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1 Introduction 

 
This document concerns the derivation of design values for use with the assessment method developed by 
Fugro for the primary flood defenses at Eemshaven-Delfzijl (Fugro 2016a; Fugro 2016b). This method involves: 

1. A fully coupled, dynamic, effective stress co-seismic analysis, in which displacements are calculated 
with dynamic FEM-calculations while excess pore pressures are being generated. 

2. A static post-seismic analysis, in which residual displacements are calculated with the excess pore 
pressures and deformations at the end of shaking as a starting point. 

 
This document presents the results of a code calibration study for the abovementioned numerical analyses. It 
also provides background information about the Dutch flood protection standards and code calibration studies 
in general. The code calibrated assessment procedure is summarized in chapter 8. 
 
The code calibration assessment procedure has been developed for assessing the seismic stability of the 
Eemshaven-Delfzijl sea dikes. For other applications, such as for regional flood defenses, it is recommended to 
verify the applicability of the design values presented herein with probabilistic analyses. 
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2 Flood protection standards and code calibration 

The Dutch flood protection standards are defined in terms of maximum allowable probabilities of flooding. The 
maximum allowable probabilities of flooding range from 1/100 per year to 1/100,000 per year. The 
Eemshaven-Delfzijl project covers parts of two different segments: segment 6-6 with a standard of 1/1,000 per 
year and segment 6-7 with a standard of 1/3,000 per year (Figure 1). 
 

 
Figure 1. Overview of segments in the Flood Protection Act (in Dutch: Waterwet). 

 
There are essentially two approaches for assessing whether a flood defense complies with a flood protection 
standard: 

1. Probabilistic (using e.g. Monte Carlo, FORM) 
2. Semi-probabilistic (design value or partial factor approach) 

 
While the outcomes of probabilistic analyses can be compared directly to reliability requirements, most 
engineers are unfamiliar with probabilistic methods. Probabilistic analyses can also be prohibitively time 
consuming, which is the case for the model considered herein. A semi-probabilistic procedure is essentially an 
approximate procedure for evaluating whether a probability of flooding is smaller than required by law. 
 
Probabilistic and semi-probabilistic safety assessments are closely related. Both rely on the same reliability 
requirements, the same limit state functions and the same probability distributions of stochastic variables. The 
only difference concerns the fact that a semi-probabilistic approach rests on a number of simplifications and 
approximations, giving it the appearance of a deterministic procedure.  
  
In probabilistic safety assessments, analysts consider the probability that the ultimate limit state is exceeded, 
i.e. that load (S) exceeds resistance (R). The failure probability, P(S>R), should not exceed some maximum 
allowable or target probability of failure (PT).  
 
In semi-probabilistic assessments, analysts consider the difference between the design values of load (Sd) and 
strength (Rd): Sd should not exceed Rd. Design values are representative values such as 5th or 95th quantile 
values or 1/10.000 yr-1 water levels, factored with partial safety factors, see equations (1) and (2). Note that the 
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definitions from the Eurocode have been adopted here, similar terms may have different meanings in other 
codes.  
 

 Sd = Srep · γS (1) 

 
 Rd = Rrep / γR (2) 
   

Where: 
Sd Design value of uncertain load variable 
Rd Design value of uncertain resistance variable 
γS,γR  Partial factors 
 
Design values, and hence (partial) safety factors, should be defined in such a manner that Sd≤Rd implies that the 
probability of failure meets the reliability requirement: P(S>R)≤PT. The relationship between probabilistic and 
semi-probability safety assessments is illustrated in Figure 2.  
 

 

 
Figure 2. The probability density functions of load (S) and strength (R), and the design values of load and 
strength (Sd) and (Rd). 

 
A close link between probabilistic and semi-probabilistic assessments can be achieved by equating the design 
values of the different stochastic variables to their design point values (see Figure 3 for a graphical 
representation): 
 

 Xd = FX
-1( (-X·βT) ) (3) 

 
Where: 
FX

-1(·) Inverse of the cumulative distribution function of stochastic variable X 
Xd Design value of stochastic variable X 

βT  Target reliability index, which equals (1-PT) 

X Influence coefficient for stochastic variable X 
 
 
 

Probability density 

Load (S) 

0 

Strength (R) 

Sd Rd 

Design values 

Fully probabilistic assessment: evaluate whether P(R<S)≤PT 

Semi-probabilistic assessment: evaluate whether Sd≤Rd 
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Figure 3. The design point values of stochastic load and resistance variables and their probabilities of 
exceedance. 

 
For a normally distributed stochastic variable, equation (3) yields: 
 

 Xd = μX – αX · βT · σX (4) 

 
Where: 
μX Mean value of the normally distributed variable X 
σX  Standard deviation of the normally distributed variable X 
 
The above shows that a code calibration essentially revolves around: 

1. the specification of appropriate target reliabilities and 
2. the specification of appropriate influence coefficients.  

  
NB1  
In principle, there is no objection to extending the fully probabilistic PSHA to a fully probabilistic system-level 
reliability analysis. The reason for not doing so and opting for a semi-probabilistic approach is purely pragmatic. 
 
NB2 
The Dutch flood protection standards (2017 onwards) say nothing about the loads that primary flood defenses 
should be able to withstand. Without code calibration, appropriate design loads would remain unspecified. The 
same goes for resistance.  
 
NB3  
The terms “load” and “demand” are used as synonyms throughout this document. The same goes for 
“resistance” and “capacity”. While the terms “load” and “resistance” are commonly used in hydraulic 
engineering, the terms “demand” and “capacity” appear to be more common in earthquake engineering. 
 
NB4  
The fact that PSHAs are fully probabilistic and the fact that e.g. Boulanger & Idriss (2014) and Green et al. 
(2016) have characterized the uncertainties related to liquefaction triggering relationships by probability 
distributions shows that probabilistic concepts and techniques are already quite common in earthquake 
engineering. This has made it easier to relate earthquake models (for demand and capacity) to probabilistic 
standards.  

Probability density 

Probability density function for a stochastic 
variable Xi that acts as a load parameter 

0 Xd X 

(·βT)   (note ≤0 for a load parameter) 

Probability density 
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3 Proposed code calibration procedure and action items  

An overview of the steps taken to arrive at a calibrated semi-probabilistic assessment rule is given below. 
 

Action item Description Objective 

1 Characterize the 
uncertainties related 
to the input and 
output of the Fugro 
model (i.e. coupled, 
effective stress FEM) 

1. Specify which variables should be treated as 
deterministic or stochastic 

2. Specify distributions for the different stochastic 
variables 

3. Describe the decay of spatial correlation for the 
different stochastic variables, or -as a first step- 
describe qualitatively what an (uncertain) realization 
of each individual stochastic variable could look like 

4. Specify the meaning of the design values that are 
typically used in reliability analyses (e.g. the CRR7,5,1atm-
curve in B&I2014 rests on the 16% quantile value of an 
error term) 

 
On the basis of the results of the abovementioned steps, it will 
be possible to give an indication of the level of conservatism in 
the calculations presented by Fugro at the expert meeting and, 
hence, the direction of the outcomes of the code calibration 
exercise. This will be for useful decision making and/or for 
managing expectations. 

Define the 
input of 
subsequent 
analyses 
 
Give an early 
impression of 
the level of 
conservatism 
in previous 
analyses 

2 Derive (preliminary) 
estimates of design 
values from a 
probabilistic analysis 
using the simplified 
liquefaction 
procedure and the 
uncertainties 
specified by e.g. 
Green et al. (2016)  

1. Specify the limit state function 
2. Specify the uncertainties 
3. Carry out a series of FORM analysis to “get a feel” for 

likely design point values. These can be used as input 
(starting point) for a FORM-analysis using the Fugro 
model (action item 3) and for informing the final 
choice of design values (action item 4). 

 
NB: Liquefaction triggering is a necessary but insufficient 
condition for failure of the Eemshaven-Delfzijl primary flood 
defense. This means that the limit state function considered 
here cannot be used as a basis for limit state design or safety 
assessments. This action item merely serves to put the results 
of more advanced analyses (action item 3) into perspective. 

Get a feel for 
influence 
coefficients 
 
 

3 FORM analysis using 
the Fugro model 

1. Select start values for the first FORM iteration (design 
point estimate) 

2. Compute partial derivatives 
3. Normalize stochastic variables 
4. Calculate estimate of the design point 
5. Iterate (successive substitution) 

Get a feel for 
influence 
coefficients 

 

4 Revisit previous 
assumptions 
concerning the length 
effect 

The cross sectional reliability requirement depends on (1) the 
flood protection standard, (2) the allowable contribution of 
slope instability to the probability of flooding, (3) a probability 
of flooding given severe earthquake damage and (4) a length 
effect factor. The length effect factor will be re-evaluated on 
the basis of (1) the results of the screening exercise and (2) a 
probabilistic analysis using the outcrossing method. The 
outcomes of the latter analysis depends on (1) the influence 
coefficients of the different stochastic variables and (2) their 
autocorrelation functions. This means there is a link with action 
items 1 to 3.  

Define cross-
sectional 
target 
reliabilities 
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5 Make an informed 
decision about design 
values 

On the basis of the results of the abovementioned actions: 
decide on appropriate design values. 
  

Establish 
design values 
on the basis 
of influence 
coefficients 
and target 
reliabilities 
 
(decision 
informed by 
results from 
action items 
above) 
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4 Action item 1: characterize uncertainties 

The following stochastic variables were considered in the FORM-analyses with the FE-model: 
1. The seismic demand at the base of the 2D numerical models (SAmodel_base). The distribution of this 

stochastic variable rests on a convolution of the uncertainty related to the acceleration at the North 
Sea Upper Base and the uncertainty in the site response up to the base of the model. 

2. The cyclic resistance ratio (CRR) of sand deposits 
3. The cyclic resistance ratio of laminated deposits 
4. The uncertainty related to residual strength (εSu/p’) 
5. Model uncertainty (εΜ) 

 
Two other important sources of uncertainty are: 

1. The uncertainty related to stratification in the top 30 meters. 
2. The uncertainty related to the characteristics of spectrally matched motions. 

 
Each probabilistic analyses has been carried out for a given stratigraphy and a given motion. The uncertainty 
related to stratification can be dealt with by carrying out sensitivity analyses and (if needed) by combining the 
results of the assessments for the different stratifications with their probabilities (see ENW 2012). The same 
applies to the uncertainty related to motions, see section 4.7. 
 
The five stochastic variables mentioned above are believed to be the most important ones in a probabilistic 
analysis for a given stratigraphy (top 30m) and a given motion. The fact that all other variables have been 
treated as deterministic is conservative within the present context. This is because this leads to a (slight) 
overestimation of the relative importance of the uncertainty related to the abovementioned stochastic 
variables, leading to more conservative design values for these variables. 
 
 

 Spectral acceleration (T=0.85s) at Top of Bedrock NSUB (SANSUB) 
The spectral period of 0.85 s has been selected as being representative of seismic demand in the FORM 
analyses with the FE model FE since: 

a. it is near the fundamental period of the 1D soil column that extends from top of bedrock (at about -
350 m depth) to the ground surface; and 

b. it is near the fundamental period of the 2D numerical models. 
 
The hazard curve of the spectral acceleration at the top of bedrock (NSUB) for a spectral period T=0.85s 
provided by KNMI has been approximated with a lognormal distribution (Figure 4 and Figure 5). Since the 
hazard curves at Eemshaven and Delfzijl locations are different, different lognormal distributions are used to 
approximate the hazard curves at top of bedrock for these locations.  
 
Care was taken so that the fitted lognormal distribution is closest to the target curve around the design point. 
FORM analyses results indicate that the exceedance probability of the design point value of SA(0.85) is smaller 
than 1/1000 per year (i.e.: >1000 year return period). The difference of between the lognormal fit and the 
target curve at exceedance probabilities greater than 1/1000 per year (i.e. <1000 year return periods) does not 
influence results of the FORM-analysis. 
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Figure 4. Spectral acceleration (T=0.85s) hazard curve at the top of bedrock at Eemshaven and approximation 
with a lognormal distribution [hazard curve provided by KNMI]. Lognormal distribution with μln(SA) = -5.77 and 
σln(SA) = 1.12. 

 

 
Figure 5. Spectral acceleration (T=0.85s) hazard curve at the top of bedrock at Delfzijl and approximation with a 
lognormal distribution [hazard curve provided by KNMI]. Lognormal distribution with μln(SA) = -5.61 and σln(SA) = 
1.10. 

 
The mean and standard deviations of the lognormal distributions used to approximate the hazard curves at the 
top of bedrock are summarized in Table 1. 
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 Spectral acceleration (T=0.85s) at Base of 2D Numerical Models (SAmodel_base
) 

The hazard curve of the spectral acceleration at base of the numerical model for a spectral period T=0.85s (i.e. 
NAP -30 m for Eemshaven and NAP-20m for Delfzijl, see Appendix C) is estimated following the procedure by 
Bazzurro and Cornell (2004) and Stewart et al. (2014) by a convolution of the hazard curve at top of bedrock 
(SANSUB) with the probability distribution of the site amplification factor described in Appendix C (Figure 6).  
Monte Carlo simulations were also performed for the convolution of the bedrock hazard curve and the site 
amplification probability distribution and similar results were obtained.  The hazard curves of the spectral 
acceleration at the base of the numerical models (SAmodel_base) for a spectral period T=0.85s was approximated 
with a lognormal distribution (Figure 7 and Figure 8).  The mean and standard deviations of the lognormal 
distributions used to approximate the hazard curves at the base of the numerical models are summarized in 
Table 1.  
 
 

 

 
Figure 6. Example convolution results of rock hazard curve and probability distribution of site amplification 
factors (Stewart et al. 2014). 
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Figure 7. Convolved spectral acceleration (T=0.85s) hazard curve at the base of 2D model at Eemshaven and 
approximation with a lognormal distribution. Lognormal distribution with μln(SA) = -5.05 and σln(SA) = 0.99. 

 
 
 

 
 
Figure 8. Convolved spectral acceleration (T=0.85s) hazard curve at the base of 2D model at Delfzijl and 
approximation with a lognormal distribution. Lognormal distribution with μln(SA) = -4.62 and σln(SA) = 0.96. 
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 CRRM=7.5 in sand deposits 
The probability distribution of the cyclic resistance at a reference magnitude M=7.5 (or 15 cycles) of sand layers 
with no clay laminations present at the Eemshaven area was estimated from the equation below proposed by 
Boulanger and Idriss (2014) using: 

 the probability distribution of local qc1Ncs values from CPT data that classified as Soil Behavior Type 6 
per Robertson (1990) classification (Fugro 2016c). These qc1Ncs values include thin layer correction and 
fines content correction (Fugro 2016c). In a uniform model, soil properties are assumed to be 
constant within an entire layer. This may lead to a significant overestimation of probabilities of failure 
when composite behavior is more accurately described by the spatial averages of individual data 
points (e.g. Vanmarcke 2011). A sensitivity study into such volume effects indicates that the use 
spatially distributed resistance values gives a result that is similar to the use of median resistance 
values in a uniform model, see Appendix G for further details. This is why the median of local qc1Ncs 
values was selected for use with the Boulanger and Idriss (2014) relationship between qc1Ncs and CRR. 

 the model uncertainty term εln(R) proposed by Boulanger and Idriss (2014) has a normal distribution 
with a mean value of 0 and a standard deviation of 0.2: 

 

 
 
On the basis of the above, a probability distribution of the CRRM=7.5 has been derived, using the local median 
qc1Ncs value and the CRRM=7.5 curve of Boulanger and Idriss (2014).  
 
 

 
Figure 9. Probability distribution (left) and probability density function (right) of CRRM=7.5 for sands at 
Eemshaven based on the median of local qc1Ncs values.  

 
 

 CRRM=5.0 in laminated deposits 
The liquefaction triggering resistance from CPT measurements in laminated deposits appears to underestimate 
the triggering resistance of these deposits when compared to results from cyclic laboratory tests on laminated 
“undisturbed” samples (Fugro 2016c). This is most likely due to the significant influence of the clay layers on 
the CPT tip resistance measured within the thin “sandwiched” sand layers whose thickness is less than 10 to 20 
cm. 
 
Interpreted advanced cyclic laboratory tests on “undisturbed” laminated samples and numerical simulation 
results were used to develop a probability distribution of the cyclic resistance of laminated deposits at the 
Delfzijl side of the levee for locations were Unit 8 is present for use in FORM analyses as discussed in detail in 
Appendix D.   
 
Cyclic resistance was defined at a reference magnitude M=5.0 (or 4 cycles) using the Boulanger and Idriss 
(2014) Magnitude Scaling Factor. It is noted that CRR for layered sands defined at 4 cycles (or for M=5.0) is 
used only as a reference to identify which triggering curve is used in the numerical analyses, since in the 
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constitutive models used in the numerical evaluations to simulate sand behavior, the complete liquefaction 
triggering curve is used rather than one value. 
 
The probability distributions of the CRRM=5 for laminated deposits after accounting for volume effects (spatial 
averaging, see Appendix G) are shown in Figure 10. Note: the means and standard deviations in Figure 10 
concern the natural logarithms of the CRRs. 
 

 
Figure 10. Probability distribution (left) and probability density function (right) of CRRM=5 for laminated deposits 
at Delfzijl before and after accounting for volume effects. 

 
The probability distribution of the CRR for laminated deposits shown above has been specified for a different 
magnitude than the non-laminated wadzand deposits encountered at Eemshaven. For the non-laminated 
wadzand deposits encountered at Eemshaven, the Boulanger and Idriss (2014) empirical correlation of CRRM=7.5 

(defined as CRR at 15 cycles) with qc1Ncs was used for the estimation of liquefaction triggering resistance. For 
the laminated sand and clay layers within the wadzand deposits interpreted lab results were used to estimate 
liquefaction triggering resistance at 4 cycles (CRRM=5.0), which is the estimated equivalent number of cycles for 
an M=5 earthquake (the primary contributor to the ground motion hazard for the return periods of interest)  
using the Boulanger and Idriss (2014) Magnitude Scaling Factor.  
 
 

 Uncertainty related to residual strength (εSu/p’) 
Post-earthquake stability analyses were performed by assigning residual strength (i.e. defined as the ratio of 
residual undrained shear strength and in situ initial vertical effective stress, Sr/σvc’)  for areas where the 
maximum excess pore pressure during shaking exceeded a specified threshold indicative of liquefaction. The 
following distributions were considered: 

 mean residual strength and standard deviation as proposed by Kramer and Wang (2015), which is 
about 0.37 for the range of conditions applicable (green lines in Figure 11 below). This is considered to 
be the preferred basis for probabilistic analyses since it includes an empirically based uncertainty 
term, without bias. The proposed relationship for mean residual strength by Kramer and Wang (2015) 
is a function of normalized SPT blowcounts (N160).  We have used Idriss and Boulanger (2008) 
correlation to convert N160 to qc1Ncs. In order to account for the uncertainty in the conversion factor we 
have also considered a higher value for the standard deviation of 0.45 (red lines in Figure 11 below). 
We note that FORM analyses were performed considering both standard deviation values and results 
were found to be largely similar. 

 residual strength proposed by Idriss and Boulanger (2008) assuming void redistribution effects are 
significant. A clear definition of the uncertainty in residual strength estimates is not available. An 
estimate of the uncertainty on residual shear strength was developed assuming that the proposed 
curve represents median values (despite a likely safe bias) and using engineering judgment to develop 
an estimate of the standard deviation on the assumed median residual strength curve. More details 
are provided in Appendix E. This residual strength distribution has been used to evaluate the 
sensitivity of the calculated FORM influence coefficients to different assumptions concerning residual 
strength. 

 
A comparison of the two residual strength distributions considered is shown in Figure 11. 
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Figure 11. Uncertainty related to residual strength (95%-confidence interval) based on Kramer and Wang (2015) 
using the standard deviation proposed by the authors (green dashed curves) and an increased standard 
deviation of 0.45 (red dashed curves) to account for uncertainty in the conversion from (N1)60 to qc1Ncs , and 
Idriss and Boulanger (2008) assuming void redistribution and engineering judgment for the estimation of 
standard deviation (orange curves).  

 
 

 Model Uncertainty (εΜ) 
This term accounts for the potential difference between numerical model prediction and observed levee 
response. The expert panel (2016) has recommended a comparison of constitutive models and their 
implementations for informing choices concerning model uncertainty. Various sensitivity studies have shown 
that the differences between the computed crest settlements with two different constitutive models (UBCsand 
and PM4sand) are relatively small (Fugro 2016a). A comparison of computed settlements with different 
computer codes (i.e. different implementations of these constitutive models) could not be carried out because 
of time constraints. In view of this the model uncertainty has conservatively been assumed to be considerable, 
even though the differences between different computer codes are expected to be significantly smaller than 
those between different constitutive models. A detailed discussion on the characterization of model 
uncertainty is included in Appendix F.  

 
Figure 12. Model uncertainty. 
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 Uncertainties related to motion characteristics 

Ground motion characteristics mainly relate to amplitude, frequency content, and duration, but also to other 
characteristics of the ground motion that have to do with the details of the ground motion time history such as 
phasing, presence of velocity pulses that may create larger slope displacements, etc. The FE analyses have been 
conducted using motions that have been matched to a target spectral shape. Sensitivity analyses have been 
conducted to assess the variations in response for 7 different, two component motions (Fugro 2016a).  
 
