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Derivation of a Scale Dependent Pressure Di�usion

Equation
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1 Hydraulic Conductivity - Power Laws and Scale Depen-

dence

The hydraulic conductivity of a porous permeable rock depends on the random distribution

of pore spaces and pore throats and how these connect over various length scales to provide

�uid �ow paths of greater or lesser resistance. Generalized central limit theory states that

accumulated random processes will converge to a stable distrbution [Mandelbrot, 1960; Nolan,

2015]. This is sometimes mistakenly assumed to mean that all random processes will converge to

a normal/gaussian probability distribution, however, there are other stable distributions. With

the exception of the normal/gaussian distribution these other stable distributions have power

law or `heavy' tails, that is they are not exponentially bounded. That is not to say that they are

de�ned as pure power laws, but that they approach such for a signi�cant part of their domain

and can therefore be usefully approximated as such, especially close to their bounds.

Power law distributions have limited statistical moments, the power law exponent has to

exceed the moment order plus one, for the moment to be �nite, i.e for power law exponents

less than 3 the distribution has no �nite variance, for exponents less than 2 the distribution has

no �nite mean (or higher moments). Another signature property of power law distributions is

their scale invariance and hence they are associated with self similar phenomena. The somewhat

counter-intuitive outcome of such scale invariance is that it yields scale dependent parameters,

e.g. the amplitude of a self-similar rough surface, with a random power law distribution, will

depend on the domain scale being considered. This means that for properties that are power law

distributed there is no representative scale, for three-dimensional properties of this type, there is
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no representative elementary volume [REV]. This can have a profound impact on their analysis,

as standard methods of analytical and numerical calculation implicitly assume a representative

subscale (it is the basis on which calculus is built and is explicit in �nite di�erence and �nite

element computation).

Natural hydraulic conductivity/permeability in rock formations is generally observed to be

`heavy tailed', i.e. far from normally distributed, even in some of the most homogeneous seeming

materials [Neuman et al., 2000; Sposito, 2008]. It is also observed that hydraulic conductivity

appears to be scale dependent, larger samples of the same formation seem to have higher con-

ductivities than smaller samples [Neuman, 1990; Schulze-Makuch & Cherkauer, 1998; Neuman

et al., 2000; Sposito, 2008; Fallico, 2014]. Further evidence points to correlation length scales for

rock hydraulic conductivity that appear to be unbounded, or at least too large to be considered

as signi�cantly smaller than the observation scale, and hence precluding any consideration of an

REV, [Federico & Tartakovsky, 2000]. The hydraulic conductivity correlation length scale has a

direct connection to the bulk conductivity as �uid �ow at any location is not just governed by

local conductivity, but by its connectivity as well (no �uid can �ow through a domain, however

conductive it may be, if it is surrounded and sealed by a non-conductive perimeter).

There is a signi�cant literature on chemical contaminant di�usivity in materials where the

permeability is power law distributed, but this is posited on the power law being applied to stop-

ping times, essentially governing the random walk �ight of the contaminant molecules [Benson

et al., 2000a; Benson et al., 2000b; Benson et al., 2001; Schumer et al., 2001; Berkowitz et al.,

2006, Wheatcraft & Meerschaert, 2008]. This paper though attempts to investigate anomalous

�uid pressure di�usion based on power law distributed hydraulic conductivity. It does so by �rst

deriving a Darcy type �ux gradient law for such a conductivity �eld and then combing this with

a standard �ux divergence relationship based on conservation of mass.

2 Scale Dependent Darcy's law

Darcy's law in its simple form relates �uid �ow through a length of permeable rock, of constant

cross-section, to the pressure drop, scaled by a hydraulic/resistance factor
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p(x0)− p(x1) = −RQ (1)

where p is pressure, x0 and x1 are positions along direction x̂, Q is a volume �ow rate and R is

a hydraulic resistance term

R =
‖x1 − x0‖η

kA
(2)

with η being the �uid dynamic viscosity, k the rock hydrulic permeability and A the cross-

sectional area. It's a �ux gradient law, of the same class as Ohm's law or Fourier's law.

