSAR time series is used for data reduction in time. 
 

Data integration: 

 

In areas where only levelling data are available, geomechanical model calibration is 

based on levelling data only. 
 

Where InSAR data are available, geomechanical model calibration is based on a 

combined dataset of leveling and InSAR data, sampled at the benchmark locations: 

 Time series from different InSAR missions are aligned by offset estimation in 
overlapping periods. 

 Combined InSAR time series are aligned with levelling time series by offset 
estimation in overlapping periods. 

 
For gas fields close to the Wadden Sea, geomechanical modelling is complementarily 

based on GPS campaign measurements that are provided in a separate dataset. Note 

that due to the observation design, which is subject to practical constraints, only 

the vertical component can be used for geomechanical model calibration.  
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