The effect of the uncertainties related to the characteristics of ground motion can be handled via scenarios. In 
that case, failure probabilities are first calculated for a set of motions and then combined, see Appendix H. For 
deriving design values for an assessment for an individual ground motion, FORM-analyses have been 
conducted using a single motion with a duration D5-75 that is greater than the expected durations for 3000-6000 
year return period ground motions in Groningen. Sensitivity analyses were also conducted with a shorter 
duration motion because the spectral acceleration at the design point has a significantly longer return period. 
In Groningen, duration and spectral acceleration are inversely correlated (Bommer et al. 2015). Longer return 
periods are associated with higher spectral accelerations and smaller duration motions. 
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 Overview of stochastic variables 
An overview of the stochastic variables, their distributions, autocorrelations and representative values is given in Table 1. 
 
Table 1. Overview of stochastic variables. 

Variable Unit Distribution 
type 

Distribution 
parameters* 

Mean (m) and 
standard 
deviation (sd)* 

Motivation 
 

Spatial correlation 
(also see section 7.4) 

Spectral acceleration 
(T=0.85s) at NSUB 
(SANSUB)** 

g Lognormal Eemshaven 
μ = -5.77 
σ = 1.12 
 
Delfzijl 
μ = -5.61 
σ = 1.10 

Eemshaven 
m = 0.0058 g 
sd = 0.0092 g 
 
Delfzijl 
m = 0.0067 g 
sd = 0.0103 g 

From KNMI hazard curves for Groningen  Strongly correlated over distances of several km  

Spectral acceleration 
(T=0.85s) at base of 
model (SAmodel_base) 

g Lognormal Eemshaven 
μ = -5.05 
σ = 0.99 
 
Delfzijl 
μ = -4.62 
σ = 0.96 

Eemshaven 
m = 0.0105 g 
sd = 0.0135 g 
 
Delfzijl 
m = 0.0156 g 
sd =  0.0135 g 

Convolution of amplification factor distribution at 
base of 2D FE model and hazard curve at NSUB 
following Stewart et al (2014) procedure. The 
estimation of the amplification factor at base of FE 
models is described in Appendix C. 

Strongly correlated over distances of several km 

CRRM=7.5 in sand 
deposits  

- Lognormal μ = -1.88 
σ = 0.20 
 
 
(distribution of 
point values in 
the regional data 
set: 
μ = -1.80 
σ = 0.30) 

m = 0.16 
sd = 0.03 
 
 
(distribution of 
point values in 
the regional data 
set: 
m = 0.17 
sd = 0.05) 

Volume effects have been accounted for to obtain a 
distribution from a local data set of qc1Ncs-values that 
can be used in a uniform model. For further details, , 
see Appendix G.  
The distribution of point values rests on a convolution 
of the model uncertainty term in the CRR-relationship 
by Boulanger & Idriss (2014), with μ = 0 and σ = 0.2, 
and the distribution of qc1Ncs values in sand from a 
regional data set. This distribution has only been used 
for sensitivity analyses. 

Strongly correlated over distances of several km for 
a given geological unit. 
Motivation: The CRRM=7.5-values are derived from an 
empirical relationship that rests on back-
calculations of historic events. Length effects are 
reflected in the individual historic observations. The 
above means that the uncertainty related to 
CRRM=7.5 could be thought of as a model uncertainty 
which is typically assumed to be strongly spatially 
correlated. 

CRRM=5.0 in laminated 
deposits (from lab 
data) 

- Lognormal μ = -1.39  
σ = 0.10 
 
(without spatial 
averaging: 
μ = -1.40 
σ = 0.20) 

m = 0.25 
sd = 0.03 
 
(without spatial 
averaging: 
m = 0.25 
sd = 0.05) 

Based on regressions of lab test results and numerical 
simulations (see Appendix D). Volume effects have 
been accounted for. For a discussion on volume 
effects, see Appendix G. 
 

ρ0 = 0 - 0.5  

k = 100-150m     (+ sensitivity analyses) 
 
A correlation distance (k) that is in line with the 
value used for material properties in slope stability 
analyses in the Netherlands seems justified. The 
variance is largely related to the variations in clay 
content (void ratio). For a given void ratio, the 
resistances are spatially correlated. A review of CPT-
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Variable Unit Distribution 
type 

Distribution 
parameters* 

Mean (m) and 
standard 
deviation (sd)* 

Motivation 
 

Spatial correlation 
(also see section 7.4) 

data indicate that similar clay contents extend over 
distances of tens to hundreds of meters.  
A lower limit of the autocorrelation function (ρ0) 
greater than zero seems reasonable because there 
is also an element of (spatially correlated) 
knowledge uncertainty related to the CRRM=5.0 in 
layered deposits.  

εSu/p’ 
 
(uncertainty related 
to Su/p’ given 
median value of 
qc1Ncs) 

- Lognormal  μ = 0 
σ = 0.45 
 
 
μ = 0 
σ = 0.15 

m = 1.11 
sd =0.52 
 
 
m = 1.01 
sd = 0.15 

Su/p’ from Kramer and Wang (2015). 
 
 
 
Su/p’ = f(qc1Ncs,50%) · εSu/p’ 

With f(qc1Ncs,50%) from Idriss & Boulanger (2008) with 
void ratio distribution. For further details, see 
Appendix E. 

Strongly correlated over distances of several km  
(essentially model uncertainty) 
 
 

Geometric 
parameters (crest 
height, width etc.) 

m Deterministic - - Dimensions are well known - 

Model Uncertainty - Lognormal 
 

μ = 0 
σ = 0.55 
 

m = 1.16 
sd = 0.69 

Distribution based on engineering judgement, see 
Appendix F. The distribution corresponds to a 
probability of an error of at least a factor 2 of 10%. 

Strongly correlated over distances of several km 

 
*  The values of μ and σ in this table are the means and standard deviations of the natural logarithms of the lognormally distributed variables. They are not the means and standard 

deviations of the lognormally distributed variables themselves, which have been indicated by m and sd respectively.  
**  This distribution will not play a role in the FORM-analyses. It is only mentioned here to be able to calculate the difference between the design value of the Spectral acceleration (T=0.85s) 

with and without a design value for the uncertainty in the response analysis. 
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5 Action item 2: FORM analyses using the simplified liquefaction procedure 

The objective of this action item is to “get a feel” for the relative importance of the various uncertainties from 
probabilistic analyses with the simplified liquefaction procedure. The usefulness of this action item rests on the 
premise that the relative importance of stochastic variables that determine liquefaction triggering is broadly 
similar within a simplified liquefaction triggering analysis (the basis of the screening method) and more 
advanced FEM deformation analyses. The results presented below have been used for selecting the start values 
for the FORM-analyses with the FEM model, to reduce the required number of iterations. They have also been 
used for quality assurance, to make it easier to spot errors. 
 
 

 Limit state function 
The simplified liquefaction procedure involves an evaluation of a “factor of safety” (FSliq) against liquefaction 
(see Idriss & Boulanger 2008; Boulanger & Idriss 2014; Green et al. 2016). Note that FSliq is a stochastic variable 
and not a partial factor. 
 

 FSliq = CRR7,5,1atm / CSR7,5,1atm (5) 

 
 CSR7,5,1atm  = 0,65 · σv/σ’v · PGA/g · rd ·1/MSF · 1/ Kσ  (6) 

 
 CSR7,5,1atm  = c · PGA (7) 

 
 CRR7,5,1atm  = exp[qc1Ncs/113 + (qc1Ncs/1000)2 - (qc1Ncs/140)3 + (qc1Ncs/137)4 – Co + εln(CRR)] (8) 

 
Since FSliq<1 implies liquefaction, the limit state function for liquefaction triggering can be written as follows: 
 

 Z = 1 - CRR7,5,1atm / CSR7,5,1atm (9) 
 
or (similar to Boulanger & Idriss 2014): 
 

 Z=ln(CRR7,5,1atm) - ln(CSR7,5,1atm) (10) 
 
or:  
 

 Z=ln(CRR7,5,1atm) - ln(c · PGA) (11) 
 
Where: 
CRR7,5,1atm Cyclic resistance ratio (-) 
CSR7,5,1atm Cyclic stress ratio (-) 
PGA Peak ground acceleration at the surface of the soil profile (m/s2) 
g Gravitational acceleration (m/s2) 
σv  Total effective stress (kPa) 
σ’v  Effective vertical stress (kPa) 
rd Depth reduction factor (-) 
εln(CRR)  Uncertainty term 
MSF  Magnitude scaling factor (-) 
Kσ   Overburden correction factor (-) 
c Constant (-) 
qc1Ncs Equivalent, normalized cone resistance for clean sand (-)  
C0 Constant (-) 
 
A PSHA has been carried out to estimate the seismic hazard at the top of North Sea Upper Base (NSUB) at a 
depth of about 350m by KNMI. For the estimation of PGA at the ground surface, amplification factors or 
functions (AF) have been estimated as a function of the spectral acceleration at NSUB by Bommer et al. (2015). 



 

18 
 

For every location and period, the parameter values of the following equation can be found in “V2_Site 
Response Zonations_date.xlsx”: 
 

 ln(AF) = f1 + f2 (PGANSUB + f3) / f3 + u · σlnAF  (12) 

 
Where: 
AF Amplification factor (-) 
f1,f2,f3 Constants (-)  
PGANSUB Peak ground acceleration at North Sea Upper Base (g) 
u  Standard normal variable (-) 
σlnAF Standard deviation of the natural logarithm of the uncertainty related to the amplification function (-) 
 
 

 Input of probabilistic analyses 
An overview of the stochastic variables and their distributions is given in Table 2.  
 
 
Table 2. Overview of stochastic variables. 

Variable Unit Distribution 
type 

Distribution 
parameters 

Mean (m) and 
standard 
deviation (sd)* 

Motivation 

PGA g Lognormal μ = -3.95 
σ = 0.61 

m = 0.0232 g 
sd = 0.0156 g 

The PGA hazard curve was estimated 
following the procedure by Bazzurro and 
Cornell (2004) and Stewart et al. (2014) by 
a convolution of the hazard curve at top 
of bedrock (PGANSUB) with the probability 
distribution of the site amplification factor 
by Bommer et al (2015) for Eemshaven 
(i.e. zone number 1035).  Monte Carlo 
simulations were also performed for the 
convolution of the bedrock hazard curve 
and the site amplification probability 
distribution and similar results were 
obtained.  The hazard curve of PGA at the 
ground surface was approximated with a 
lognormal distribution.   

CRRM=7.5 
in sand 
deposits  

- Lognormal μ = -1.88 
σ = 0.20  

m = 0.16 
sd = 0.03 

Based on a convolution of the model 
uncertainty term in the CRR-relationship 
by Boulanger & Idriss (2014), with μ = 0 
and σ = 0.2, and the median of local qc1Ncs-
values in sand, see Appendix G for further 
details. 

 
 

 Results of FORM-analyses 
The squared influence coefficients per stochastic variable are shown in Figure 13 below. The influence 
coefficients are identical for different values of the constant c (see equation (7)), and thus the same for 
different (target) reliabilities. For more information about FORM, see Appendix A. 
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Figure 13. FORM-results for a simplified liquefaction triggering analysis.  

 
For a range of c-values (see equation (7)) that seem reasonable for Eemshaven, the calculated reliability indices 
range from about 2.2 to 3.2. 
 
 

 Discussion 
The results shown above are in line with: 

1. the fact that the return period of the earthquake load is widely regarded as an all-important 
parameter, 

2. the fact that a widely used “deterministic” triggering relationship corresponds to merely a 16%-
quantile for model uncertainty (Boulanger & Idriss 2014).  
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6 Action item 3: FORM analyses using the 2D effective stress model 

The objective of this action item is to “get a feel” for the relative importance of the various uncertainties from 
probabilistic analyses with the Fugro model. For more information about FORM, see Appendix A. 
 

 Limit state function 
The limit state function is: 
 

 Z = ccrit – m · C               (13) 
 

Where 
ccrit Critical crest settlement (m); ccrit = 3 m 
C Computed crest settlement (m) 
m Model uncertainty factor (-) 
 
Crest settlements are calculated with dynamic effective stress FEM-analyses. For further details on the 
calculation procedure, the reader is referred to the guideline prepared by Fugro (2016b). 
 
 

 Input of probabilistic analyses 
For an overview of the stochastic variables and their distributions, the reader is referred to Table 1 in chapter 4. 
The stratigraphies for the Eemshaven and Delfzijl levees that have been considered in FORM-analyses are given 
in Figure 14 and Figure 15 below. Conservative stratigraphies have deliberately been selected to minimize the 
gap between reliability indices close to target reliability indices. Additional stratigraphies have been considered 
in Fugro (2016a) as a part of sensitivity analyses. 
 

  

 

Figure 14. The stratigraphy for the Eemshaven cross-section considered in the FORM-analysis. 
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Figure 15. The stratigraphy for the Delfzijl cross-section considered in the FORM-analysis. 

 
 

 Results of FORM-analyses 
The results of the FORM analyses using the 2D FEM results are presented in this section. The following cases 
were examined: 
 
Base case 

A. Eemshaven cross-section; Su/p’ according to Kramer & Wang (2015); ground motion 4; using the 
median of local qc1Ncs-values. 

B. Delfzijl cross-section; Su/p’ according to Kramer & Wang (2015); ground motion 4; using the median of 
local qc1Ncs-values. 

 
Sensitivity analyses  

1. Eemshaven cross-section; Su/p’ according to Kramer & Wang (2015); ground motion 6; using the 
median of local qc1Ncs-values.  

2. Delfzijl cross-section; Su/p’ according to Kramer & Wang (2015); ground motion 6; using the median of 
local qc1Ncs-values.  

3. Eemshaven cross-section; Su/p’ according to Idriss & Boulanger (2008); ground motion 4; using a 
regional data set of qc1Ncs-values without spatial averaging.  

4. Delfzijl cross-section; Su/p’ according to Idriss & Boulanger (2008); ground motion 4; using a regional 
data set of qc1Ncs-values without spatial averaging.  
 

All FORM-analyses have been performed using a response surface. For both base cases, the design point (crest 
settlement and partial derivatives) has been verified using targeted FE-analyses (usually a set of 9 FE-analyses). 
The same applies to sensitivity analyses no. 3 and 4. For sensitivity analyses no. 1 and 2, only the crest 
settlement in the design point has been verified with a single, targeted FE-analysis. 

 
The squared influence coefficients per stochastic variable are shown in Figure 16 to Figure 18 below for the 
cases examined. The calculated reliability indices are also shown on the figure for every case. 
 
For a detailed overview of the results of the FORM-analyses, the reader is referred to Appendix I. 
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Figure 16. Base case A (left) and B (right): squared influence coefficients and reliability indices from FORM-
analyses with the 2D FE model with Su/p’ according to Kramer & Wang (2015) and the median of local qc1Ncs-
values, for ground motion 4. 

 
 
 

 
 
 
Figure 17. Sensitivity analyses 1 (left) and 2 (right): squared influence coefficients and reliability indices from 
FORM-analyses with the 2D FE model with Su/p’ according to Kramer & Wang (2015) and the median of local 
qc1Ncs-values, for ground motion 6. 
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Figure 18. Sensitivity analyses 3 (left) and 4 (right): squared influence coefficients and reliability indices from 
FORM-analyses with the 2D FE model with Su/p’ according to Idriss & Boulanger (2008), using a regional data 
set of qc1Ncs-values without spatial averaging, for ground motion 4. 

 

 Discussion 
The calculated influence coefficients for Eemshaven and Delfzijl appear broadly similar. The uncertainty related 
to the spectral acceleration is relatively important. This is in line with the results of the FORM-analyses for 
liquefaction triggering with the simplified liquefaction procedure (see chapter 5). It is also in line with the 
observation that the return period of the seismic action is widely considered to be an all-important parameter. 
 
The calculated reliability indices are high, even though conservative assumptions have been made concerning 
stratigraphy: a reliability index of 5 corresponds to a probability of failure of about 1/3.500.000 per year 
(2,9.10-7 per year). The calculated reliability indices are significantly greater than the ones calculated for 
liquefaction triggering in chapter 5. This is consistent with the fact that the FORM-analysis in chapter 5 
concerns the probability that FSliq<1 somewhere. This is not the same as actual failure. 
 
Analyses were conducted for two different residual strength distributions. As was to be expected on the basis 
of the similarities between the relationships presented in Figure 11 for lower values of qcN1cs, the calculated 
reliability indices and influence coefficients are broadly similar. 
 
A sensitivity analysis with a shorter duration motion shows a higher reliability index. The influence coefficient 
of ground motion is somewhat reduced. 
 
The calculated influence coefficients are broadly similar across all cases. 
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7 Action item 4: Revisiting the length effect 

 Introduction: cross-sectional and system-level reliability assessments 
The Dutch flood protection standards are defined in terms of maximum allowable probabilities of flooding. 
These standards are system-level reliability requirements: they apply to segments of about 5 to over 40 
kilometers in length. The probability of flooding is the probability that a segment fails somewhere, for 
whatever reason, leading to the flooding of the hinterland (Figure 19).  
 
A segment can be decomposed into sections. Sections are defined here as continuous lengths in which load 
and resistance properties are statistically homogeneous. The term “uniform length” is used here to refer to a 
length in which the spatial variability of demand and capacity along the dike can be ignored when evaluating a 
limit state function.1 A reliability analysis for a uniform length is commonly referred to as a cross-sectional 
analysis. Segments may consist of numerous sections, and sections of numerous uniform lengths, see also 
Figure 20. 
 
 
 

 
Figure 19. Fault tree for a segment. 

 
Note that different terms and definitions are sometimes used for similar concepts. For instance, the USACE 
(2013): I-5) says: “A levee reach is defined for the purpose of risk analysis as a continuous length of levee 
exhibiting homogeneity of construction, geotechnical conditions, hydrologic and hydraulic loading conditions, 
consequences of failure, and possibly other features relevant to performance and risk”. The main differences 
with a “section”, as defined above, concerns the fact that only features related to performance are considered 
here and that a “section” could also be a dune or a structure. Jongejan & Maaskant (2015) used the term 
“cross-section” instead of “uniform length”. Kwak et al. (forthcoming) use the term “reach” for “section” and 
“segment” for “uniform length”. 

                                                                 
1 Demand and capacity may concern point values or spatial averages, depending on the limit state function. 

Flooding (segment 
fails) 

Overtopping 
failure 

Slope 
instability 

Section A 
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Section B 
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25 
 

 
Figure 20. Major levee system, segments, sections and cross-sections. 

 
The failure probability for a uniform length, P(Fi), is the probability that the limit state function is smaller than 
zero in a 2-dimensional or cross-sectional analysis: 
 

 P(Fi) = P( Zi<0)               (14) 

 
Where 
Zi  Limit state function of uniform length i (i=1..n); Zi<0 indicates failure 
 
A segment can be thought of as a series system consisting of numerous uniform lengths (grouped into 
sections). A segment’s failure probability, P(Fsystem), follows from2: 
 

 P(Fsystem) = P( Z1<0  Z2<0  …  Zn<0 )               (15) 

 
The failure probability of a series system lies between the following bounds: 
 

 P(Fsystem) = max( P(Zi)<0 )             Lower bound (perfectly correlated limit state functions)                                                      (16) 

 

 P(Fsystem) = 1 – Πi=1…n( 1 - P(Zi<0) )         Upper bound (independent limit state functions) (17) 

 
For sufficiently small failure probabilities, the upper bound can be approximated by: 
 

 P(Fsystem) ≈ ( P(Zi<0) )         (18) 

 
When the limit state functions of the different uniform lengths are strongly correlated, the system failure 
probability tends to the lower bound. When the limit state functions are weakly correlated, the system failure 
probability tends to the upper bound. The difference between expressions (16) and (17) is also strongly 
influenced by variations in cross-sectional failure probabilities. A single weak spot may strongly influence a 
series-system reliability, regardless of spatial correlations. 
 
The system failure probability for a particular failure mechanism can be calculated on the basis of: 

1. cross-sectional failure probabilities (identical throughout each section), 
2. the effect of spatial correlations within each section and 
3. the correlations between sections. 

 
This is illustrated by Figure 21. Note that uniform lengths could be treated like sections when calculating a 
segment’s failure probability. A distinction is made here because the homogeneity within sections allows for 
the use of relatively efficient computational techniques to calculate the failure probability of a section. A 
section is essentially a series system of uniform lengths, i.e. a system of correlated components. It can also be 
modelled as a series system of independent equivalent lengths. These independent equivalent lengths depend 
on the correlations between uniform lengths. With such an independent equivalent length, the failure 

                                                                 
2 For reasons of simplicity, only a single failure mechanism is considered here. 
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26 
 

probability for a single uniform length can be scaled directly to the failure probability of an entire section (see 
e.g. Vrouwenvelder 2006). 
 

 
Figure 21. Schematic overview of a system reliability analysis. 

Consider a series system (segment) that consists of two components (sections)  
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When engineers evaluate the reliability of e.g. a dike section using a semi-probabilistic or deterministic 
method, they carry out a 2-dimensional analysis. To be able to evaluate an individual cross-section without 
having to carry out a full system-level reliability analysis, the system-level reliability requirement has to be 
transformed into a cross-sectional reliability requirement.  
 
 

 The length effect and cross-sectional target reliabilities  
When the limit state functions of different uniform lengths are not perfectly correlated, the system failure 
probability increases with the number of uniform lengths (Figure 22). This means that the system failure 
probability increases with length. This phenomenon is called the length effect. 
 
The above can be understood as follows. When capacity is uncertain and spatially variable, it is uncertain (1) 
which spot  is actually the weakest and (2) how weak this weakest spot actually is. This also explains why 
people that inspect levees during high waters do not stand still: the probability that they observe a sign of 
weakness increases with every step they take. Note that the spatial variability of demand can also lead to a 
length effect: the probability of observing a particular seismic demand somewhere in Groningen is higher than 
the probability that it is observed at any specific location in Groningen.  