In three dimensions Darcy's law is generalized to the following forms

q = K · ∇p (3)

∇p = W · q (4)

where q is the �uid �ux vector, K is the hydraulic conductivity tensor and W is its inverse,

the hydraulic resistivity tensor, W = K−1. In this analysis assusme that hydraulic conductiv-

ity/resistivity is isotropic

K = KI ; W = W I (5)

Consider a simple, one dimensional �ow type �ow

p(x0)− p(x1) =

∫ x1

x0

W dx qx (6)

The pore �uid pressure is a location de�ned quantity, it is spatially varying but not scale depen-

dent, this allows it to be de�ned for an arbitrarily small REV (applying local homogenisation)
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and has a well de�ned gradient at a point. This allows for the application of a Taylor series

expansion to the pressure term

p(x0)−
∞∑
n=0

∂np(x0)

∂xn
(x1 − x0)n

n!
=

∫ x1

x0

W dx qx (7)

The Taylor series converges rapidly for smooth functions and if the function is linear is exact

after two terms (the constant value and �rst derivative term). For a smooth function linearity

can always be approached by simply shrinking the representative elementary volume [REV]

considered.

The hydraulic resistance (i.e. the integrated resistivity) for a permeable material though, is

always scale dependent - the more material the �uid has to pass through, the greater the hydraulic

resistance. If the hydraulic resistivity is constant then determining the hydraulic resistivity is

trivial

Rx =

∫
∆x

W dx = W ∆x (8)

where ∆x = x1 − x0. If the hydraulic resistivity is spatially variable but independent of scale,

then, just as in the case of the pressure function, a Taylor series expansion can again be applied

Rx =

∫
∆x

W dx =

∞∑
n=0

∂nRx(x0)

∂xn
(x1 − x0)n

n!
(9)

note that

Rx(x0) = 0 ;
∂Rx(x0)

∂x
= W (x0) (10)

However, as has been discussed above the hydraulic conductivity/resistivity is observed to be

scale dependent. Typically the hydraulic conductivity, size scale relationship is cited as

K(∆x) = K0 + C(∆x)γ (11)
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where K0 is a constant background hydraulic conductivity; C is a constant of appropriate di-

mensionality; and γ is a small value between 0 and 1 [Schulze-Makuck & Cherkauer, 1998;

Fallico, 2014]. [N.B. The K0 is often neglected as investigators are generally determining the

relationship in a log-log space]. In these cases the REV/correlation length scales are not small

compared to the problem scale and the standard Taylor series expansion will no longer converge

rapidly and can't appropriately be applied. In recent years though, other more general Taylor

series type expansions have been developed based on non-integer derivative operators - so called

`fractional derivatives' [Odibat & Shawagfeh, 2007; Truilljo et al., 1999]. Fractional derivative

type equations appear to be a more natural framework for the analysis and representation of

scale dependent phemomena [Metzler & Klafter, 2004; Wheatcraft & Meerschaert, 2008], and

the following derivation is based on some of the ideas developed in this latter paper.

The generalized Taylor expansion derived by Odibat & Shawagfeh [Odibat & Shawagfeh,

2007] is de�ned as

F (x+ ∆x) =

∞∑
n=0

Dα (n)
x F (x+)

(∆x)n

Γ(nα+ 1)
; 0 < α ≤ 1 (12)

Here Dα
x is the Caputo fractional derivative of order α at x; D

α (n)
x denotes the n-fold action of

this fractional derivative operator; x+ signi�es that where limits need to be taken they approach

from the positive side; and Γ is the Gamma function. The Caputo fractional derivative is de�ned

in integral form as

Dα
xF (x+ ∆x) =

1

Γ(1− α)

∫ x+∆x

x

F (x+ ∆x− u) (u− x)−α du ; 0 < α ≤ 1 (13)

This generalized Taylor expansion converges rapidly for functions that scale with order close to

α and for functions of the type

f(x+ ∆x) ∝ f(x) + (x+ ∆x)α (14)

the series converges completely in the �rst two terms.
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Returning then to Darcy's law we can consider a permeable material where hydraulic resis-

tance scales with (∆x)1−γ (as would be expected for a material where hydraulic conductivity

scales as (∆x)γ . This seems intuitively reasonable, for a material with constant hydraulic con-

ductivity the hydraulic resistance would grow proportionately with the length scale of the �ow

path, R ∝ ∆x. But for a material where conductivity was observed to increase with scale, then

the hydraulic resistance would be expected to grow more slowly.