 
 
Figure 22. The length effect: the greater the number of uniform lengths that could fail independently, the 
greater the probability of flooding. 

 
The Dutch flood protection standards are defined in terms of maximum allowable probabilities of flooding per 
segment (“dijktraject”). Cross-sectional target reliabilities for evaluating the probability of severe earthquake 
damage can be derived from these standards with the following expression: 
 

 PT = Pmax · f / PF│D / N                (19) 

 
with: 
 

 N = a· L / b                (20) 

 
Where 
PT   Cross-sectional target failure probability for a seismic stability assessment (per year) 
Pmax   Maximum allowable probability of flooding (per year) 
f  Maximum allowable contribution of instability to the probability of flooding (-) 

PF│D  Probability of flooding given severe earthquake damage, defined as a crest settlement 3m (-) 
N Length effect factor for severe earthquake damage (-) 
L Length of segment (m) 
a Fraction of the total length of the segment that dominates the probability of failure of the segment for 

the failure mechanism under consideration (-) 
b Independent equivalent lengths within the abovementioned part of the segment (m) 

 
The parameters a and b model a segment that consists of different sections with different characteristics in a 
simplified, equivalent manner, as shown in Figure 23. The failure probability of a segment is usually determined 
by a relatively short distance over which the probabilities of failure are relatively high, which is expressed by 
the a-value. Note that failure probabilities are usually plotted on a log-scale because they easily vary of orders 
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of magnitude; combining failure probabilities of e.g. 1/1000 and 1/100.000 gives a system failure probability 

close to 1/1000. Within the “critical length” (i.e. “a  L”), the effect of decay of spatial correlation can be 
modelled by means of “independent equivalent lengths”. This is reflected by the b-value.  
 

 
Figure 23. A simplified, equivalent way of describing a segment’s reliability (the widths of the bars are 
independent equivalent lengths, or b-values). 

The parameter values that have been assumed so far are shown in Table 3, together with the resulting target 
reliabilities. 
 
Table 3. From standard of protection to cross-sectional target reliabilities for seismic stability assessments. 
Original values. 

Variable Unit Segment 

6_6 (includes Eemshaven) 6_7 (includes Delfzijl) 

Pmax   per year 1/1,000 1/3,000 

f  - 0.24 0.24 

PF│D  - 0.1 0.1 

PT,segment per year 0.0024 0.0008 

L m 46100 38600 

a - 0.033 0.033 

b m 50 50 

N - 31.4 26.5 

PT Per year 7.64E-05 3.02E-05 

βT - 3.79 4.01 
 
The values of parameters a and b in Table 3 were selected at a meeting held in December 2015. Back then, it 
was proposed to hold on to the values that are more commonly used in slope stability assessments in the 
Netherlands, i.e. a=0.033 (=1/30) and b=50m.3 This was expected to be somewhat conservative, but little was 
known at the time about the seismic stability of the Eemshaven-Delfzijl levees. It was therefore proposed to 
revisit the length effect when the results of the first seismic stability assessments would come available (Figure 
24). This action item could be viewed as a follow-up on the abovementioned proposal. It draws upon the 
results of the LPI-screening (Deltares 2017) and the FORM-analyses presented in chapter Figure 24 to re-
evaluate the length effect. 

                                                                 
3 The value a=0.033 stems from an old study for the Alblasserwaard (one of the Dutch major levee systems) in which 10% of the 

levee system was found to be sensitive to slope instability. This value of 10% was divided in 3 following discussions over the effects 
of spatial correlations. The value has found its way into Dutch guidelines and is now widely used in slope stability assessments. The 
background of b=50m will be discussed in section 7.4. It rests on probabilistic analyses and is in line with the lengths of slope 
failures. 
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         (page 1) 
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 (page 7) 

Figure 24. Quotes from the minutes of the meeting of December 2015 on the length effect (in Dutch). 

 

 Characterizing the length effect: the parameter a 
The parameter a is defined as the fraction of the total length of the segment that dominates the probability of 
failure of a segment for the failure mechanism under consideration. Based on an LPI-screening for 11.5 km, 3 to 
5 profiles have been selected for a detailed assessment to be able to give conclusions concerning the reliability 
of the entire stretch (Deltares 2017). These profiles are representative for a combined length of several 
hundred meters. Because of e.g. variations in stratigraphy, these four profiles are also unlikely to have identical 
failure probabilities. Considering this, there seems to be no obvious reason to move away from a=0.033.  
 
 

 Characterizing the length effect: the parameter b 
 
7.4.1 Theory 
The following theory forms the basis of the b=50m mentioned in section 7.2 that underlies the cross-sectional 
reliability requirements for slope stability assessments in the Netherlands (Calle & Barends 1990; 
Vrouwenvelder & Calle 2003). A levee could be thought of as a series system of statistically homogenous 
lengths. The failure probability of such a statistically homogeneous length Lhom can be approximated by (see 
e.g. Jongejan 2012 for a derivation): 
  

 P(FLhom) = 1-(1-P(Fcross)) · exp( - Lhom /(2π) * sqrt(-d2ρZ(0)/d2) · exp(-βcross
2/2) )                (21) 

 
Where: 
P(FLhom) Failure probability of a statistically homogeneous length (per year) 
P(Fcross) Cross-sectional probability of failure (per year) 
βcross Cross-sectional reliability index (-) 
 
The statistically homogenous length (Lhom) could be thought of, approximately, as a series system of 
independent, characteristics lengths (b): 
 

 b = P(Fcross) · 2π / sqrt(-d2ρZ(0)/d2) · exp(βcross
2/2) 

             

(22) 

which may be approximated as follows if βcross, is positive and not very small, e.g. βcross>2 (Vrouwenvelder 
2006): 
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 b = sqrt(2π) / ( sqrt(-d2ρZ(0)/d2) · βcross) 

 

(23) 

The autocorrelation function of the limit state function can be approximated by the weighted sum of the 
autocorrelation functions for capacity and demand, with their weights being the squared influence coefficients: 
 

 ρZ() = αX
2 ρX() 

                

(24) 

Where 

ρZ() Value of the autocorrelation function of the limit state function, evaluated at lag  (-) 

ρX() Value of the autocorrelation function of stochastic variable X, evaluated at lag  (-) 
 
The different stochastic variables have different autocorrelation functions. The type of autocorrelation function 
that is widely used in stability analyses in the Netherlands has the following function form (Van Balen et al. 
2016): 
 

 ρX() = (1-ρ0) · exp( -(/k)2) + ρ0 
                

(25) 

Where: 
ρ0 Lower bound of the autocorrelation function (-) 
k Spatial correlation length parameter (m) 

 Distance/lag (m) 
 
Examples of autocorrelation functions are given in Figure 25. A lower limit of the autocorrelation function 
greater than zero implies that part of the uncertainty related to a variable is (spatially correlated) epistemic 
uncertainty. 
 

 
Figure 25. Examples of autocorrelation functions. 

 
 
7.4.2 Sensitivity analyses 
To inform a decision concerning the length effect, various sensitivity analyses have been performed. To simplify 
these analyses, the various stochastic variables from Table 1 have been grouped/combined into a stochastic 
variable that is strongly spatially correlated (named “demand” hereafter) and one that is not (named 
“capacity”). Treating the underlying variables separately does not change the results as long as each of these 
variables has the same autocorrelation function, see equation (24).  
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Not all variables are equally spatially variable. The ground motion, for instance, is strongly spatially correlated. 
The cyclic resistance ratio for layered deposits, on the other hand, is relatively weakly spatially correlated4. The 
influence coefficient from the FORM-analyses has been used as a reference for the influence coefficient of 

capacity, i.e. C
2≈0.06. The influence coefficient of capacity has also been increased to show the influence of 

e.g. treating the uncertainty related to εSu/p’ as equally spatially variable as the uncertainty related to the CRR in 

layered deposits (doing so would lead to C
2≈0.08; a higher value of 0.1 has been used instead). Similarly, it has 

been decreased (C
2≈0.2), which could be a reasonable approximation for cases without layered deposits. This 

is because the CRR for sand is based on an empirical relationship that rests on back-calculations of case 
histories (see also section 7.4.3). The influence coefficient for demand has been calculated by adding the 
squared influence coefficients of the remaining stochastic variables. 
 
The results of the sensitivity analyses are shown in Table 4. The reported b-values stem from equation (22).  
 
Table 4. Sensitivity analyses related to the length effect. 

Case no. βcross Capacity Demand b (m) 

C
2 ρ0,C kC (m) D

2 ρ0,D kD (m) 

1 3 0,06 0,5 100 0,94 0 5000 310 

2 4 0,06 0,5 100 0,94 0 5000 240 

3 4 0,06 0,5 100 0,94 1 - 242 

4 4 0,06 0,5 100 0,94 0 5000 240 

5 4 0,06 0 150 0,94 0 5000 255 

6 4 0,06 0,5 150 0,94 0 5000 357 

7 4 0,1 0,5 100 0,9 0 5000 187 

8 4 0,02 0,5 150 0,98 0 5000 600 

9 4 0,5 0 100 0,5 1 - 59 

10 4 0,5 0,5 100 0,5 1 - 84 

11 4 0,5 0 150 0,5 1 - 89 

 
Table 4 illustrates the following: 

1. As shown by cases 1 and 2, the length effect increases with increasing reliability indices (as it should). 
A reliability index of 4 is close to the target reliability (slightly conservative). This is why this reliability 
index has been considered in the remaining case studies. 

2. As shown by cases 2 and 3, the precise autocorrelation function for demand is largely irrelevant to the 
length effect, as long as this variable is much more strongly spatially correlated than capacity. The 
length effect is most strongly influenced by (1) the relative importance of the uncertainty related to 
capacity and (2) the autocorrelation function of capacity. 

3. As shown by cases 3, 4 and 5, the length-effect depends on the autocorrelation function of the most 
weakly spatially correlated variables. 

4. As shown by cases 6 and 7, the length effect increases (i.e. b decreases) when the relative importance 

of the uncertainty related to the spatially variable stochastic variables increases (i.e. C
2 increases, D

2 
decreases).  

5. As shown by cases 7 and 8, the length effect decreases (i.e. b increases) when the relative importance 

of the uncertainty related to the strongly spatially correlated stochastic variables increases (e.i. D
2 

increases, C
2 decreases).  

6. Cases 9 to 11 (bottom rows) show that the same procedure leads to b=50m-100m for inputs that are 
more common in slope stability assessments with a dominant hydraulic load (no earthquake). These 
analyses illustrate why b=50m is used as a basis for cross-sectional stability assessments in the WBI 
(the WBI is the instrument provided by the Minister for safety assessments). 

 
The b-values in Table 4 for seismic stability are high compared to the b-value of 50m that underlies the Dutch 
technical guidelines for slope stability assessments (TAW 2001). This stems from the fact that the uncertainties 
related to strongly spatially variable stochastic variables are more important in seismic stability analyses than in 
high water stability analyses, making the limit state function fluctuate more slowly along the length of the dike. 

                                                                 
4 The CRR referred to here concerns a local average, see also Appendix G. Correlation distances for point values are considerably 

shorter. 



 

32 
 

7.4.3 Comparison with earthquake damage observations to embankments 
 
Abstract 
To verify whether the use of b-values of 200m to 350 m rather than 50m is justified for deriving cross-sectional 
reliability requirements for seismic stability assessments, the calculated b-values have been compared to 
damage observations from Japan and related academic research into spatial correlations. These comparisons 
show that embankment failures can indeed lead to significant damages that extend over hundreds of meters. 
The comparisons point to even higher b-values than those shown in Table 4. The conditions underlying the 
Japanese case histories and the conditions in Groningen differ markedly however. Hence, while the b-values in 
Table 4 still appear low in the light of damage observations, the use of higher values purely on the basis of 
damage observations is not considered prudent. 
 
Interpreting independent, equivalent length as expected failure lengths 
An independent equivalent length is often interpreted as the expected length of failures. This may not be 
correct, however, when the distributions of stochastic variables rest on back-analyses of case histories. Length 
effects are inherent to historical observations. When, for instance, liquefaction was not observed in a particular 
earthquake, it was not observed anywhere in the affected region. When distributions rest on back-calculations 
of case histories, the computed b-value should be interpreted as the length in which a levee is expected to fail 
somewhere (with a particular probability). In such cases, the computed b-value should be greater than the 
expected length of failures.  
 
The distribution of the cyclic resistance ratio of sand deposits rests on an empirical relationship that originates 
from back-analyses of case histories. Hence, for Eemshaven, where sand deposits are critical, the computed b-
value should be greater than the expected length of failures. This is different for Delfzijl. Here, laminated 
deposits are critical. The distribution of the cyclic resistance ratio of laminated deposits rests on laboratory 
tests, not back-analyses. Hence, at Delfzijl, the computed b-values should be interpretable as the expected 
lengths of slope failures. 
 
The independent, equivalent length and damage observations 
Sasaki and Tamura (2007) present an overview of earthquake damages to embankments in Japan from 1993 
onwards (the original reports are in Japanese). Data from their publication has been summarized in Table 5 
below. 
 
The average damaged lengths in Table 5 have been calculated by dividing the total damaged lengths by the 
number of places where damages occurred. The severity of the damages associated with the total damaged 
lengths is often unclear. This is unfortunate since the length of damage depends on the (definition of the) 
damage state (see also Kwak et al. 2016). The average length of total collapse caused by liquefaction of the 
foundation in the Niigata-ken earthquake, which seems to be closest to the failure mechanism considered 
here, is 957 m. This clearly shows that liquefaction can lead to significant damage over considerable distances. 
Without accounting for the type/severity of damage, the average damaged lengths range from 317m to 
1,732m.  
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Table 5. Overview of damages reported by Sasaki and Tamura (2007). Figures and quotes from Table 1 and 
Figure 2 in Sasaki and Tamura (2007).  

Year Earthquake Severity of damage Total 
damaged 
length (m) 

No. of 
damaged 
stretches 

Average 
damage 
length (m) 

1993 Kushiro-oki 
(M=7.8) 

Not clearly described (“liquefaction inside 
embankments, 3-d response of dike”); 
Kushiro river 

10,100 28 361 

Not clearly described (“liquefaction inside 
embankments, 3-d response of dike”); 
Tokachi river 

9,200 20 460 

1993 Hokkaido 
Nansei-oki 
(M=7.8) 

Not clearly described (“crest cave-in along 
diagonal slip plane”) 

6,600 18 367 

1995 Hyogo-ken 
Nanbu 
(M=7.2) 

Not clearly described (“separation into blocks, 
submerged into liquefied subsoil layer”) 

5,700 18 317 

2000 
 

Tottori-ken 
Seibu 
(M=7.3) 

Not clearly described (“Bend of dike bottom, 
transverse cracks at a curvilinear part” 

20,700 32 647 

2003 Miyagi-ken 
Hokubu 
(M=6.4) 

Not clearly described (“flow-like 
deformation”) 

Not 
available 

66 Not 
available 

2003 Tokachi-oki 
(M=8.0) 

Not clearly described (“elongation of sluice 
gate length”) 

16,000 26 615 

2004 Niigata-ken 
Chuetsu 
(M=6.8) 

“Longitudinal cracks (shallower than H.W.L.)” 
 

  

6,997 8 875 

“Longitudinal cracks (deeper than H.W.L.)”  

 

 

449 1 449 

“Transverse cracks (shallower than H.W.L.)” 
 

 

- - - 

“Transverse cracks (deeper than H.W.L.)” 
 

 

- - - 

“Slide of slope (failure of crest)” 
 

 

8,659 5 1,732 

“Total collapse of crest, no original shape 
remaining (liquefaction of foundation)” 
 

  

2,871 3 957 
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More details on the damages caused by the 1995 Hyogoken-Nanbu earthquake can be found in Matsuo (1996). 
According to Matsuo (1996), the Torishima dike along the Yodo-gawa was strongly impacted by the 
earthquake. A continuous crest settlements of 2-3 meters was observed over a distance of about 1.4 kilometers 
see Figure 26. This amount of crest settlement is broadly in line with the definition of the limit state considered 
here.  
 

 

 
Figure 26. Damages caused by the 1995 Hyogoken-Nanbu earthquake and a profile of observed crest settlement 
of the Torishima dike along the Yodo-gawa  (from: Matsuo 1996).  

 
The Japanese damage records indicate that liquefaction can lead to significant damage or collapse over lengths 
of a kilometer or more. It also appears that damages, irrespective of their severity, can easily extend over 
hundreds of meters. All average damage lengths in Table 5 far exceed 50m. 
 
Damage observations and empirical autocorrelation functions 
Observed damage lengths are influenced by the difference between capacity and demand: when design loads 
are strongly exceeded, damaged lengths are likely to much higher than when design loads are barely or not at 
all exceeded. To correct for this effect, back-analyses of the spatial pattern of damage states were performed 
by Kwak et al. (2016) conditional on the seismic demands that led to these damages. Two different fragility 
curves were used in these back-analyses, conditional on ground water level. Empirical autocorrelations 
functions of capacity were derived from the damages observed in the 2004 Niigata-ken Chuetsu earthquake 
and the 2007 Niigata-ken Chuetsu-oki earthquakes. 
 
The squared exponential autocorrelation functions for capacity and demand from Kwak et al. (forthcoming) are 
considered here. Using the distribution of capacity and the distribution of demand conditional on the M6.6 

event, C
2 is around 0.75. Results of sensitivity analyses with these autocorrelation functions are shown in 

Table 6.  
 
Table 6. The calculated b-values for a M=6.4 earthquake using the empirical autocorrelation function developed 
by Kwak et al. (2016). 

Case no. βcross Capacity Demand b (m) 

2 ρ0 k (m) 2 ρ0 k (m) 

1 3 0,75 0 2765 0,25 0 8000 1869 

2 4 0,75 0 2765 0,25 0 8000 1402 

 
The results shown in Table 6 are in reasonable agreement with the damage reports from Table 4: the b-values 
are broadly in line with the average length of severe damage/collapse.  
 
The empirical autocorrelation function of capacity developed by Kwak et al. (2016) is a property of the capacity 
the levee system for which it has been derived. The autocorrelation function of demand could be different 
from earthquake to earthquake. Using the (modified) autocorrelation function for capacity by Kwak et al. 
(2016), the b-values have been recalculated for several cases from Table 4. Results are shown in Table 7. 
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Table 7. Sensitivity analysis using an empirical autocorrelation function developed by Kwak et al. (2016).  

Case no. βcross Capacity Demand b (m) 

2 ρ0 k (m) 2 ρ0 k (m) 

1 4 0,08 0 2765 0,92 0 5000 1780 

2 4 0,1 0 2765 0,9 0 5000 1780 

3 4 0,02 0 2765 0,98 0 5000 1990 

 
The b-values from Table 7 are significantly greater than the ones from Table 4. This could be because the 
results shown in Table 4 are conservative. It could also be, however, that the variations in the reliability of the 
Japanese levee systems were underestimated in the back analyses with the use of only two different fragility 
curves. The empirical autocorrelation function then describes the combined effect of: 

1. changes in the reliability of cross-sections along the entire length of levee due (not fully accounted for 
by the two fragility curves) and  

2. variations in material properties within homogenous lengths. 
If so, the empirical autocorrelation function should be used in combination with a relatively high a-value in 
equation (20), i.e. a>0.033. After all, if the two fragility curves underestimate the variations in cross-sectional 

reliabilities, there could still be important variations within the ”critical length” (= a  L). Note that a=0.033 in 
combination with the b-values from Table 4 (about 200-400m) leads to broadly similar cross-sectional reliability 
requirements to a=0.3 with the b-values from Table 7. Taking the empirical autocorrelation by Kwak et al. 
(forthcoming) in combination with a=0.033 would lead to target failure probabilities that are about a factor 10 
greater. This would translate into a significant reduction of return periods (amongst other). Given that this 
research is relatively recent and has not been previously applied in projects, such a reduction in demand is not 
considered prudent for an assessment of a critical infrastructure like the Eemshaven-Delfzijl sea dike. 
 
Discussion 
While it is difficult to base a decision on a particular b-value purely on Japanese damage records, these records 
do suggest that embankment failures can extend over hundreds of meters. It also seems that b=200-350m is 
more realistic than b=50m. 
 
It is important to note that the earthquakes covered by Sasaki and Tamura (2007), Matsuo (1996) and Kwak et 
al. (2016) had considerably greater magnitudes (M>6) than the maximum magnitude of around 5 expected in 
Groningen (NAM 2016). Also, soil conditions and levee designs differ in Groningen and Japan. This means that 
damage observations from Japan may not be entirely representative for Groningen. This is also why damage 
observations have been used to put the results of the “bottom-up” sensitivity analyses (Table 4) into 
perspective rather than the other way round. 
 
 
7.4.4 Proposed b-value 
Based on the results of the sensitivity analyses in Table 4 and the discussion above, a b-value of 200-350 m 
seems justified. The use of the lowest value from this range is proposed, i.e. b=200m. Should this still turn out 
to be too optimistic, the assumed 3 month repair time seems too pessimistic. This is because this month repair 
rests on the premise that earthquake damages may occur over several kilometers (Figure 24). 
 

 

(page 7) 

 
Figure 27. Quotes from the minutes of the meeting of December 2015 on the length effect (in Dutch). 

 
A repair time shorter than 3 months leads to a smaller probability of flooding in case of significant earthquake 
damage (i.e. PF│D<1/10). Taken together, b=200m and PF│D=1/10 seem to be a prudent basis for cross-sectional 
seismic stability assessments of the Eemshaven-Delfzijl sea dikes.  
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 Updated cross-sectional target reliabilities 
The following parameter values are proposed to characterize the length effect: 

1. a = 0.033 (same as before) 
2. b = 200m (before: 50m) 

 
The impact of increasing the b-value from 50 to 200m leads to changes in the cross-sectional target reliabilities 
for segments 6-6 and 6-7, as shown in Table 8.  
 
Table 8. Updated cross-sectional target reliabilities for assessing seismic stability. 

Segment Standard 
of 
protection 
(per year) 

Cross-sectional target reliability 
for a=0.033 and b=50m (original, 
see Table 3) 

Cross-sectional target 
reliability for a=0.033 and 
b=200m (proposed) 

PT βT PT βT 

6_6 (includes Eemshaven) 1/1,000 7.64-05 3.79 2.79E-04 3.45 

6_7 (includes Delfzijl) 1/3,000 3.02-05 4.01 1.09E-04 3.70 

 
The changes in cross-sectional target reliabilities lead to a reduction of the return periods of the design values 
of the spectral accelerations at NSUB by about a factor 3, see also chapter 8. The changes also affect the design 
values of the other stochastic variables, albeit to a lesser extent. This is because their influence coefficients are 
relatively small. 
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8 Action item 5: Synthesis 

 From calculated FORM-influence coefficients and target reliabilities to design values 
Design values have been derived on the basis of: 

1. the influence coefficients obtained from FORM-analyses with the FE-model and 
2. the target reliabilities from Table 8 in section 7.5, i.e. βT = 3.45 (segment 6-6, Eemshaven) and βT = 3.70 

(segment 6-7, Delfzijl). 
 
Table 9 and Table 10 show the cumulative probabilities of the design values that seem reasonable on the basis 
of the calculated FORM-influence coefficients and target reliabilities. As discussed in chapter 2, a design value 
can be split into a representative value and a partial factor (last two columns).  
 
The design values in Table 9 and Table 10 all rest on influence coefficients that are greater than those obtained 
from FORM-analyses. The sum of squared influence coefficients on which the design values are based is an 
indicator of the amount of conservatism in the semi-probabilistic rule. For Eemshaven and Delfzijl, these sums 
are about 1.1. Recommended design values, based on Table 9 and Table 10, are shown in Table 11. 
 
Table 9. From calculated influence coefficients and target reliability to design values. Results for the Eemshaven 
base case (segment 6-6). 

Stochastic 
variable 

Calculated Possible basis for assessment 

2  2  βT Cumulative 
probability 

Representative 
value, quantile 

Partial 
factor 

Spectral 
acceleration at 
model base 

0.732 -0.856 - - - - - - 

Spectral 
acceleration at 
NSUB 

0.725 -0.851 0.81 -0.9 3.45 9.991E-01 
per year 

1056 year 
return period 

1.0 

Uncertainty in 
site response 

0.007 -0.086 0.01 -0.1 3.45 0.635 50% 1.04 

CRRM=7.5 in 
sand deposits  

0.160 0.400 0.18 0.42 3.45 0.074 15% 1.09 

Uncertainty 
related to 
residual 
strength* 

0.040 0.200 0.04 0.21 3.45 0.234 50% 1.39 

Model 
Uncertainty 

0.068 0.261 0.08 0.28 3.45 0.167 50% 1.70 

Total 1 - 1.12 - - - - - 

* For residual strengths according to Kramer and Wang (2015). 

 
 
Table 10. From calculated influence coefficients and target reliability to design values. Results for the Delfzijl 
base case (segment 6-7). 

Stochastic 
variable 

Calculated Possible basis for assessment 

2  2  βT Cumulative 
probability 

Representative 
value, quantile 

Partial 
factor 

Spectral 
acceleration at 
model base 

0.786 -0.887 - - - - - - 

Spectral 
acceleration at 
NSUB 

0.778 -0.882 0.81 -0.9 3.70 9.996E-01 
per year 

2290 year 
return period 

- 
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Uncertainty in 
site response 

0.008 -0.089 0.01 -0.1 3.70 0.644 50% 1.04 

CRRM=5.0 of 
laminated 
deposit  

0.046 0.214 0.09 0.3 3.70 0.133 15% 1.01 

Uncertainty 
related to 
residual 
strength*  

0.018 0.134 0.03 0.16 3.70 0.277 50% 1.31 

Model 
Uncertainty 

0.150 0.387 0.17 0.41 3.70 0.070 50% 2.30 

Total 1 - 1.10 - - - - - 

* For residual strengths according to Kramer and Wang (2015). 
 
 
Recommended design values 
The following design values are recommended for use with the Guideline for conducting dynamic effective 
stress analyses (Fugro 2016b). 
 
Table 11. Recommended design values. 

Stochastic variable Representative value Partial factor 
segment 6-6 

Partial factor 
segment 6-7 

Spectral acceleration 
at NSUB 

Segment 6-6:  1100 year return period 
Segment 6-7:  2300 year return period 

1.0 1.0 

Uncertainty in site 
response 

Median, i.e. time history amplitudes at model 
base, calculated on the basis of median 
properties (“best estimate”) 

1.05 1.05 

CRR in sand deposits  16% quantile value of the CRRM=7.5 from the 
probabilistic Boulanger & Idriss (2014) 
relationship for the median of local qc1Ncs-
values  
 
Put differently: the CRRM=7.5 according to the 
“deterministic” relationship proposed by 
Boulanger & Idriss (2014) for the median of 
local qc1Ncs-values. 

1.10* 1.10 

CRR in laminated 
deposits 

16% quantile of the distribution of the spatial 
average at four cycles (regional data set) 

1.0 1.0 

Uncertainty related 
to residual strength 
in sand deposits **  

Median, i.e. (εlnSu/p’)rep = 1 

 
1.4 on (Su/p’)rep, 
see equation 
(26) 

1.4 on (Su/p’)rep, 
see equation 
(26) 

Uncertainty related 
to residual strength 
in laminated 
deposits ** 

Median, i.e. (εlnSu/p’)rep = 1 

 

1.3 on (Su/p’)rep, 
see equation 
(26) 

1.3 on (Su/p’)rep, 
see equation 
(26) 

Model Uncertainty Median, i.e. the computed crest settlement 
from an unbiased model 

1.7 2.3 

* This is broadly equivalent to the use of a 25% quantile of qc1Ncs together with the deterministic Boulanger 
& Idriss (2014) relationship between qc1Ncs and CRR, which is more conservative than the 33% quantile 
proposed by Boulanger & Montgomery (2016) for cases like these where the dimensions of relevant 
deformations far exceed the sale of fluctuation. 

**  For residual strengths according to Kramer and Wang (2015). 
 
The design value of residual strength can be calculated using: 
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with γres=1.4 (sand deposit) or γres=1.3 (laminated deposit) and (N1)60 according to Idriss & Boulanger (2008): 
 

 (��)�� = 46 ∙(0.478 ����
�.���− 1.063)� (27) 

 
where: 
(Su/p’)d Design value of normalized residual strength (-) 
p’ Initial effective vertical stress (atm) 
(N1)60 Normalized SPT blow count (-), median value 
qc1N  Normalized cone tip resistance (-) 
 
 

 Uncertainty related to motions 
The following procedure is recommended for dealing with the uncertainty related to motions (see also 
Appendix H): 

1. Select 11 independent motions with appropriate seismological characteristics (e.g. amplitude, 
frequency content and duration).  

2. Compute crest settlements for each motion using the design values from Table 11. 
3. Analyze the results: outliers should be understood. 
4. The (subjective) probability that the crest settlement for a randomly selected motion exceeds the limit 

state should be less than 25%. If, for instance, all 11 motions are considered to be equally likely, the 
limit state should not be exceeded for more than 2 motions. 

 
Note that it might be incorrect to treat the 11 motions as equally likely or to assume that the 11 selected 
motions span the entire set of possible motions. In some cases, it might be reasonable to assign low subjective 
probabilities to particular motions or to treat the 11 motions as members of a subset of relatively pessimistic 
motions.  
 
 

 Uncertainty related to stratigraphy 
The uncertainty related to stratigraphy can be dealt with as follows: 

1. consider a conservative, realistic stratigraphy,  
2. carry out sensitivity analyses, 
3. make an informed judgment. 

 
A more rigorous procedure for dealing with uncertainty related to stratigraphy is given by ENW (2012). It is 
summarized in Appendix H (for motions, not stratigraphies). This procedure is laborious, however, since it 
involves a large number of evaluations of the limit state function.  
 
 

 Sea level (load combination) 
The combination of a severe earthquake and an extremely high or low sea level is unlikely because water levels 
and earthquakes are uncorrelated and because both types of events have relatively short durations. Note that 
a higher water level on the sea side need not be conservative. It is recommended to use as a design sea level, 
whichever of the following is the most conservative: 

1. the water level that is expected to be exceeded once a year (1 year return period) or 
2. the low tide. 
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Appendix A First Order Reliability Method (FORM) 

 
FORM is an efficient, approximate technique for computing probabilities of failure. In this appendix, a brief 
overview is given of the steps in a FORM analysis, together with an example. 
 
FORM step by step 
FORM is an iterative procedures that requires only few evaluations of a limit state function compared to e.g. 
Monte Carlo simulation. FORM calculation involves the following steps: 
 
Step 1: Select start values 
Select values for the stochastic variables for the evaluation of the limit state function (Z). Note: Z<0 implies 
failure, Z>0 implies the opposite. 
 
Step 2: Calculate partial derivatives 
Calculate the partial derivatives of the limit state function with respect to the different stochastic variables. 
This can be done by perturbing input values or by looking at the results of sensitivity analyses that have already 
been carried out. 
 
Step 3: Transform all non-normally distributed variables to normally distributed variables. 
This can be done on the basis of the following equations: 
 

 σXnorm,i = { -1(FX,i(Xi,0)) } / fX,i(Xi,0)              (28) 
 

 μXnorm,i = Xi,0 - -1(FX,i(Xi,0)) · σXnorm,i              (29) 
 

Where: 
σXnorm,i  Standard deviation 
μXnorm,i  Expected value 

(·) Standard normal probability density function 

(·) Standard normal distribution function  
FX,i(Xi,0) Cumulative distribution function of variable Xi, evaluated at Xi,0 

fX,i(Xi,0) Probability density function of variable Xi, evaluated at Xi,0 

 

To check the end-result, the cumulative probabilities of FX,i(Xi,0) and (σXnorm,i/μXnorm,i) could be compared. 
These should be identical. The same should hold true for the probability densities. 
 
Step 4: Calculate the standard deviation and expected value of the (normalized) limit state function 
The standard deviation follows from: 
 

 σZ = (  (Z/Xi · σXnorm,i)2 )1/2            (30) 

 
Where: 

Z/Xi Partial derivative of the limit state function with respect to stochastic variable Xi, evaluated at Xi,0. 
 
The expected value follows from: 
 

 μZ = Z(X0) + {Z/Xi·(μXnorm,i -Xi,0)}            (31) 

 
Where: 
X0  Vector of the start values of all stochastic variables 
 
Step 6: Calculate influence coefficients and reliability index 
The influence coefficients follow from the product of the partial derivatives and the standard deviations from 
step 3. 
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 αXi = (Z/Xi·σXnorm,i) / σZ            (32) 

 
The reliability index follows from: 
 

 β = σZ / μZ            (33) 

 
Step 6: Repeat steps 2-5, starting from the expected design point 
The previous steps should be repeated until convergences is obtained. This can be done through successive 
substitution, i.e. by using the quantile values corresponding to the computed β and α-values as the start values 
for the next FORM iteration. The resulting reliability index is related to the probability of failure as follows: 
 

 P(F) = (-β) (34) 

 
The accuracy of a FORM computation can be checked by e.g. a Monte Carlo simulation. For a linear limit state 
function with independent, normally distributed variables, FORM yields the exact same result as MC or 
numerical integration. 
 
Example  
The following code could be run in e.g. Matlab or Octave. It concerns a simple, hypothetical limit state function 
with two lognormally distributed variables: demand and capacity. Note: the lognormally distributed variables 
are given here by the normal distributions of their natural logarithms. This is why normalization does not play a 
role here. 
 

 
function [ Z ] = Z(x1,x2) 
 
Z = exp(x2) - exp(x1); 
 
endfunction 
 

  

 
function [ ] = FORM(n) 
% n = Number of FORM iterations, e.g. n=50 (increase until convergence is reached) 
 
fun = "Z";        % here: Z = C - D  
 
%% Distributions of stochastic variables 
median_D  = 50;    % D = Demand 
mu_lnD    = log(median_D);   
sd_lnD    = 0.4;  
  
median_C  = 200;           %C = Capacity 
mu_lnC    = log(median_C); 
sd_lnC    = 0.40;  
 
%% Rename 
mu1  = mu_lnD; 
sd1  = sd_lnD; 
mu2  = mu_lnC; 
sd2  = sd_lnC; 
 
%% Select start values for FORM iterations 
x1(1)  = mu1;  
x2(1)  = mu2;  
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%% Select parameter values for FORM iterations 
r  = 0.8;    % relaxation factor: this factor helps to arrive at the design point in a more gentle manner 
dx = 0.001;  % perturbation for computing partial derivatives 
 
%% FORM iterations  
for i = 2:n;        
   dZ_dx1(i)  = ( feval( "Z", x1(i-1)+dx , x2(i-1) ) - feval( "Z", x1(i-1) , x2(i-1)) ) / dx;   
    dZ_dx2(i)  = ( feval( "Z", x1(i-1) , x2(i-1)+dx ) - feval( "Z", x1(i-1) , x2(i-1)) ) / dx; 
 
   mu_Z(i)  = feval(fun,x1(i-1),x2(i-1)) + ( dZ_dx1(i)*(mu1-x1(i-1)) + dZ_dx2(i)*(mu2-x2(i-1)) ); 
 
    sd_Z(i)  = sqrt( (dZ_dx1(i) * sd1)^2 + (dZ_dx2(i) * sd2)^2 ); 
 
    Beta(i)  = mu_Z(i)/sd_Z(i); 
 
 a1(i)  = - dZ_dx1(i) * sd1 / sd_Z(i); 
    a2(i)  = - dZ_dx2(i) * sd2 / sd_Z(i); 
 
    x1d(i)  = mu1 + a1(i)*Beta(i)*sd1;  
    x2d(i)  = mu2 + a2(i)*Beta(i)*sd2;   
 
    x1(i)  = r*x1(i-1)+(1-r)*x1d(i);  
    x2(i) = r*x2(i-1)+(1-r)*x2d(i); 
endfor 
 
Beta = Beta(n) 
Pf       = normcdf(-Beta) 
 
alpha_D = a1(n) 
alpha_C = a2(n) 
 
 
%% Check FORM results 
% The limit state function should be equal to zero in the design point: 
Z = feval( "Z", x1(n),x2(n))                     
 
% The probability of failure can also be computed using Monte Carlo simulation: 
Pf_MC   = sum( exp(normrnd(mu1,sd1,1e7,1)) > exp(normrnd(mu2,sd2,1e7,1)) ) /1e7 
 

 
In this case, FORM gives a failure probability of 0.0071. Monte Carlo gives practically the same result. The 
number of evaluations of the limit state function is several orders of magnitude smaller when using FORM, 
however. 
 
For normalizing a Weibull distributed variable: 

 
pdf_x = wblpdf( x, scale , shape ); 
cdf_x = wblcdf( x, scale , shape ); 
 
sd = normpdf( norminv( cdf_x ) ) / pdf_x; 
mu = x - norminv( cdf_x ) * sd; 
  

 
Indices have to be added to the x-values when this piece of code is placed within the FORM-loop shown above. 
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Appendix B Design point values 

An overview of the cumulative probabilities of the design point values of capacity variables (>0) is given 

below, together with the exceedance probabilities of demand variables (<0), for a range of reliability indices.  

 

 
Reliability index β 

3 3,2 3,4 3,6 3,8 4 4,2 4,4 4,6 

1,00 1,35E-03 6,87E-04 3,37E-04 1,59E-04 7,23E-05 3,17E-05 1,33E-05 5,41E-06 2,11E-06 

0,95 2,19E-03 1,18E-03 6,19E-04 3,13E-04 1,53E-04 7,23E-05 3,30E-05 1,46E-05 6,21E-06 

0,90 3,47E-03 1,99E-03 1,11E-03 5,98E-04 3,13E-04 1,59E-04 7,84E-05 3,75E-05 1,74E-05 

0,85 5,39E-03 3,26E-03 1,93E-03 1,11E-03 6,19E-04 3,37E-04 1,78E-04 9,20E-05 4,61E-05 

0,80 8,20E-03 5,23E-03 3,26E-03 1,99E-03 1,18E-03 6,87E-04 3,90E-04 2,16E-04 1,17E-04 

0,75 1,22E-02 8,20E-03 5,39E-03 3,47E-03 2,19E-03 1,35E-03 8,16E-04 4,83E-04 2,80E-04 

0,70 1,79E-02 1,25E-02 8,66E-03 5,87E-03 3,91E-03 2,56E-03 1,64E-03 1,04E-03 6,41E-04 

0,65 2,56E-02 1,88E-02 1,36E-02 9,64E-03 6,76E-03 4,66E-03 3,17E-03 2,12E-03 1,39E-03 

0,60 3,59E-02 2,74E-02 2,07E-02 1,54E-02 1,13E-02 8,20E-03 5,87E-03 4,15E-03 2,89E-03 

0,55 4,95E-02 3,92E-02 3,07E-02 2,39E-02 1,83E-02 1,39E-02 1,04E-02 7,76E-03 5,70E-03 

0,50 6,68E-02 5,48E-02 4,46E-02 3,59E-02 2,87E-02 2,28E-02 1,79E-02 1,39E-02 1,07E-02 

0,45 8,85E-02 7,49E-02 6,30E-02 5,26E-02 4,36E-02 3,59E-02 2,94E-02 2,39E-02 1,92E-02 

0,40 1,15E-01 1,00E-01 8,69E-02 7,49E-02 6,43E-02 5,48E-02 4,65E-02 3,92E-02 3,29E-02 

0,35 1,47E-01 1,31E-01 1,17E-01 1,04E-01 9,18E-02 8,08E-02 7,08E-02 6,18E-02 5,37E-02 

0,30 1,84E-01 1,69E-01 1,54E-01 1,40E-01 1,27E-01 1,15E-01 1,04E-01 9,34E-02 8,38E-02 

0,25 2,27E-01 2,12E-01 1,98E-01 1,84E-01 1,71E-01 1,59E-01 1,47E-01 1,36E-01 1,25E-01 

0,20 2,74E-01 2,61E-01 2,48E-01 2,36E-01 2,24E-01 2,12E-01 2,00E-01 1,89E-01 1,79E-01 

0,15 3,26E-01 3,16E-01 3,05E-01 2,95E-01 2,84E-01 2,74E-01 2,64E-01 2,55E-01 2,45E-01 

0,10 3,82E-01 3,74E-01 3,67E-01 3,59E-01 3,52E-01 3,45E-01 3,37E-01 3,30E-01 3,23E-01 

0,05 4,40E-01 4,36E-01 4,33E-01 4,29E-01 4,25E-01 4,21E-01 4,17E-01 4,13E-01 4,09E-01 

0,00 5,00E-01 5,00E-01 5,00E-01 5,00E-01 5,00E-01 5,00E-01 5,00E-01 5,00E-01 5,00E-01 

-0,05 4,40E-01 4,36E-01 4,33E-01 4,29E-01 4,25E-01 4,21E-01 4,17E-01 4,13E-01 4,09E-01 

-0,10 3,82E-01 3,74E-01 3,67E-01 3,59E-01 3,52E-01 3,45E-01 3,37E-01 3,30E-01 3,23E-01 

-0,15 3,26E-01 3,16E-01 3,05E-01 2,95E-01 2,84E-01 2,74E-01 2,64E-01 2,55E-01 2,45E-01 

-0,20 2,74E-01 2,61E-01 2,48E-01 2,36E-01 2,24E-01 2,12E-01 2,00E-01 1,89E-01 1,79E-01 

-0,25 2,27E-01 2,12E-01 1,98E-01 1,84E-01 1,71E-01 1,59E-01 1,47E-01 1,36E-01 1,25E-01 

-0,30 1,84E-01 1,69E-01 1,54E-01 1,40E-01 1,27E-01 1,15E-01 1,04E-01 9,34E-02 8,38E-02 

-0,35 1,47E-01 1,31E-01 1,17E-01 1,04E-01 9,18E-02 8,08E-02 7,08E-02 6,18E-02 5,37E-02 

-0,40 1,15E-01 1,00E-01 8,69E-02 7,49E-02 6,43E-02 5,48E-02 4,65E-02 3,92E-02 3,29E-02 

-0,45 8,85E-02 7,49E-02 6,30E-02 5,26E-02 4,36E-02 3,59E-02 2,94E-02 2,39E-02 1,92E-02 

-0,50 6,68E-02 5,48E-02 4,46E-02 3,59E-02 2,87E-02 2,28E-02 1,79E-02 1,39E-02 1,07E-02 

-0,55 4,95E-02 3,92E-02 3,07E-02 2,39E-02 1,83E-02 1,39E-02 1,04E-02 7,76E-03 5,70E-03 

-0,60 3,59E-02 2,74E-02 2,07E-02 1,54E-02 1,13E-02 8,20E-03 5,87E-03 4,15E-03 2,89E-03 

-0,65 2,56E-02 1,88E-02 1,36E-02 9,64E-03 6,76E-03 4,66E-03 3,17E-03 2,12E-03 1,39E-03 

-0,70 1,79E-02 1,25E-02 8,66E-03 5,87E-03 3,91E-03 2,56E-03 1,64E-03 1,04E-03 6,41E-04 

-0,75 1,22E-02 8,20E-03 5,39E-03 3,47E-03 2,19E-03 1,35E-03 8,16E-04 4,83E-04 2,80E-04 

-0,80 8,20E-03 5,23E-03 3,26E-03 1,99E-03 1,18E-03 6,87E-04 3,90E-04 2,16E-04 1,17E-04 

-0,85 5,39E-03 3,26E-03 1,93E-03 1,11E-03 6,19E-04 3,37E-04 1,78E-04 9,20E-05 4,61E-05 

-0,90 3,47E-03 1,99E-03 1,11E-03 5,98E-04 3,13E-04 1,59E-04 7,84E-05 3,75E-05 1,74E-05 

-0,95 2,19E-03 1,18E-03 6,19E-04 3,13E-04 1,53E-04 7,23E-05 3,30E-05 1,46E-05 6,21E-06 

-1,00 1,35E-03 6,87E-04 3,37E-04 1,59E-04 7,23E-05 3,17E-05 1,33E-05 5,41E-06 2,11E-06 
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Appendix C Uncertainty in site response analysis up to the model base 

 
The following memo has been reviewed by J. Bommer and A. Rodriguez Marek. 
 