Rx =

∫
∆x

W dx ∝ (∆x)1−γ (15)

Expressing this in the form of a generalized Taylor expansion gives

R(∆x) =

∞∑
n=0

Dα (n)
x R(x+)

(∆x)n

Γ(nα+ 1)
; 0 < α ≤ 1 (16)

Setting the order of the fractional derivative operator α = 1− γ will allow the series to converge

exactly with just the �rst two terms. The Darcy type �ux gradient law for such a material could

then be expressed as

∂p(x)

∂x
= D1−γ

x R(x+)
qx

(∆x)γΓ(2− γ)
(17)

In this form it becomes apparent that the �ux-gradient relationship is now dependent on the

scale under consideration. As the material is assumed to be isotropic and therefore isotropic in

its scale dependence

D1−γ
x R(x+) = D1−γ

y R(y+) = D1−γ
z R(z+) (18)

the more general, three-dimensional Darcy type law can be written

∇p = D1−γ
x R(x+)

q

(∆x)γΓ(2− γ)
(19)
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The material hydraulic conductivity can be considered in a manner analogous to that of the

hydraulic resistance. That is the hydraulic conductivity (note, not the conductance) can similarly

be written as a generalized Taylor expansion

K(∆x) =

∞∑
n=0

Dα (n)
x K(x+)

(∆x)n

Γ(nα+ 1)
; 0 < α ≤ 1 (20)

As K ∝ γ, rapid convergence in this expansion can be achieved by setting α = γ, and here, as

before, complete convergence would only require the �rst two terms in the series. And again,

assuming isotropy the Darcy type �ow law for a material with scale dependent hydraulic con-

ductivity, K(∆x) ∝ (∆x)γ , where 0 < γ ≤ 1

q =

(
K0 +Dγ

xK(x+)
(∆x)γ

Γ(γ + 1)

)
∇p (21)

3 Flux Divergence

The mass conservation law using an Eulerian description is

ρ∇ · q = −∂M
∂t

(22)

where ρ is �uid density and M is the mass of �uid per unit volume of media. The rate of change

in M can be written as

∂M

∂t
= ρ

∂φ

∂t
+ φ

∂ρ

∂t
(23)

If it can be assumed that changes in porosity, φ, and density, ρ, are dominated by changes in

pressure, and that the pore space and �uid behave linear elastically then:-

∂M

∂t
= ρφ(βf + βφ)

∂ρ

∂t
(24)
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where βf and βφ are respectively the �uid and pore volume compressibilities. These can be

de�ned as follows

βf =
1

ρ

∂ρ

∂p
; βφ =

1

φ

∂φ

∂p
(25)

Combining these equations yields the following �ux divergence relationship

∇ · q = −φ(βf + βφ)
∂p

∂t
(26)

4 A Scale Dependent Pressure Di�usion Equation

Inserting the scale dependent Darcy type �ux gradient law, expressed in terms of conductivity,

into the �ux divergence relationship gives

∇ ·
[(
K0 +Dγ

xK(x+)
(∆x)γ

Γ(γ + 1)

)
∇p
]

= −φ(βf + βφ)
∂p

∂t
(27)

This can be rewritten as

(
K0 +Dγ

xK(x+)
(∆x)γ

Γ(γ + 1)

)
∇2p+

(
Dγ+1
x K(x+)

(∆x)γ

Γ(γ + 1)

)
∇p = −φ(βf + βφ)

∂p

∂t
(28)

(by recognising that the scale, ∆x, does not depend on the location, x).

At �rst sight, this may appear relatively di�cult to detemine, however, if the order of the

fractional derivative operator is matched properly to the scale dependency of the conductivity,

i.e. K(∆x) ∝ (∆x)γ , then the term Dγ
xK(x+) should be constant and henece Dγ+1

x K(x+) will

be zero. This then yields
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(
K0 +Dγ

xK(x+)
(∆x)γ

Γ(γ + 1)

)
∇2p = −φ(βf + βφ)

∂p

∂t
(29)

which is essentially just an ordinary linear di�usion equation but with a scale dependent di�usiv-

ity term. Assuming that the scale dependent conductivity is essentially a power law realtionship,

and that the order of the fracional derivative has been matched, the scale dependent di�usivity

term will reduce to a simple coe�cient. This will result in a standard di�usion equation with a

single di�usivity term that will simply depend on the scale being considered.
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