To:  Julian Bommer and Adrian Rodriguez-Marek 

Copy:   Sjoerd de Wit, Jan Van Elk, Edith Van Dijk; NAM 

From:   Amalia Giannakou, Panagiotis Georgarakos and Jacob Chacko; Fugro 

Subject: Estimation of Amplification Factor from top of Bedrock to Base of 2D Finite Element Models of 
Eemshaven-Delfzijl Levee, Groningen, The Netherlands 

Introduction and Background 

Gas-extraction-induced earthquakes occur in the Groningen area.  Consequently earthquake effects are 
to be considered in the levee reconstruction program for the Eemshaven-Delfzijl levee.  In particular the presence 
of potentially liquefiable Holocene tidal deposits (i.e. the so-called “wadzand” deposits) underlying parts of the 
Eemshaven-Delfzijl levee have raised the issue of liquefaction-induced instability.  Since the effect of liquefaction 
on structures and liquefaction-induced deformations cannot easily be assessed using simplified techniques, the 
dynamic stability of the levee at two locations was evaluated by Fugro using advanced numerical procedures.  
The 2D dynamic analyses were conducted using nonlinear, fully coupled, effective stress models (Fugro 2016).  
The 2D FE models extend from the top of levee to El. -30 m NAP at the Eemshaven area and to El. -20m NAP at 
the Delfzijl area (Figure 1). The results of the analyses were presented at the Liquefaction Expert Panel during 
the Workshop in Amsterdam (November 17th-18th 2016).  

An effort is currently underway to:  

 Characterize the uncertainties related to the input and output of the 2D FE dynamic analyses model 
(i.e. coupled, effective stress FEM) 

 Perform FORM analysis using the 2D FE dynamic analyses model; and 

 Make an informed decision about design values including length effects that contribute to the 
design return period.  

For Step 1 above it is necessary to specify distributions for the different stochastic variables that affect 
the problem.  The main stochastic variables associated with the seismic demand that is used as input in the 2D 
FE model include:  

 the spectral acceleration at NSUB and  

 the Amplification Factor from top of rock (NSUB) to the base of the 2D FE models (currently at El. -
30 m and -20 m NAP). 

Design spectra provided by KNMI were used to define the seismic demand at the top of NSUB for the 
design return period.  For the estimation of the distribution of spectral acceleration values at top of NSUB, the 
seismic hazard curve for T=0.85sec at the top of NSUB is used.  The seismic hazard curve is approximated with a 
logarithmic probability density function and this distribution is used in the FORM analyses. 

In addition to the spectral acceleration at the top of bedrock (NSUB) the amplification of the ground 
motion from the top of bedrock to the base of the 2D FE models (i.e. NAP -30 m and -20 m ) needs to also be 
considered.  In the V2 Groningen report (Bommer et al 2015), only the Amplification Factor from top of rock to 
the ground surface is provided (Equations ES.15 and Es.16).   
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This project memorandum presents a methodology to derive estimates of amplification factor from top 
of rock (NSUB) to the base of the FE models (NAP -30 m and -20 m) following the procedure of Stewart et al 
(2014).  

 

Proposed Approach 

For the estimation of the amplification factor at the base of the 2D FE models we have followed the 
approach of Stewart et al (2014) for fitting ground response analysis results to a site amplification function.   

1D equivalent linear site response analyses were performed at select locations along the levee to 
propagate the motion from the top of NSUB to the base of the 2D FE model.  The deep shear wave velocity 
profiles provided by Professor Rodriguez-Marek in an email dated October 4th 2016 were used 
(Vs_profiles_levee_csv_mod_with corrected u0_20160902_GdL_ARM.xlsx). 

Equivalent linear site response analyses were performed for different amplitudes of input motions.  
Results of the site response analyses were regressed using the following functional form: 

 

and constraining f3 to a value of 0.5, the same value used in Bommer et al (2015).  Regression of the site 
response analyses results was performed to estimate f1 and f2 factors.  For the estimation of f1 (which represents 
weak-motion (linear) amplification) site response analyses were performed for an input PGA amplitude of 0.01g.  
The amplification factor at the base of the FE models was defined as the ratio of the outcrop motion at NAP -20 
m (or -30m) to the outcrop motion at the top of NSUB. 

 

Estimation of Amplification Factor from NSUB to Base of 2D FE Model 

This section presents example results for the Delfzijl area using the approach described above.  Site 
response analyses were performed at the Delfzijl side of the levee using 7 ground motions with 2 horizontal 
components matched to the normalized target spectrum at top of NSUB.  Ground motions were scaled to PGA 
values of 0.01g, 0.1g, 0.16g, 0.2g, 0.3g 0.4g, and 0.5g to obtain amplification factors at multiple hazard levels.  
The estimated Vs30 value below -20m NAP is 288 m/s.  Figure 2 presents regression results of the amplification 
factor using f1 = 0.67, f2 = -0.49 and f3 = 0.5.   

Figure 2 presents the mean amplification factor between top of NSUB and El – 20 m.  No site specific 
geotechnical data are available below NAP -20 m and the deep velocity profiles at the Delfzijl side (i.e. between 
NAP -20m to top of NSUB) are almost the same.  Much of the site to site variability is thus expected to be related 
to the soils above NAP -20 meters. The minimum value of the standard deviation for site-to-site variability for 
amplification ratios between NSUB and the ground surface is constrained to 0.2 in Bommer et al (2015).  When 
we compare the variation in amplification ratios between NSUB and the ground surface from 9 different profiles 
in the Delfzijl area, we estimate a standard deviation of 0.2, which is associated largely with variability above El. 
-20 meters. Therefore we propose to reduce the standard deviation for site-to-site variability in amplification 
ratios between top of NSUB and the base of the FE models  to 0.1 (in natural log units).     
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Figure 1. FE models at Eemshaven (upper illustration) and Delfzijl (lower illustration) side of the 
levee. 
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Figure 2. Mean amplification values for Sa (0.85 sec) from GRA and mean fit using equation above 
with f3 fixed at 0.5. 

The resulting equation for the mean amplification factor from top of NSUB to NAP-20 m is shown below: 

ln(��) = 0.67 − 0.49ln [(�����, � + 0.5)/0.5] 

The proposed standard deviation of the amplification function is 0.1 (ln units). 
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Note: The coefficients for Eemshaven are f1 = 0.37, f2 = -0.32, f3 = 0.5 and ɸ = 0.1. 
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Appendix D  Cyclic Resistance of Laminated Deposits 

The following memo has been prepared by Fugro on January 31st 2017 and has been revised on February 10th 
to address comments by Professor S. Kramer 

 

INTRODUCTION AND BACKGROUND 

Gas-extraction-induced earthquakes occur in the Groningen area.  Consequently earthquake effects are to be 
considered in the levee reconstruction program for the Eemshaven-Delfzijl levee.  In particular the presence of 
potentially liquefiable Holocene tidal deposits (i.e. the so-called “wadzand” deposits) underlying parts of the 
Eemshaven-Delfzijl levee have raised the issue of liquefaction-induced instability.   

In order to estimate the liquefaction triggering resistance of these deposits empirical procedures based on 
measured CPT tip resistance were used (i.e. Boulanger and Idriss 2014) as well as a series of advanced cyclic 
laboratory tests on “undisturbed” samples (Fugro 2016a).  As discussed in Fugro (2016b) although liquefaction 
triggering resistance from CPT measurements in uniform sand deposits compared reasonably well with cyclic 
laboratory test results on “undisturbed” samples from uniform sands (differences in results were mainly 
attributed to effects of sample disturbance resulting to loosening of samples tested in the lab), liquefaction 
triggering resistance from CPT measurements in laminated deposits appear to underestimate the triggering 
resistance of these deposits when compared to results from cyclic laboratory tests on laminated “undisturbed” 
samples. This is most likely due to the significant influence of the clay layers on the CPT tip resistance measured 
within the thin “sandwiched” sand layers whose thickness is less than 10 to 20 cm in thickness.   

Laminated deposits are mostly present between km 27.2 to 28.5 (Section L) and around km 29.5 (Section K) at 
the Delfzijl side as well as around km 36.0 (Section D) at the Eemhaven side.  

In order evaluate the cyclic resistance of laminated deposits the following were considered: 

1. CDSS and CTX test results on laminated deposits.  Five (5) CDSS and seven (7) CTX cyclic tests 
were performed on laminated “undisturbed” samples obtained with Piston and Begemann 
samplers (Fugro 2016a).  Additionally, three (3) CDSS and seven (7) CTX were performed on 
laminated “undisturbed” samples (without static bias) obtained with the Gel Push sampler.  
The results of these additional tests have been interpreted and are plotted together with the 
interpreted lab results presented in Fugro 2016b. 

2. Numerical simulations of cyclic response of laminated samples performed to evaluate the 
conversion factor between Cyclic Simple Shear and Cyclic Triaxial tests on laminated samples  

3. Numerical simulations of the response of laminated samples under cyclic simple shear loading 
conditions to develop liquefaction triggering curves for samples with different percentages of 
clay laminations  

This project memorandum presents interpreted laboratory test results on laminated samples and results of 
numerical evaluations of the cyclic behavior of laminated soils and provides recommendations for the cyclic 
resistance of laminated deposits. 
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EVALUATION OF LIQUEFACTION TRIGGERING FROM CYCLIC LABORATORY TESTS  

A series of stress controlled Cyclic Direct Simple Shear (CDSS) and Cyclic Triaxial (CTX) tests was performed on 
“undisturbed” samples (i.e. obtained with Piston and Begemann samplers) from “wadzand” deposits (Fugro 
2016a).  

Five (5) CDSS tests were performed on samples that included clay laminations and seven (7) CTX tests were 
performed on laminated/stratified coarse- and fine-grained materials.  Interpretations of these test results in the 
form of liquefaction triggering curves were presented in Fugro (2016b).  

Fugro performed an additional site investigation campaign in October 2016 using the Gel Push sampler to collect 
high quality “undisturbed” samples from the tidal deposits at the same locations where Piston and Begemann 
samples were collected.  Xrays and MSCL scanning was performed on select Gel Push Tubes.  Review of Xray and 
MSCL results indicated less disturbance (i.e. higher quality samples) effects on Gel Push samples compared to 
Piston and Begemann samples.   

Additional cyclic tests were performed on select Gel Push samples. Three (3) CDSS tests and seven (7) CTX tests 
were performed on laminated Gel Push samples.  In addition, six (6) CDSS tests were performed on uniform sand 
samples.  These additional cyclic test results on Gel Push samples together with Xray and MSCL scans of the Gel 
Push Tubes will be included in an Addendum to the Factual Report, currently under preparation. 

A summary of the tests performed on uniform and laminated tidal deposits without bias is presented in Table 1. 
The reported void ratios on Table 1 are the initial void ratios of the overall sample consisting of either sand only 
(Unit 8a) or sand/clay laminations (Units 8b and 8c).  

 

Table 1. Summary of Cyclic Tests on Laminated and Uniform Samples (no bias) 

Unit Initial void ratio, e0 Description CPT 
classification 
zone - Ic 

Tests 

8a   0.62 – 0.76 mainly sand (non-
laminated, not 
seen in Delfzijl) 

CPT 
classification 
zone 6 
(Robertson)    Ic 
< ~2.05 

CSS03 (B), CSS05 (B), 
CSS15R (P), CSS08 (GP), 
CSS22R (GP), 
CSS23(GP), CSS27(GP), 
CSS28(GP), CSS25(GP) 

8b  0.79 – 0.92 (lower 
end of the void 
ratio range for 
laminated deposits, 
primarily from 
Eemshaven 
boreholes) 

laminated, with 
higher 
percentages of 
sands 

CPT 
classification 
zone 5 
(Robertson) 
~2.05< Ic <~2.6 

CSS13 (P), CSS17(P), 
CSS18 (P), CSS19 (GP), 
CSS20 (GP), CSS21 (GP) 

CTX06 (P), CTX07 (P), 
CTX08 (GP), CTX12 (GP) 

8c  0.99 – 1.25 
(higher end of the 
void ratio range for 
laminated deposits, 
from Delfzijl 
boreholes) 

laminated, with 
lower 
percentages of 
sands and higher 
percentages of 
clay 

CPT 
classification 
zones 5 and 4 
(Robertson) 

5 : ~2.05< Ic 
<~2.6   4 : 2.6< Ic 
<2.95 (screened 
out in simplified 
method) 

CTX01 (P), CTX02 (P), 
CTX03R (P), CTX17(GP),  

CTX10 (GP), CTX14 
(GP), 

CTX16 (GP), CTX15 (GP) 
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Unit Initial void ratio, e0 Description CPT 
classification 
zone - Ic 

Tests 

9a  0.63 – 0.75 Grey or dark grey 
fine sand 

CPT 
classification 
zone 6 
(Robertson)    Ic 
< ~2.05 

CCS01 (P), CCS07R (P), 
CCS11 (P) 

9b, 9c  0.95, 1.18 Grey or dark grey 
fine sand with 
thin laminae of 
dark clay and silt. 

CPT 
classification 
zones 5 and 4 
(Robertson) 

5 : ~2.05< Ic 
<~2.6   

4 : 2.6< Ic <2.95   

CTX04 (P), CTX05 (P) 

 

 

Figure 1 presents the Cyclic Stress Ratio (CSR) as a function of the number of cycles to liquefaction from the CDSS 
and CTX tests performed on Piston, Begemann and Gel Push samples from tidal deposits without static bias.  For 
the CDSS tests without bias, liquefaction was considered to have triggered at 3.0 percent Single Amplitude shear 
strain.  For the CTX tests without bias liquefaction was considered to have triggered at 1.5-2 percent Single 
Amplitude axial strain.  We note that the CSRs of the CTX tests on laminated samples plotted on Figure 1 have 
been multiplied by a factor of 0.8 to convert to equivalent cyclic simple shear loading conditions based on results 
of numerical simulations as discussed in the following section. 

As discussed in Fugro (2016b) due to the variable nature of the inter-tidal deposits, it is near impossible to identify 
identical samples with the same void ratio (relative density or percentage clay layers) for cyclic testing at multiple 
cyclic stress ratios.  Therefore, it was not possible to characterize laminated samples in terms of relative density 
since the direct measurement of minimum/maximum density is not possible on each variable sample.  In order 
to provide a basis for identifying similar samples and to develop reasonable cyclic resistance versus number of 
cycles relationships, the initial sample void ratio was used as an indicator and is plotted next to each test on 
Figure 1.  These void ratio values provide an indication of absence of thin fine-grained layers within the sample 
(corresponding to void ratios less than about 0.76, Unit 8a, from uniform samples collected from Eemshaven 
boreholes) or presence of thin fine grained layers within the sample (void ratios of about 0.85, Unit 8b, from 
laminated samples primarily collected from Eemshaven boreholes and void ratios higher than 1 from laminated 
samples primarily collected from Delfzijl boreholes).  As shown on this figure the samples tested all have different 
void ratios.   

On Figure 1 liquefaction triggering curves are shown for: 

 Relatively Uniform sand, Unit 8a (solid black line) present at Eemshaven explorations (i.e km 38.5, 
38.0, 37.5 and 37.2). This unit is practically absent from Delfzijl explorations (i.e. it could only be 
identified in about 2% of the total CPT penetration length performed at Delfzijl side). The dashed 
black line is the interpreted liquefaction triggering curve for Unit 8a in Fugro 2016b that was also 
used in the effective stress dynamic levee stability evaluations (Fugro, 2016c). 

 Laminated sand and clay deposits with higher percentages of sands, Unit 8b, (solid blue line) 
present primarily at Eemshaven explorations and to a lesser degree at Delfzijl  explorations (i.e. only 
2 of the 12 laminated samples tested from Delfzijl explorations had initial void ratios less than 1).  
The dashed blue line is the interpreted liquefaction triggering curve for Unit 8b in Fugro 2016b that 
was also used in the effective stress dynamic levee stability evaluations (Fugro, 2016c). 

 Laminated sand and clay deposits with lower percentages of sands, Unit 8c, (solid purple line) 
present at Delfzijl explorations (i.e. only 10 of the 12 samples tested from Delfzijl explorations had 
initial void ratios larger than 1) 
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Figure 1. Liquefaction Triggering Resistance of Uniform (Unit 8a, Unit 9a) and Laminated Samples (Unit 8b, 
Unit 8c, Unit 9b) from Tidal Deposits (no static bias).  The initial void ratio (before application of 

consolidation stress) is plotted next to each test. 

 

NUMERICAL SIMULATIONS OF CYCLIC RESPONSE OF LAMINATED DEPOSITS 

Evaluation of Conversion Factor from Cyclic Triaxial to Cyclic Simple Shear Loading  

Two types of cyclic testing were used to assess the liquefaction triggering of the tidal deposits: i) CTX and ii) CDSS 
tests.  Although CDSS tests provide more representative loading conditions, the small specimen height (i.e. 3 cm) 
in combination with the nature of the laminated deposits (i.e. clay lamination thicknesses on the order of 1-2 
cm) necessitated the testing of taller specimens for the laminated samples.  Therefore CTX tests were performed 
for most of the laminated samples although a number of CDSS tests were also performed on specimens with clay 
laminations.  

In order to correlate the two cyclic testing types, Seed and Peacock (1971) recommended a conversion factor 
applied on the CSRTX (i.e. cyclic stress ratio from triaxial testing) ranging from 0.6 to 0.7 for normally consolidated 
specimens based on data for clean sands.  The recommended conversion factor depended on the value of the 
coefficient of earth pressure at rest, Ko. 

For fine-grained samples, Donahue et al (2007) reported that: 

 when studying the liquefaction susceptibility of a normally consolidated fine-grained soil deposit 
after the 1989 Loma Prieta earthquake, Boulanger et al. (1998) used a conversion factor of 0.7 

 Sancio (2003) found a conversion factor of 0.85 when testing shallow, fine-grained soils from 
Adapazari with a PI < 12, at a mean effective stress of 100 kPa. 
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Donahue et al (2007) used a conversion factor of 0.84 based on results from CDSS and CTX tests on fine-grained 
samples reconstituted with the Slurry Deposition Method and tested at an effective confining pressure of 50 kPa. 

In order to evaluate the conversion factor between CTX and CDSS tests on laminated deposits, numerical 
simulations were performed with the finite difference code FLAC2D (Itasca 2016).   

As a first step, numerical simulations were performed to estimate the conversion factor between CTX and CDSS 
tests on a uniform sand sample (i.e. Unit 8a).  PM4Sand constitutive model was used to model the cyclic behavior 
of a uniform sand sample under cyclic direct simple shear loading conditions.  The model was calibrated to the 
liquefaction triggering curve for Unit 8a (black line) shown on Figure 1 (Fugro, 2016c).   

Having simulated the CDSS test results on a uniform sand sample, numerical simulations of a uniform sand 
sample under cyclic plane strain compression loading conditions (Ko=1) were performed to approximate the CTX 
test.  Figure 2 presents liquefaction triggering results from numerical simulations of a uniform sand sample under 
cyclic direct simple shear and plane strain compression (CPSC) loading conditions for different CSR.  The resulting 
conversion factors range between 0.64 and 0.72 for a uniform sand sample which are in agreement with the 
range proposed by Seed and Peacock (1971) for uniform sands.  

As a second step, numerical simulations were performed to estimate the conversion factor between CTX and 
CDSS tests on a laminated sample.  First numerical simulations of test CTX07 (i.e. CSR=0.28, initial void ratio 
e0=0.9) on a laminated sample were performed.  Figure 3 shows a photo of Sample CTX07, the X-ray section and 
the detailed 2D numerical model.  The clay laminations were identified in the sample using the X-ray section, 
leading to the idealized numerical grid shown in the same Figure 3.  The calibrated parameters for PM4Sand were 
used for the sand layers within the sample while the clay layers were modeled with a Mohr-Coulomb model. The 
deformed shape of the numerical model is compared with the cyclic triaxial sample on Figure 4, showing 
somewhat similar characteristics.  Also, shown on Figure 5 is the development of cyclic strains versus cycles of 
loading.  Both experiment and simulation suggest triggering (1.5% axial strain) at about 4 to 4.5 cycles.  The cyclic 
responses are also compared in terms of stress-strain plots, and as stress paths.  Again similar trends are noted 
in both experiment and simulation despite the idealization of the clay laminations and the differences in loading 
conditions (plane-strain versus triaxial). 

Having simulated the cyclic behavior of a laminated sample under cyclic triaxial conditions reasonably, numerical 
simulations of the same laminated sample under cyclic simple shear conditions were performed. Figure 6 
presents liquefaction triggering results from numerical simulations of a laminated sample under cyclic direct 
simple shear and plane strain compression loading conditions for different CSR.  The resulting conversion factors 
range between 0.78 and 0.83 for a laminated sample which are higher than the conversion factors of uniform 
sand deposits, but in line with experimental findings on fine-grained samples discussed above.   

Based on the above a conversion factor of 0.8 was applied on the CSRTX for the laminated samples. 
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Figure 2. Liquefaction triggering curves obtained from numerical simulations of CDSS and CPSC loading 
conditions on uniform sand (Unit 8a). 

 

 

Figure 3. Photo, X-ray section and numerical model of laminated sample CTX07. 
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Figure 4. Photo (left) and deformed grid (right) of laminate sample CTX07 at the end of cyclic loading. 

 

Figure 5. Comparison between numerical and experimental results for laminated sample CTX07. 
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Figure 6. Liquefaction triggering curves obtained from numerical simulations of CDSS and CPSC loading 
conditions on laminated sample (shown on Figure 3). 

Evaluation of Liquefaction Triggering  

Numerical simulations of laminated samples under cyclic direct simple shear loading conditions were performed 
in order to develop estimates of liquefaction triggering resistance for different percentages of clay laminations 
within the sample.   

First numerical simulations of test CDSS18 (i.e. CSR=0.2, initial void ratio e0=0.83) on a laminated sample were 
performed.  Figure 7 shows a photograph of Sample CDSS18.  Two clay sub-layers/laminations are identified in 
the sample.  The calibrated parameters for PM4Sand and UBCSAND for Unit 8a were used for the sand layers 
within the sample while the clay layers were modeled with a Mohr-Coulomb model.  Figure 8 presents a 
comparison between the laboratory test and numerical simulation test results.  The percentage of clay 
laminations (CPL) within this sample was estimated to be on the order of 40% (defined as the total thickness of 
clay laminations within the sample divided by the sample height). Using the same configuration (CPL=40%), the 
numerical model was subjected to CSR=0.15 in an attempt to reproduce the test CDSS17 (e0=0.84). The 
comparison between numerical and experimental results for CDSS17 is shown on Figure 9. 

Having simulated reasonably the CDSS test results on a laminated sample, parametric numerical simulations of 
CDSS tests on laminated samples with different percentages of clay laminations and different distributions of 
clay laminations within the sample were performed in order to evaluate the liquefaction triggering resistance of 
laminated sample.  Simulations were performed at different CSR values.  Analyses were performed using both 
PM4Sand and UBCSAND models (calibrated to Unit 8a triggering curves) to simulate the sand layer behavior.  

Figure 10 presents results of numerical simulations of CDSS tests on laminated samples with clay lamination 
percentages (CLP) ranging from 10% to 60% (grey lines) plotted together with interpreted lab results shown on 
Figure 1.  Different distributions of clay laminations within the sample were assumed in the numerical simulations 
of of CDSS tests (example schematizations shown on Figure 11a). 

The numerical results shown on this figure are from analyses using UBCSand to model the sand layer behavior. 
As shown on Figure 10: 
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 numerical simulations of CDSS tests on laminated samples with CLP of 40% (i.e. higher sand 
percentage within the sample) produce results close to the liquefaction triggering curve from lab 
results for Unit 8b (blue line) 

 numerical simulations of CDSS tests on laminated samples with CLP of 60% (i.e. lower percentages 
of sands and higher percentages of clay) produce results close to the liquefaction triggering curve 
from lab results for Unit 8c (purple line) 

 results of numerical simulations show that even the presence of a small amount of clay laminations 
in the sample (i.e. CLP 10%) results in an increase of cyclic resistance compared to the uniform sand 
sample 

It is also noted that results of parametric numerical analyses of different distributions of clay and sand layers 
within a sample for a given CLP (Figure 11a) indicate that the distribution of the clay layers within the sample 
does not significantly change the triggering resistance.   

Figure 11b presents a comparison of the liquefaction triggering curves derived from numerical simulations of 
CDSS tests on laminated samples using PM4Sand and UBCSand to model the sand layers.  As shown on Figure 
11, the two models predict a similar trend. 

The black line on Figures 11a and 11b correspond to the triggering resistance of a sand layer without clay 
laminations. 

We note that as discussed in Fugro (2016c) numerical analyses results indicate that void redistribution effects, 
tend to be reduced as the thickness of sand layers decreases, or as the percentage of clay interlayers increases. 

 

Figure 7. Photo and numerical model of laminated sample CDSS18. 
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Figure 8. Comparison between numerical and experimental results for laminated sample CDSS18. 

 

Figure 9. Comparison between numerical and experimental results for laminated sample CDSS17. 
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Figure 10. Liquefaction Triggering Resistance Curves from Numerical Simulations of CDSS tests on Laminated 
Samples with different clay lamination percentages. 

 

 

Figure 11a. Numerical simulation results for CLP 30% and 50% assuming different distributions of clay 
laminations within the sample. 
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Figure 11b. Liquefaction Triggering Resistance Curves obtained from Numerical Simulations of CDSS tests on 
Laminated Samples with different clay lamination percentages (left: PM4Sand and right: UBCSAND). 

 

PROPOSED CRR DISTRIBUTION FOR LAMINATED DEPOSITS  

Interpreted laboratory test results and numerical simulations were used to develop a proposed distribution of 
the cyclic resistance (CRR) of laminated deposits at the Delfzijl side of the levee for locations were Unit 8 is 
present for use in FORM analyses. For these evaluations the number of cycles corresponding to a magnitude M 
5 earthquake (i.e. N=4) was estimated using the MSF of Boulanger and Idriss (2014). 

As discussed previously the cyclic test results were evaluated considering separate groups of materials including: 
Unit 8b – Laminated materials with a higher percentage of sands (0.79 < eo < 0.92) and Unit 8c – Laminated 
materials with a lower percentage of sands (0.99 < eo < 1.25).  These laboratory test data were regressed to 
develop distributions of cyclic resistance for each group of samples.  Figure 12 shows the regressions for Unit 8b 
samples including the mean and 90% confidence interval, while Figure 13 shows the regression for Unit 8c 
samples.  

 

Figure 12. CRR for Unit 8b samples. 
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Figure 13. CRR for Unit 8c samples. 

The CPT classification data also provide an indicator of the relevant content of sand within the laminated 
deposits.  Qualitative assessments of the available CPT data suggest that in Delfzijl the laminated deposits are 
composed of about 50% of Unit 8b type material and 50% Unit 8c type material.   

For these evaluations the number of cycles corresponding to a magnitude M 5 earthquake (i.e. N=4) was 
estimated using the MSF of Boulanger and Idriss (2014). Probability density functions corresponding to the cyclic 
resistance at 4 cycles were calculated for the Unit 8b and Unit 8c materials above and a combined distribution 
developed assuming equal weights to each of the two distributions.  These probability density functions are 
shown on Figure 14.  

 

Figure 14. Probability Density Function for Unit 8b, 8c and combined. 
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The cumulative probability density of the combined distribution is shown relative to the lognormal fit of the 
distribution on Figure 15.   

 

 

Figure 15. CRR for M=5, Delfzijl. Lognormal with μ= -1.4 and σ = 0.2. 

 

The CRR distribution for the laminated materials is compared with the typical curves calculated from laboratory 
tests and numerical modeling on Figure 16. The following observations are made.  

 Non-laminated sand layers (i.e. Robertson Zone 6) appear to be present in no more than 2% of the 
CPT data collected in Delfzijl. Estimated CRR for the laminated materials is interpreted to be mostly 
above the liquefaction triggering results of non-laminated sand layers (i.e. Unit 8a, black curve on 
Figure 16).  

 A ~60% cumulative probability is assigned to liquefaction triggering results from laminated samples 
with initial void ratios larger than 1 as shown on Figure 16 (CLP 60%).  These samples with lower 
percentages of sands and higher percentages of clay are considered representative of the Delfzijl 
conditions. 

 The triggering curve used for laminated samples with initial void ratios of about 0.8 (i.e. Unt 8b in 
Fugro’s numerical evaluations, blue curve on Figure 13) is derived primarily from CSS tests on 
samples from Eemshaven borehole 38.0 where a larger percentage of sand is present within the 
laminated deposits (CLP=40% based on numerical simulation results) compared to Delfzijl 
explorations based on both CPT data and borehole sample descriptions.  Theses resistances are 
interpreted to have a 36% quantile value. 

 A 10% cumulative probability corresponds to the triggering curve derived from numerical 
simulation results of CDSS tests on laminated samples with CLP 10% (grey curve on Figure 13) since 
even a small percentage of clay laminations leads to an increase of liquefaction triggering resistance 
as was shown from numerical simulation results. This percentage of clay laminations is considered 
to be low for the conditions encountered at Delfzijl explorations. 

 An approximately 85% cumulative probability is assigned to the resistance level based on numerical 
simulations of CDSS tests on laminated samples with CLP=70%. 
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Figure 16. Quantile Values for the typical CRR curves. 
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Appendix E  Residual strength 

Documented cases have shown that post-earthquake stability may be critical even if stability is ensured during 
shaking (e.g. Lower San Fernando dam case history).   
 
Sand Layers. As mentioned in Fugro (2016a) post earthquake stability analyses were performed by assigning 
residual strength (i.e. defined as the ratio of residual undrained shear strength and in situ initial vertical 
effective stress, Sr/σvc’) as a function of qc1Ncs as proposed by Idriss and Boulanger (2008) for areas where the 
maximum excess pore pressure during shaking exceeded a specified threshold indicative of liquefaction. Fugro 
(2016a) considered that void redistribution effects could be significant and used the lower of the two curves 
plotted in Figure 28. 
 
Since both the Cyclic Resistance Ratio (i.e. CRR) to liquefaction triggering and residual strength are a function of 
qc1Ncs, this means that in general when CRR increases then the residual strength ratio Sr/σvc’ should also 
increase and vice versa.   
 
Laminated deposits within Unit 8.  As discussed in Fugro (2016a) the presence of clay interlayers does create 
permeability contrasts that theoretically would allow for the development of void redistribution.  However, 
given the limited thickness of the individual sand layers, the volume of water that could migrate upwards is 
limited.  Moreover, Unit 8 is typically characterized by an overall low hydraulic conductivity, likely due to the 
limited lateral continuity and thickness of the sand sub-layers.  In the absence of the ability for water inflow, 
the potential for suppression of dilation will be limited, and shear resistance will likely increase as shear strains 
exceed 5 to 15 percent.  Additionally, due to the relatively low percentage of sand sublayers within the unit and 
the limited thickness of the sand sublayers, even the occurrence of relatively large shear strains (10 or 20%) 
within the layers will likely not result in large horizontal deformations prior to the development of dilation-
induced shear resistance.  Parametric numerical evaluations performed in Fugro (2016a) also point to the 
mitigating effect of thin layers in laminated deposits on the potential for void redistribution.  
 
Despite the above we have conservatively used the  residual strength defined above for sand layers also for the 
laminated soils.  Since the CRR for the laminated soils is defined from laboratory test data, the residual strength 
for the laminated soils was estimated through a back-calculated qc1Ncs.   The value was backcalculated from the 
CRR value used for the laminated deposits in the FE analyses using the Boulanger and Idriss (2014) relationship. 
 
A clear definition of the uncertainty in residual strength estimates is not available.  For the purpose of these 
evaluations we have assumed that the uncertainty increases as the CRR (or qc1Ncs) increases based on the fact 
that the recommended relationship by Idriss and Boulanger (2008) is extrapolated for larger qc1Ncs values (i.e. 
dashed black lines in Figure 28 below).  We have used a lognormal distribution to model the uncertainty on CRR 
with μ=0 and σ=0.15. Figure 28 shows the resulting 95% confidence interval of residual strength ratios using 
the uncertainty term described above. The uncertainty is intended to cover both the range of data used to 
develop the empirical relationship as well as factors such as possible effects of mixing during large 
deformations etc.  
 
An alternative probability distribution for residual strength based on Kramer and Wang (2015) was also 
considered in the FORM analyses. The Kramer and Wang (2015) probability distribution for residual strength is 
based an empirical model consistent with steady-state concepts and behavior observed in laboratory tests and 
also calibrated on the basis of residual strengths back-calculated from flow-side case histories. The Kramer and 
Wang (2015) model predicts residual strengths as a function of normalized SPT blowcounts (N160) and as a 
function of overburden stress.  A comparison of the residual strength distributions considered in the FORM 
analyses is shown on Figure 28. Boulanger and Idriss (2008) relationship between N160 and qc1Ncs was used to 
plot the residual strength proposed by Kramer and Wang (2015) as a function of normalized tip resistance. The 
residual strength curves plotted on Figure 28 from Kramer and Wang (2015) were derived for 1.5 atm 
overburden stress.   
 
In order to account for the uncertainty on the conversion between N160 and qc1Ncs the standard deviation 
considered in Kramer and Wang (2015) was increased from 0.37 (green curves) to 0.45 (red curves).   
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Figure 28. Uncertainty related to residual strength (95%-confidence interval) based on Kramer and Wang (2015) 
using the standard deviation proposed by the authors (green dashed curves) and an increased standard 
deviation of 0.45 (red dashed curves) to account for uncertainty in the conversion from (N1)60 to qc1Ncs , and 
Idriss and Boulanger (2008) assuming void redistribution and engineering judgment for the estimation of 
standard deviation (orange curves). 
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Appendix F Model uncertainty 

Two dimensional, effective-stress, dynamic analyses were performed using the finite difference code FLAC 
(Itasca 2011). Two different constitutive models were used to model the effective stress behavior of coarse-
grained layers to account for epistemic uncertainty: UBCSand, developed by Professor Peter Byrne and his 
team at the University of British Columbia; and PM4Sand developed by Professor Ross Boulanger and Dr 
Katerina Ziotopoulou at UC Davis. Both constitutive models were calibrated against site-specific cyclic 
laboratory tests in order to capture soil triggering and strain accumulation behavior for both level (no-bias) and 
sloping ground (with static-bias) conditions. The reasonable comparison between observed and simulated 
behavior suggests that the calibrated constitutive models can be tailored to adequately simulate cyclic soil 
behavior at the element level both in terms of liquefaction triggering and in terms of post-liquefaction shear 
strain accumulation (Fugro 2016a). 
 
In order to validate the constitutive models used for the liquefiable sands (i.e. determine the degree to which a 
model is an accurate representation of the real world from the perspective of the intended uses of the model) 
and evaluate the predictability of the implemented constitutive model at a system level, numerical simulations 
of real-scale boundary-value problems, such as case histories and centrifuge experiments, were performed and 
numerical results were compared with recorded measurements in the field and in the centrifuge, respectively. 
The case studies (case histories or centrifuge tests) used for validation involved liquefaction induced 
displacements of slopes and embankments founded on liquefiable layers in order to validate the ability of the 
two models to predict liquefaction induced deformations (Fugro 2016a). 
 
Several “deterministic” sensitivity analyses have been carried out with two different constitutive models. 
Differences between computed crest settlements with PM4sand and UBCsand were found to be smaller than a 
factor 1.3 for all motions considered, for a given stratigraphy and return period Figure 29. Differences of about 
a factor 1.1-1.2 were found for 10 different stratigraphies (for a given motion and return period) and for 2 
different return periods (for a given motion and 2 different stratigraphies), see Figure 30 and Figure 31.  
 
As indicated in the expert panel report from December 3rd 2016 (Expert Panel 2016), with well-calibrated and 
validated constitutive models embedded in reliable numerical tools, dynamic effective stress analyses using 
multiple input motions can provide an indication of the range of expected levels of performance. They also 
allow evaluation of the sensitivity of response to various input parameters and modeling assumptions. It is 
important, however, to recognize potential uncertainties in constitutive models and numerical analyses. For 
critical projects, parallel analyses would ideally be performed using different constitutive models and different 
numerical tools. As described above, in Fugro (2016a) the computer code FLAC was used with two different 
calibrated and validated constitutive models to simulate the behavior of liquefiable sands. Ideally these 
analyses should be supplemented by parallel check analyses using a different computational tool (e.g., 
OpenSees with PDMY model or FLIP with cocktail glass model).  Due to time constraints additional analyses 
with a different computational software have not been performed. To account for this we have introduced a 
model uncertainty term in the limit state function.  
 
Considering the results of the “deterministic” sensitivity analyses, a model uncertainty distribution with μln(m)=0 
σ ln(m)=0.42 would seem reasonable. However, considering the fact that sensitivity analyses have only been 
carried out with different constitutive models, but not with different software packages, a wider distribution 
has been assumed. We have assumed that the crest settlements estimated in Fugro (2016a) correspond to the 
mean value of observed settlements and that there is a 10% probability of exceedance of the predicted crest 
settlements by a factor of 2.  The resulting model uncertainty function is a lognormal distribution with μln(m)=0 
and σln(m)=0.55 (Figure 32). 
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Figure 29. Calculated displacements with UBCsand and PM4sand for 14 different motions (Fugro 2016a: Figure 
6-29b, page 42). 

 

 

Figure 30. Calculated displacements with UBCsand and PM4sand for 10 different stratigraphies (Fugro 2016a: 
Figure 6-31b, page 45). 
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Figure 31. Calculated displacements with UBCsand and PM4sand for 2 different return periods, for 2 different 
stratigraphies (Fugro 2016a: Figure 6-32b, page 47). 

 

 

Figure 32. Model uncertainty: lognormal distributions for distribution parameters μln(X)=0 and σln(X)=0.42, and 
μln(X)=0 and σln(X)=0.55. 
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Appendix G Volume effects 

Introduction 
A laminated deposit consists of a series of alternating sand and clay layers. The resistance of the deposit to 
liquefaction depends on the composite behavior of these layers. Each lab test gives the resistance to 
liquefaction of a relatively small volume of laminated material.  
 
Similarly, uniform sand deposits encountered at Eemshaven are characterized by a probability distribution of 
cyclic resistance based on qc1Ncs values measured in uniform sands at Eemshaven ( i.e. Unit 8a, see Fugro 
2016c).  
 
It is possible to fit numerous samples into the volume of Unit 8 that plays in a role in a seismic stability analysis. 
Layers of laminated material as well as sands without clay laminations of variable relative densities are treated 
as uniform in stability analyses (spatial variability within layers is not modelled explicitly). It is therefore 
important to specify the distribution that describes the uncertainty related to the composite behavior of such a 
larger volume of liquefiable material. 
  
The uncertain resistance of such a larger volume (or the resistance of an “equivalent uniform layer”) is denoted 
by CRR in this Appendix. The uncertain resistance of a small volume (sample size) is denoted by CRR. The 
difference between the distributions of CRR and CRR is caused by the effects (“volume effects”) of spatial 
variability. 
 
Spatial variability could turn out to be favorable, when local weakness are compensated by strengths 
elsewhere. It could, however, also turn out to be unfavorable, when local weaknesses dominate composite 
behavior:  

1. In case of (only) a “weakest link/series system”-effect, the standard deviation of CRR will be smaller 
than the standard deviation of CRR. The mean value of CRR will also be smaller than the mean value of 
CRR. 

2. In case of (only) spatial averaging, the standard deviation of CRR will be smaller than the standard 
deviation of CRR, while the expected values of both variables will be the same (their median values 
could be different).  

3. In case of (only) a “strongest link/parallel system”-effect, the standard deviation of CRR will be smaller 
than the standard deviation of CRR but the mean value of CRR will be greater. 

 
In normal slope stability analyses, some degree of spatial averaging of resistance properties over the slip plane 
is typically assumed (VanMarcke 1977; Calle & Barends 1990).  
 
An approximate way of modelling the two types of spatial variability described above would be to model a 
layer as a composite of n x m x p smaller volumes with random/uncertain resistances, denoted by CRR,i,j,k , with 
i=1..n and j=1..m and k=1..p. This is shown schematically in Figure  below. Each element in Figure  has a 
resistance that can be described by the same distribution, but that can be different for each element. Note that 
it seems reasonable to assume that correlation distances are much smaller in a vertical direction than in the 
horizontal plane. 
 



 

72 
 

 
Figure 33. Illustration of a heterogeneous model and an equivalent uniform model. 

 
The heterogeneous model shown in Figure 33 Figure merely serves an illustrative purpose. It would be too 
time-consuming to use it for deriving a distribution for CRR. Doing so could also easily yield a false sense of 
accuracy, since such an analysis would involve modelling assumptions that would themselves be highly 
uncertain (e.g. assumptions concerning the correlation structure). 
 
Sensitivity analyses 
It is possible to get insight into volume effects from simplified numerical simulations. This can be done by 
comparing the computed crest settlements for a cross-section with uniform properties across a sand layer and 
a similar cross-section in which the layer has spatially variable properties. The following analyses have been 
performed (Figure 34): 

1. An analysis in which the CRR varies in both a horizontal and vertical direction with 2 random 
assignments of CRR-values.  

2. An analysis in which the CRR within a layer only varies along the vertical (horizontal continuity).  
 
It is stressed that these cases are highly schematic: they do not accurately reflect reality. The spatial variations 
have not been constructed with a random fields model, as done by Montgomery & Boulanger (Montgomery 
2015; Boulanger & Montgomery 2015; Boulanger & Montgomery 2016). Rather, 5%, 50% and 95% quantile 
values from the CRR-distribution have been assigned randomly within the liquefiable layer. 
 
 
 

CRRn,1,1 

CRR1,1,1 

CRRn,m,1 

CRRn,m,p 

CRR 
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Figure 34. Sensitivity studies to get a feel for the effect of spatial variability within interlayered deposits. 

 
Note that the effect of variability in the third dimension (perpendicular to this sheet of paper) cannot be dealt 
with in a 2D-model. It seems reasonable, however, to assume that variability in the third dimension reinforces 
the behavior observed in the 2D-senstivity analysis. 
 
Numerical models simulating the idealized schematizations shown in Figure 34 were developed for the 
evaluation of volume effects. Analyses were performed with the finite difference code FLAC. The UBCSand 
constitutive model was used to simulate the sand behavior. The model parameters were calibrated to cyclic 
resistances corresponding to 5% (pink line, Figure 35), 50% (blue line, Figure 35) and 95% (cyan line, Figure 35) 
of the CRR-distribution for uniform sands encountered at Eemshaven since this distribution results in lower 
(less favorable) cyclic resistance values compared to the distribution used for laminated deposits. 
 

 
Figure 35. Calibrated constitutive model to different 5%, 50% and 95% percentiles of CRR for Eemshaven. 

 

CRR5% 
 

CRR50% 
 

CRR95% 

Laminated 
deposit 

Analysis 1: Horizontal and vertical variability 

Analysis 2: Horizontal contuinity 

Uniform models 

Vertically variable model 

Spatially variable model 1 
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Analysis 1: Horizontal and vertical variability 
The numerical models for the spatially variable case and the uniform case for Unit 8 are shown on Figure 36. 
Results of numerical evaluations of volume effects are shown in Figure 37 in the form of co-seismic and post-
seismic crest settlements for the following cases: 

 Model with spatial variability 1 in Unit 8 (upper-left illustration Figure 26) 

 Model with spatial variability 2 in Unit 8 (mid-left illustration Figure 26) 

 Uniform Unit 8 modeled with the 5% quantile value of CRR 

 Uniform Unit 8 modeled with the 50% quantile value of CRR 

 Uniform Unit 8 modeled with the 95% quantile value of CRR 
 
As shown in Figure 37, the spatially variable Unit 8 properties result in decreased crest settlements compared 
to the cases where Unit 8 properties are uniformly modeled using 5% and 50% quantile CRR values. It is worth 
noting that the both models with spatial variability 1 and 2 give similar results. 
 
Analysis 2: Horizontal continuity / Vertical Variability 
The numerical model for the vertically variable case (where horizontal continuity is maintained) is shown in 
Figure 36 (bottom). As shown in the graph of Figure 37, the vertical variability in the properties of Unit 8 leads 
to crest settlements similar to the case where Unit 8 properties are uniformly modeled using 50% quantile CRR 
values.  
 
 

 
 

Figure 36. Numerical Models for Assessment of Spatial Variability of Unit 8. 
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Figure 37. Estimated crest settlements using spatially variable and uniform properties for Unit 8. 

 
Discussion 
The results shown in Figure 37 indicate that spatially averaged CRR-values should be used in a uniform model 
to mimic the results of a model in which the spatial variability of CRR-values within deposits is modelled 
explicitly (a random fields model). This finding is in line with a comparison between numerical analyses using a 
random fields model and a uniform model performed for a dam by Boulanger & Montgomery (2016). In this 
case study, a random fields model with a coefficient of variation of (N1)60cs of 0,4 and a scale of fluctuation in of 
20 m horizontally and 1 m vertically was compared to a uniform model. The case study concerned large 
deformations, as is the case here. Boulanger & Montgomery (2016) recommend a 33rd percentile value for use 
in deterministic analyses (conservative) and a range of 30-70% in risk assessments. 
 
The abovementioned sensitivity analyses and more detailed case study all assumed that the uncertainty related 
to the cyclic resistance ratio or (N1)60cs can be attributed to fluctuations of point values relative to a spatial 
average or median value. In case of a regional data set, i.e. a data set that consists of measurements from 
various locations (or case histories), the local average or median can be uncertain as well. This part of the 
variance should not be treated as spatially variable in a cross-sectional reliability analysis. Considering this, the 
uncertainty related to a local average may be expressed as follows (after TAW 2001): 
 

 σX = σX
 · { (1-ω) + ω · Ω2  }1/2 (35) 
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Where: 
σX Standard deviation of the spatial average of stochastic variable X (-) 
ω Part of the total variance that can be attributed to fluctuations of point values relative to the local 

average (-) 
Ω Variance reduction factor (-); 0 ≤ Ω ≤ 1 
 
 
Recommended CRRM=5.0-distribution for laminated deposits for use in a uniform model 
Based on the results of the sensitivity analyses and the case study by Boulanger & Montgomery (2016), a 
variance reduction factor Ω of 0 seems reasonable. Note: the average of a lognormally distributed variable is 
higher than its median value. The difference is negligible however, for the distribution of the CRR for laminated 
deposits (a factor 1.02). This means that the distribution of the local average is almost identical to the 
distribution of the local median. 
  
Since the CRR-distribution for laminated deposits is based on a regional data set, i.e. samples taken at various 
locations, a value of ω of 0.75 is proposed here. This value in line with Dutch engineering practice for dealing 
with regional data sets in slope stability assessments (e.g. TAW 1989: page 90; TAW 2001: page 254), see also 
Calle (2007; 2008) for a statistical basis/interpretation. 
 
The distributions of the point values and the local medians of the cyclic resistance ratio of a laminated deposit 
are given in Table 12. These distributions are shown in Figure 38. 
 
Table 12. Distributions of cyclic resistance ratios for laminated deposits. Both distributions rest on a regional 
data set. 

Variable Symbol Distribution type Parameter values 

Point value of CRR (unsuitable for use 
in a uniform model) 

CRR  Lognormal μln(CRR) = -1.4  
σln(CRR) = 0.2 

Local average of CRR CRR Lognormal μln(CRR) = -1.39  
σln(CRR) = 0.1 

 
 
 

 
Figure 38. Cyclic resistance ratio for laminated deposits. 
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Recommended CRRM=7.5-distribution for sand deposits for use in a uniform model 
The distribution of point values of qc1Ncs for any given layer rests a local CPT data, i.e. a local data set. Within a 
local data set, regional variations are small. This implies ω≈1 in equation (35) (see also TAW 1989, TAW 2001). 
Based on the results of the sensitivity analyses and the case study by Boulanger & Montgomery (2016) (that all 
essentially rest on the assumption ω=1), the use of the median of qc1Ncs from the local data set is recommended 
(not the mean; the median could be about 10% smaller). This means that the distribution of CRRM=7.5 for sand 
deposits for use in a uniform model follows directly from the median of local qc1Ncs-values and the probabilistic 
relationship between the cyclic resistance ratio and qc1Ncs of Boulanger and Idriss (2014). 
 
The distributions of the point values and the local medians of the cyclic resistance ratio of a sand deposit are 
given in Table 13. These distributions are shown in Figure 39. 
 
Table 13. Distributions of cyclic resistance ratios for sand deposits. 

Stochastic variable Symbol Distribution type Parameter values 

Point value of CRR in the local data set  
(unsuitable for use in a uniform model)  

CRR  Lognormal μln(CRR) = -1.88 
σln(CRR) = 0.22 

Local median of CRR CRR Lognormal μln(CRR) =-1.88 
σln(CRR) = 0.20 

Point value of CRR in the regional data 
set (unsuitable for use in a uniform 
model; used in sensitivity analyses 
because the distribution is relatively 
wide)  

CRR  Lognormal μln(CRR) = -1.80 
σln(CRR) = 0.30 

 

 

Figure 39. Cyclic resistance ratio for sand deposits.  

 
The left-hand tail of the distribution for point values of qc1Ncs is largely determined by the uncertainty in the 
Boulanger & Idriss (2014)-relationship, as shown by the FORM influence coefficients (Figure 40). This explains 
why the left-hand tails of the distributions for point values and the median of qc1Ncs are rather similar. This 
means that the assumption of ω≈1 in equation (35) hardy influences the results of FORM-analyses and semi-
probabilistic assessments.  
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Figure 40. FORM-influence coefficients for the convolution of local point values of qc1Ncs and the uncertainty in 

the Boulanger & Idriss (2014) relationship. 
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Appendix H Uncertainty related to motions 

Computed displacements depend on the selected ground motion (spectrally matched to the target design 
spectrum). This is because matched motions have different characteristics such as duration and velocity pulses. 
This uncertainty cannot easily be modelled by continuous stochastic variables. This can be dealt with in a 
simpler manner by conditioning computed deformations and failure probabilities on motions, and to consider 
the subjective probabilities (“degrees of belief”) associated with each motion. This is discussed below. 
 
Theory 
Consider a set of i=1..n motions that spans all possible motions. Probabilities of failure could be calculated for 
each given motion. The probability of failure then equals: 
 

 P(F) = ∑ P(F│Mi) · P(Mi) (36) 

 
Where: 
P(F) Probability of failure (per year) 
P(F│Mi) Probability of failure given motion i (per year), i=1..n. A motion is thought of here as a “basic” time 

series that can be scaled to whatever spectral acceleration. This, however, is an oversimplification. 
When motions are matched to a particular spectrum, their durations are held constant, even though 
motions should have shorter durations for higher accelerations in the Groningen area. This is an 
important reason why the selection of “basic” motions should depend on the target design spectrum. 
This issue is discussed at the end of this section.  

P(Mi) Probability of motion i (-). Note that ∑P(Mi)=1. The motions Mi are mutually exclusive, collectively 
exhaustive. 

 
In a probabilistic assessment, the failure probabilities for the different motions could be obtained from e.g. MC 
or FORM-analyses. These could then be combined with the probabilities assigned to each motion into a 
probability of failure, P(F). This failure probability could then be compared to the target failure probability, PT. 
 
In a semi-probabilistic assessment, the following procedure could be followed (in line with the procedure 
described in ENW 2012), i.e.: 

1. For each motion: 
a. Vary the target reliability index (or target failure probability) and compute the associated 

design values, using a functional relationship between reliability indices and design values 
(see equation (3)) 

b. Select the target reliability index for which a calculation with the design values from step 1a 
just leads to the critical crest settlement (limit state function equal to zero). 

c. Calculate the probability of failure associated with the reliability index from step 1b. 
d. Multiply the probability of failure from step c with the probability of the motion under 

consideration.  
2. Take the sum of the results from step 1. This is an estimate of the probability of failure (see equation 

(36)). 
3. Compare the estimate of the probability of failure from step 2 to the target failure probability. 

 
The procedure described above is theoretically correct but impractical since it involves a large number of 
evaluations of the limit state function.  
 
Pragmatic way forward 
The number of evaluations could be strongly reduced if we were able to identify a motion Md for which the 
following holds: 
 

 P(F) ≤ P(F│Md) (37) 

 
Obviously, taking the most conservative motion (Md = Mn), would certainly satisfy the condition given by 
equation (37). This, however, would also be highly conservative. 
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To be able to define the design motion in probabilistic terms, we could order the motions on the basis of their 
conditional failure probabilities, with motion 1 having the smallest failure probability and motion n the highest, 
i.e.  
 

 P(F│Mi) ≤ P(F│Mw)         with      i < w 

 
(38) 

The following procedure is suggested for dealing with the uncertainty related to motions: 
1. Select independent motions with appropriate seismological characteristics, including duration.  
2. Compute crest settlements for each motion (semi-probabilistically). This is an important step because 

it is difficult to predetermine which motion gives the greatest deformation. 
3. Analyze the results: outliers should be understood. 
4. A slightly conservative motion should be treated as representative, which could be interpreted as a 

motion an “exceedance probability” of 20% (see below). 
Note that it might be incorrect to treat the motions being considered as equally likely or to assume that 
the 11 selected motions span the entire set of possible motions. In some cases, it might be reasonable 
to assign low subjective probabilities to particular motions or to treat the set of  motions as a subset of 
relatively pessimistic scenarios. This means that Md need not be a conservative motion within the set of 
motions being considered. 

 
Even when the differences between the failure probabilities for different motions are substantial, a motion 
with an “exceedance probability” in of 20% is still likely to be sufficiently conservative, even when the failure 
probabilities per motion differ substantially. To illustrate this, consider the following purely hypothetical 
examples. 
 
Case 1 
Consider 4 equally probable motions, each with a different (conditional) failure probability. The “overall” 
failure probability equals 1,875·P0 (Table 14). This is smaller than P(F│M3), which implies that motion 3 could be 
used as a basis for a simplified assessment. This is a motion with a cumulative probability of 75%, or an 
“exceedance probability” of 25%.  
 
Table 14. Hypothetical case 1: four equally likely motions with associated failure probabilities that differ up to a 
factor 8. 

Motion P(Mi) Cumulative probability P(F│Mi) P(Mi) · P(F│Mi) 

1 1/4 1/4 1/2 · P0  1/8 · P0 

2 1/4 2/4 P0 1/4 · P0  

3 1/4 3/4 2 ∙ P0 1/2 · P0 

4 1/4 1 4 · P0 P0 

Sum 1 - - 1,875 ∙ P0 

 
Case 2 
Consider 11 equally probable motions, with (conditional) failure probabilities that increase exponentially. The 
smallest and highest failure probabilities differ by a factor 100. The “overall” failure probability equals 24,48·P0 
(see Table 15). Here, the “design motion” has a cumulative probability of 8/11, or an “exceedance probability” 
of 27%.  
 
Table 15. Hypothetical case 2: four equally likely motions with associated failure probabilities that differ up to a 
factor 100. 

Motion P(Mi) Cumulative probability P(F│Mi) P(Mi) · P(F│Mi) 

1   1/11   1/11 1,00 · P0 0,09 · P0 

2   1/11   2/11 1,58 · P0 0,14 · P0 

3   1/11   3/11 2,51 · P0 0,23 · P0 

4   1/11   4/11 3,98 · P0 0,36 · P0 

5   1/11   5/11 6,31 · P0 0,57 · P0 

6   1/11   6/11 10,00 · P0 0,91 · P0 
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7   1/11   7/11 15,85 · P0 1,44 · P0 

8   1/11   8/11 25,12 · P0 2,28 · P0 

9   1/11   9/11 39,81 · P0 3,62 · P0 

10   1/11  10/11 63,10 · P0 5,74 · P0 

11   1/11 1       100,00 · P0 9,09 · P0 

Sum    24,48 ∙ P0 

 
 
The use of motions with a fixed duration in FORM-analyses 
The same (scaled) motion (motion 4) has been used in the FORM-analyses. For the relatively low exceedance 
probability of the design point value of the spectral acceleration, a motion with a shorter duration than the 
duration of motion 4 would have been appropriate (e.g. 1.5 seconds rather than 4.2 seconds). The fact that 
duration has not been adjusted has led to overestimation of the probability of failure (conservatism). This, 
however, is largely irrelevant for our purposes. More important is that it has also led to overestimation of the 
relative importance of the uncertainty related to the spectral acceleration of the model base, i.e. 

overestimation of SAmodel_base
2 (and underestimation of the squared other influence coefficients). This is 

because it has “fattened the tail of the load distribution”. When deciding on design values, this has to be kept 
in mind. 
 
Figure 41 plots significant duration (D5-75) and cumulative absolute velocity (CAV) estimates of the 11 motions 
used for the design basis case for Eemshaven section presented in the LPI-screening report (Deltares 2017) 
versus post-seismic crest settlements. The estimated significant duration for a 3057-year return period event 
using Bommer et al. (2015) empirical correlation for Groningen is 3.8 seconds. For the FORM analysis, motion 4 
was considered representative of the entire suite of 11 motions. Motion 6 was considered in a sensitivity 
analysis. 
 
Figure 42 plots significant duration (D5-75) and cumulative absolute velocity (CAV) estimates of the 11 motions 
used for the design basis case for Delfzijl section presented in the LPI-screening report (Deltares 2017) versus 
post-seismic crest settlements.  The estimated significant duration for a 6537-year return period event using 
Bommer et al (2015) empirical correlation for Groningen is 3.6 seconds. For the FORM analysis, motion 4 was 
considered representative of the entire suite of 11 motions. Motion 6 was considered in a sensitivity analysis. 
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Figure 41. Range of crest settlements versus significant duration (upper illustration) and cumulative absolute 
velocity (lower illustration) from 14 different ground motions for Eemshaven Design Basis Case (Deltares 2017).  
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Figure 42. Range of crest settlements versus significant duration (upper illustration) and cumulative absolute 
velocity (lower illustration) from 14 different ground motions for Delfzijl Design Basis Case (Deltares 2017). 
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Appendix I  Results of FORM-analyses for the 2D finite elements model 

An overview of the results of the FORM-analyses are in the tables below. Prior to the FORM-iterations shown in these tables, at least 15 iterations were carried out.  
 
Table 16. Results of FORM-analyses for Eemshaven profile using the median of local qc1Ncs data [Base case A : Su/p’ according to Kramer & Wang (2015); ground motion 4] 

No. 
Sa [g] 
(=ex1) 

CRR  
[-] 

(=ex2) 

εSu/p'  
[-] 

(=ex3) 

m 
[-] 

(=ex4) 

Z 
[m] 

Z/x1 Z/x2 Z/x3 Z/x4 μ_Z σ_Ζ Beta x1
2 x2

2 x3
2 x4

2 x1d x2d x3d x4d 

0 0.450 0.100 0.700 2.000 0.148 -5.310 10.677 3.540 -2.999 30.630 6.120 5.005 0.738 0.122 0.068 0.073 -0.794 -2.224 -0.586 0.742 

1 0.450 0.102 0.669 2.020 0.137 -5.418 11.790 3.153 -3.011 31.418 6.252 5.025 0.736 0.142 0.052 0.070 -0.782 -2.254 -0.513 0.732 

2 0.452 0.102 0.654 2.032 0.114 -5.484 12.409 3.016 -3.035 31.914 6.345 5.030 0.732 0.153 0.046 0.069 -0.790 -2.268 -0.484 0.728 

3 0.452 0.102 0.646 2.039 0.093 -5.543 12.717 2.958 -3.057 32.280 6.417 5.030 0.731 0.157 0.043 0.069 -0.792 -2.274 -0.470 0.725 

4 0.452 0.103 0.642 2.044 0.075 -5.589 12.885 2.934 -3.076 32.547 6.470 5.031 0.731 0.159 0.042 0.068 -0.791 -2.276 -0.462 0.724 

5 0.453 0.103 0.640 2.048 0.061 -5.623 12.987 2.927 -3.091 32.743 6.508 5.031 0.732 0.159 0.041 0.068 -0.790 -2.277 -0.458 0.723 

6 0.453 0.103 0.638 2.050 0.049 -5.649 13.056 2.927 -3.103 32.889 6.537 5.031 0.732 0.160 0.041 0.068 -0.790 -2.277 -0.456 0.722 

7 0.453 0.103 0.637 2.052 0.040 -5.668 13.105 2.930 -3.113 33.000 6.560 5.031 0.732 0.160 0.040 0.068 -0.789 -2.277 -0.455 0.722 

8 0.453 0.103 0.637 2.053 0.032 -5.683 13.142 2.934 -3.121 33.087 6.577 5.031 0.732 0.160 0.040 0.068 -0.789 -2.277 -0.454 0.722 

9 0.453 0.103 0.636 2.055 0.026 -5.695 13.171 2.938 -3.128 33.155 6.590 5.031 0.732 0.160 0.040 0.068 -0.789 -2.277 -0.454 0.722 

10 0.454 0.103 0.636 2.055 0.021 -5.704 13.193 2.941 -3.133 33.210 6.601 5.031 0.732 0.160 0.040 0.068 -0.789 -2.277 -0.454 0.722 

11 0.454 0.103 0.636 2.056 0.017 -5.712 13.210 2.945 -3.137 33.253 6.610 5.031 0.732 0.160 0.040 0.068 -0.789 -2.277 -0.454 0.722 

12 0.454 0.103 0.636 2.057 0.014 -5.718 13.224 2.947 -3.140 33.288 6.616 5.031 0.732 0.160 0.040 0.068 -0.789 -2.277 -0.454 0.722 

13 0.454 0.103 0.636 2.057 0.011 -5.722 13.235 2.950 -3.143 33.316 6.622 5.031 0.732 0.160 0.040 0.068 -0.789 -2.277 -0.454 0.722 

 
The design point has been verified using the FEM analysis. The final step of FORM analysis based on the response space results to a crest settlement of 1.45 m, the 
calculated crest settlement from FEM analysis is 1.50 m. A final FORM iteration using numerical analyses leads to similar influence factors (αi

2), as shown in the table below. 
 

No. 
Sa [g] 
(=ex1) 

CRR  
[-] 

(=ex2) 

εSu/p'  
[-] 

(=ex3) 

m 
[-] 

(=ex4) 

Z 
[m] 

Z/x1 Z/x2 Z/x3 Z/x4 x1
2 x2

2 x3
2 x4

2 

final 0.454 0.103 0.636 2.057 -0.085 -6.171 13.371 3.085 -3.245 0.753 0.144 0.039 0.064 
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Table 17. Results of FORM-analyses for the Delfzijl profile with spatial averaging [Base case B : Su/p’ according to Kramer and Wang (2015); ground motion 4] 

No. 
Sa [g] 
(=ex1) 

CRR  
[-] 

(=ex2) 

εSu/p'  
[-] 

(=ex3) 

m 
[-] 

(=ex4) 

Z 
[m] 

Z/x1 Z/x2 Z/x3 Z/x4 μ_Z σ_Ζ Beta x1
2 x2

2 x3
2 x4

2 x1d x2d x3d x4d 

0 1.100 0.220 0.700 3.000 -0.016 -4.160 9.747 1.325 -3.171 24.766 4.505 5.497 0.786 0.047 0.018 0.150 0.058 -1.509 -0.327 1.171 

1 1.092 0.220 0.704 3.044 -0.012 -4.157 9.708 1.331 -3.168 24.748 4.502 5.497 0.786 0.047 0.018 0.150 0.059 -1.509 -0.329 1.170 

2 1.086 0.220 0.707 3.079 -0.010 -4.155 9.680 1.336 -3.165 24.732 4.499 5.497 0.786 0.046 0.018 0.150 0.059 -1.508 -0.330 1.170 

3 1.081 0.221 0.709 3.107 -0.008 -4.152 9.660 1.338 -3.163 24.716 4.496 5.498 0.786 0.046 0.018 0.150 0.059 -1.508 -0.331 1.170 

4 1.077 0.221 0.711 3.129 -0.006 -4.150 9.645 1.340 -3.161 24.703 4.493 5.498 0.786 0.046 0.018 0.150 0.060 -1.508 -0.332 1.170 

5 1.074 0.221 0.712 3.148 -0.005 -4.148 9.635 1.342 -3.160 24.692 4.491 5.498 0.786 0.046 0.018 0.150 0.060 -1.508 -0.333 1.170 

6 1.071 0.221 0.713 3.162 -0.004 -4.147 9.627 1.342 -3.159 24.682 4.490 5.498 0.786 0.046 0.018 0.150 0.060 -1.508 -0.333 1.170 

7 1.069 0.221 0.714 3.174 -0.003 -4.145 9.621 1.343 -3.158 24.675 4.488 5.498 0.786 0.046 0.018 0.150 0.060 -1.508 -0.333 1.170 

8 1.068 0.221 0.715 3.184 -0.002 -4.144 9.617 1.343 -3.157 24.668 4.487 5.498 0.786 0.046 0.018 0.150 0.059 -1.508 -0.333 1.170 

9 1.066 0.221 0.715 3.192 -0.002 -4.143 9.613 1.343 -3.157 24.663 4.486 5.498 0.786 0.046 0.018 0.150 0.059 -1.508 -0.333 1.170 

10 1.065 0.221 0.715 3.198 -0.001 -4.143 9.611 1.343 -3.156 24.659 4.485 5.498 0.786 0.046 0.018 0.150 0.059 -1.508 -0.333 1.170 

11 1.065 0.221 0.716 3.203 -0.001 -4.142 9.609 1.344 -3.156 24.656 4.485 5.498 0.786 0.046 0.018 0.150 0.059 -1.508 -0.334 1.170 

12 1.064 0.221 0.716 3.207 -0.001 -4.142 9.607 1.344 -3.156 24.654 4.484 5.498 0.786 0.046 0.018 0.150 0.059 -1.508 -0.334 1.170 

13 1.063 0.221 0.716 3.210 -0.001 -4.141 9.606 1.344 -3.156 24.652 4.484 5.498 0.786 0.046 0.018 0.150 0.059 -1.508 -0.334 1.170 

 
The design point has been verified using the FEM analysis. The final step of FORM analysis based on the response space results to a crest settlement of 0.98 m, the 
calculated crest settlement from FEM analysis is 0.95 m. A final FORM iteration using numerical analyses leads to similar influence factors (αi

2), as shown in the table below. 
 

No. 
Sa [g] 
(=ex1) 

CRR  
[-] 

(=ex2) 

εSu/p'  
[-] 

(=ex3) 

m 
[-] 

(=ex4) 

Z 
[m] 

Z/x1 Z/x2 Z/x3 Z/x4 x1
2 x2

2 x3
2 x4

2 

final 1.060 0.220 0.720 3.210 -0.049 -3.852 9.630 1.605 -3.207 0.750 0.051 0.029 0.171 
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Table 18. Results of FORM-analyses for the Eemshaven profile using the median of local qc1Ncs data [Sensitivity case 1 : Su/p’ according to Kramer & Wang (2015); motion 6] 

No. 
Sa [g] 
(=ex1) 

CRR  
[-] 

(=ex2) 

εSu/p'  
[-] 

(=ex3) 

m 
[-] 

(=ex4) 

Z 
[m] 

Z/x1 Z/x2 Z/x3 Z/x4 μ_Z σ_Ζ Beta x1
2 x2

2 x3
2 x4

2 x1d x2d x3d x4d 

0 0.634 0.104 0.663 2.071 0.054 -6.616 13.604 3.001 -3.098 39.162 7.418 5.279 0.780 0.135 0.033 0.053 -0.435 -2.267 -0.432 0.667 

1 0.636 0.104 0.662 2.058 0.050 -6.623 13.620 3.002 -3.103 39.203 7.426 5.279 0.780 0.135 0.033 0.053 -0.436 -2.267 -0.432 0.667 

2 0.637 0.104 0.660 2.047 0.046 -6.629 13.634 3.003 -3.107 39.240 7.433 5.279 0.780 0.135 0.033 0.053 -0.436 -2.267 -0.432 0.668 

3 0.638 0.104 0.659 2.037 0.042 -6.634 13.647 3.004 -3.111 39.274 7.439 5.279 0.779 0.135 0.033 0.053 -0.436 -2.267 -0.432 0.668 

4 0.639 0.104 0.658 2.028 0.038 -6.639 13.658 3.004 -3.115 39.304 7.445 5.280 0.779 0.135 0.033 0.053 -0.436 -2.267 -0.431 0.668 

5 0.639 0.104 0.657 2.020 0.035 -6.643 13.668 3.006 -3.118 39.332 7.450 5.280 0.779 0.135 0.033 0.053 -0.436 -2.267 -0.431 0.668 

6 0.640 0.104 0.657 2.013 0.032 -6.647 13.676 3.007 -3.121 39.357 7.454 5.280 0.779 0.135 0.033 0.053 -0.436 -2.267 -0.431 0.669 

7 0.641 0.104 0.656 2.007 0.029 -6.651 13.684 3.008 -3.124 39.380 7.459 5.280 0.779 0.135 0.033 0.053 -0.436 -2.267 -0.431 0.669 

8 0.641 0.104 0.655 2.001 0.027 -6.655 13.692 3.009 -3.127 39.402 7.463 5.280 0.779 0.135 0.033 0.053 -0.436 -2.267 -0.431 0.669 

9 0.642 0.104 0.655 1.996 0.025 -6.658 13.698 3.010 -3.129 39.421 7.466 5.280 0.779 0.135 0.033 0.053 -0.436 -2.267 -0.431 0.669 

10 0.642 0.104 0.654 1.992 0.023 -6.661 13.704 3.011 -3.131 39.439 7.470 5.280 0.779 0.135 0.033 0.053 -0.436 -2.267 -0.431 0.670 

11 0.643 0.104 0.654 1.988 0.021 -6.663 13.710 3.011 -3.133 39.456 7.473 5.280 0.779 0.135 0.033 0.053 -0.436 -2.267 -0.431 0.670 

12 0.643 0.104 0.653 1.985 0.019 -6.666 13.715 3.012 -3.135 39.471 7.476 5.280 0.779 0.135 0.033 0.053 -0.436 -2.267 -0.431 0.670 

13 0.644 0.104 0.653 1.982 0.017 -6.668 13.720 3.013 -3.137 39.485 7.478 5.280 0.779 0.135 0.033 0.053 -0.436 -2.267 -0.431 0.670 

 
The design point has been verified using the FEM analysis. The final step of FORM analysis based on the response space results to a crest settlement of 1.51 m, the 
calculated crest settlement from FEM analysis is 1.52 m.  
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Table 19. Results of FORM-analyses for the Delfzijl profile with spatial averaging [Sensitivity case 2 : Su/p’ according to Kramer and Wang (2015); ground motion 6] 

No. 
Sa [g] 
(=ex1) 

CRR  
[-] 

(=ex2) 

εSu/p'  
[-] 

(=ex3) 

m 
[-] 

(=ex4) 

Z 
[m] 

Z/x1 Z/x2 Z/x3 Z/x4 μ_Z σ_Ζ Beta x1
2 x2

2 x3
2 x4

2 x1d x2d x3d x4d 

0 1.000 0.214 0.536 1.904 -0.181 -8.018 22.520 4.885 -3.346 45.268 8.517 5.315 0.817 0.070 0.067 0.047 -0.008 -1.541 -0.617 0.632 

1 0.999 0.214 0.537 1.900 -0.147 -7.942 22.322 4.836 -3.310 44.835 8.436 5.315 0.817 0.070 0.067 0.047 -0.009 -1.541 -0.617 0.631 

2 0.997 0.214 0.537 1.895 -0.119 -7.880 22.157 4.797 -3.280 44.482 8.370 5.315 0.817 0.070 0.067 0.046 -0.009 -1.541 -0.617 0.630 

3 0.996 0.214 0.538 1.892 -0.097 -7.830 22.021 4.766 -3.257 44.195 8.316 5.314 0.817 0.070 0.067 0.046 -0.009 -1.541 -0.617 0.630 

4 0.995 0.214 0.538 1.889 -0.078 -7.789 21.909 4.741 -3.237 43.961 8.273 5.314 0.817 0.070 0.066 0.046 -0.009 -1.541 -0.617 0.629 

5 0.994 0.214 0.538 1.886 -0.063 -7.756 21.817 4.720 -3.222 43.771 8.237 5.314 0.817 0.070 0.066 0.046 -0.009 -1.541 -0.617 0.629 

6 0.994 0.214 0.539 1.884 -0.051 -7.729 21.741 4.704 -3.209 43.617 8.208 5.314 0.817 0.070 0.066 0.046 -0.009 -1.541 -0.617 0.628 

7 0.993 0.214 0.539 1.882 -0.042 -7.707 21.680 4.690 -3.199 43.491 8.185 5.314 0.817 0.070 0.066 0.046 -0.009 -1.541 -0.617 0.628 

8 0.993 0.214 0.539 1.881 -0.034 -7.689 21.630 4.679 -3.191 43.389 8.166 5.314 0.817 0.070 0.066 0.046 -0.009 -1.541 -0.617 0.628 

9 0.993 0.214 0.539 1.879 -0.027 -7.674 21.590 4.670 -3.184 43.307 8.150 5.314 0.817 0.070 0.066 0.046 -0.009 -1.541 -0.617 0.628 

10 0.992 0.214 0.539 1.878 -0.022 -7.663 21.557 4.663 -3.178 43.239 8.137 5.314 0.817 0.070 0.066 0.046 -0.009 -1.541 -0.617 0.628 

11 0.992 0.214 0.539 1.877 -0.018 -7.653 21.530 4.657 -3.174 43.185 8.127 5.314 0.817 0.070 0.067 0.046 -0.009 -1.541 -0.617 0.628 

12 0.992 0.214 0.539 1.876 -0.015 -7.645 21.508 4.653 -3.170 43.141 8.119 5.314 0.817 0.070 0.067 0.046 -0.009 -1.541 -0.617 0.628 

13 0.992 0.214 0.540 1.876 -0.012 -7.639 21.490 4.649 -3.167 43.105 8.112 5.314 0.817 0.070 0.067 0.046 -0.009 -1.541 -0.617 0.628 

 
The design point has been verified using the FEM analysis. The final step of FORM analysis based on the response space results to a crest settlement of 1.60 m, the 
calculated crest settlement from FEM analysis is 1.70 m.  
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Table 20. Results of FORM-analyses for the Eemshaven profile without spatial averaging [Sensitivity case 3 : Su/p’ according to Idriss and Boulanger 2008; ground motion 4] 

No. 
Sa [g] 
(=ex1) 

CRR  
[-] 

(=ex2) 

εSu/p'  
[-] 

(=ex3) 

m 
[-] 

(=ex4) 

Z 
[m] 

Z/x1 Z/x2 Z/x3 Z/x4 μ_Z σ_Ζ Beta x1
2 x2

2 x3
2 x4

2 x1d x2d x3d x4d 

0 0.500 0.100 0.900 2.000 -0.198 -7.376 9.128 7.361 -3.363 39.631 8.091 4.898 0.815 0.115 0.019 0.052 -0.673 -2.297 -0.100 0.616 

1 0.502 0.100 0.901 1.969 -0.160 -7.267 9.024 7.284 -3.324 39.067 7.976 4.898 0.814 0.115 0.019 0.053 -0.676 -2.299 -0.101 0.617 

2 0.503 0.100 0.902 1.946 -0.130 -7.182 8.936 7.222 -3.292 38.625 7.886 4.898 0.813 0.116 0.019 0.053 -0.678 -2.299 -0.101 0.618 

3 0.504 0.100 0.902 1.927 -0.105 -7.116 8.863 7.172 -3.266 38.276 7.816 4.897 0.813 0.116 0.019 0.053 -0.680 -2.300 -0.101 0.619 

4 0.505 0.100 0.902 1.913 -0.085 -7.064 8.803 7.131 -3.245 38.001 7.760 4.897 0.812 0.116 0.019 0.053 -0.681 -2.300 -0.101 0.619 

5 0.505 0.100 0.903 1.902 -0.069 -7.023 8.755 7.098 -3.228 37.782 7.715 4.897 0.812 0.116 0.019 0.053 -0.681 -2.300 -0.101 0.620 

6 0.505 0.100 0.903 1.893 -0.056 -6.991 8.716 7.071 -3.214 37.608 7.680 4.897 0.812 0.116 0.019 0.053 -0.681 -2.300 -0.101 0.620 

7 0.505 0.100 0.903 1.886 -0.045 -6.965 8.685 7.049 -3.203 37.469 7.652 4.897 0.812 0.116 0.019 0.053 -0.682 -2.300 -0.101 0.620 

8 0.505 0.100 0.903 1.881 -0.037 -6.944 8.660 7.031 -3.194 37.359 7.629 4.897 0.812 0.116 0.019 0.053 -0.682 -2.300 -0.102 0.620 

9 0.505 0.100 0.903 1.876 -0.030 -6.928 8.639 7.016 -3.186 37.270 7.611 4.897 0.812 0.116 0.019 0.053 -0.682 -2.300 -0.102 0.620 

10 0.506 0.100 0.903 1.873 -0.024 -6.914 8.623 7.004 -3.181 37.199 7.597 4.897 0.812 0.116 0.019 0.053 -0.682 -2.300 -0.102 0.620 

11 0.506 0.100 0.903 1.870 -0.020 -6.904 8.610 6.994 -3.176 37.142 7.585 4.897 0.812 0.116 0.019 0.053 -0.682 -2.300 -0.102 0.620 

12 0.506 0.100 0.903 1.868 -0.016 -6.895 8.599 6.986 -3.172 37.096 7.576 4.897 0.812 0.116 0.019 0.053 -0.682 -2.300 -0.102 0.620 

13 0.506 0.100 0.903 1.866 -0.013 -6.888 8.591 6.980 -3.169 37.059 7.569 4.897 0.812 0.116 0.019 0.053 -0.682 -2.300 -0.102 0.620 

 
The design point has been verified using the FEM analysis. The final step of FORM analysis based on the response space results to a crest settlement of 1.62 m, while the 
calculated crest settlement from FEM analysis is 1.60 m. A final FORM iteration using numerical analysis results concludes to similar influence factors (αi

2) as shown in the 
table below. 
 

No. 
Sa [g] 
(=ex1) 

CRR  
[-] 

(=ex2) 

εSu/p'  
[-] 

(=ex3) 

m 
[-] 

(=ex4) 

Z 
[m] 

Z/x1 Z/x2 Z/x3 Z/x4 x1
2 x2

2 x3
2 x4

2 

final 0.506 0.100 0.900 1.870 0.008 -6.545 8.415 5.610 -3.147 0.806 0.122 0.014 0.058 
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Table 21. Results of FORM-analyses for the Delfzijl profile without spatial averaging [Sensitivity case 4 : Su/p’ according to Idriss and Boulanger 2008; ground motion 4] 

No. 
Sa [g] 
(=ex1) 

CRR  
[-] 

(=ex2) 

εSu/p'  
[-] 

(=ex3) 

m 
[-] 

(=ex4) 

Z 
[m] 

Z/x1 Z/x2 Z/x3 Z/x4 μ_Z σ_Ζ Beta x1
2 x2

2 x3
2 x4

2 x1d x2d x3d x4d 

0 0.800 0.190 0.900 2.300 -0.145 -5.843 8.997 5.367 -3.393 31.285 6.232 5.020 0.810 0.083 0.017 0.090 -0.282 -1.690 -0.097 0.827 

1 0.791 0.189 0.901 2.297 -0.127 -5.847 8.933 5.447 -3.374 31.264 6.230 5.019 0.812 0.082 0.017 0.089 -0.279 -1.688 -0.099 0.822 

2 0.784 0.188 0.902 2.293 -0.110 -5.842 8.881 5.497 -3.355 31.211 6.221 5.017 0.813 0.082 0.018 0.088 -0.277 -1.687 -0.100 0.819 

3 0.778 0.188 0.903 2.288 -0.094 -5.833 8.837 5.528 -3.338 31.142 6.208 5.016 0.814 0.081 0.018 0.087 -0.276 -1.686 -0.101 0.816 

4 0.774 0.187 0.903 2.282 -0.079 -5.822 8.801 5.546 -3.322 31.067 6.194 5.016 0.814 0.081 0.018 0.087 -0.275 -1.685 -0.101 0.814 

5 0.771 0.187 0.903 2.277 -0.067 -5.810 8.771 5.557 -3.309 30.993 6.180 5.015 0.815 0.081 0.018 0.087 -0.275 -1.685 -0.101 0.812 

6 0.769 0.186 0.903 2.272 -0.056 -5.798 8.746 5.562 -3.297 30.924 6.167 5.015 0.815 0.080 0.018 0.086 -0.274 -1.684 -0.102 0.811 

7 0.767 0.186 0.903 2.268 -0.047 -5.787 8.725 5.565 -3.287 30.861 6.154 5.014 0.815 0.080 0.018 0.086 -0.274 -1.684 -0.102 0.810 

8 0.766 0.186 0.903 2.264 -0.039 -5.777 8.708 5.565 -3.279 30.805 6.144 5.014 0.815 0.080 0.018 0.086 -0.274 -1.684 -0.102 0.809 

9 0.765 0.186 0.903 2.261 -0.032 -5.769 8.694 5.565 -3.272 30.756 6.134 5.014 0.815 0.080 0.019 0.086 -0.274 -1.684 -0.102 0.809 

10 0.764 0.186 0.903 2.258 -0.027 -5.761 8.683 5.564 -3.266 30.714 6.126 5.014 0.815 0.080 0.019 0.086 -0.274 -1.684 -0.102 0.809 

11 0.763 0.186 0.903 2.255 -0.022 -5.755 8.674 5.562 -3.261 30.678 6.119 5.014 0.815 0.080 0.019 0.086 -0.275 -1.684 -0.103 0.808 

12 0.762 0.186 0.903 2.253 -0.019 -5.749 8.666 5.561 -3.257 30.648 6.113 5.014 0.815 0.080 0.019 0.086 -0.275 -1.684 -0.103 0.808 

13 0.762 0.186 0.903 2.251 -0.015 -5.744 8.660 5.560 -3.253 30.622 6.108 5.013 0.815 0.080 0.019 0.086 -0.275 -1.684 -0.103 0.808 

 
The design point has been verified using the FEM analysis. The final step of FORM analysis based on the response space results to a crest settlement of 1.34 m, while the 
calculated crest settlement from FEM analysis is 1.30 m. A final FORM iteration using numerical analysis results concludes to similar influence factors (αi

2) as shown in the 
table below. 
 

No. 
Sa [g] 
(=ex1) 

CRR  
[-] 

(=ex2) 

εSu/p'  
[-] 

(=ex3) 

m 
[-] 

(=ex4) 

Z 
[m] 

Z/x1 Z/x2 Z/x3 Z/x4 x1
2 x2

2 x3
2 x4

2 

final 0.762 0.186 0.903 2.250 0.075 -5.625 7.875 5.625 -3.076 0.828 0.070 0.020 0.081 
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Appendix J Sensitivity analyses on design sea water level 

In Fugro (2016c) dynamic levee stability evaluations the water table level for earthquake loading (i.e. 
corresponding to a 1-year flood event) was used in the analyses together with the application of earthquake 
loading.  The water level corresponding to the 1-year flood event is at El. +3.75m NAP at seaside for both 
Eemshaven and Delfzijl. 
 
Since water pressure acts as a stabilizing force on the seaside levee slope, the use of the higher water levels 
associated with the 1-year flood event may be an unconservative assumption in terms of levee crest 
settlements.  To address this issue, additional numerical analyses were performed assuming mean high water 
level (i.e. El. +1.93m NAP for both Eemshaven Delfzijl) and mean low tides water level  (i.e. El. -0.7m NAP for 
Eemshaven and El. -1.85m NAP for Delfzijl) to evaluate its influence on dynamically induced crest settlements.  
The water levels are shown schematically on Figure 43. 
 
Results of the sensitivity analyses on the water level are shown on Figure 44 for Eemshaven and Figure 45 for 
Delfzijl.  The figures plot contours of post seismic crest settlement for the 1-year flood event (upper 
illustration), mean high water level (illustration in the middle) and mean low tides water level (lower 
illustration). As shown on these figures the crest settlements are not significantly affected for the water levels 
considered. 
 

 
 
Figure 43. Schematization of 1-year flood event (blue line), mean high (red line) and mean low tides (green line) 
water levels. 
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Figure 44. Contours of residual vertical displacements in Eemshaven for 1-year flood event (blue line in Figure 
43), mean high (red line in Figure 43) and mean low tides (green line in Figure 43) water level conditions.  

 

 
Figure 45. Contours of residual vertical displacements in Delfzijl for 1-year flood event (blue line in Figure 43), 
mean high (red line in Figure 43) and mean low tides (green line in Figure 43) water level conditions. 


